1
|
Oeller M, Schally T, Zimmermann G, Lauth W, Schallmoser K, Rohde E, Laner-Plamberger S. Heparin Differentially Regulates the Expression of Specific miRNAs in Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:12589. [PMID: 39684301 DOI: 10.3390/ijms252312589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate (HPL)-supplemented cell cultures, on the expression of non-coding RNA species, particularly microRNAs (miRNA), which are pivotal regulators of gene expression. Through genomic analysis and quantitative RT-PCR, we assessed the differential impact of heparin on miRNA expression in various stromal cell types, derived from human bone marrow, umbilical cord and white adipose tissue. Our results demonstrate that heparin significantly alters miRNA expression, with distinct up- and downregulation patterns depending on the original tissue source of human stromal cells. Furthermore, our analyses indicate that these heparin-induced alterations in miRNA expression profiles influence critical cellular processes, including proliferation, apoptosis and differentiation. In conclusion, our study highlights that heparin not only fulfills its primary role as an efficient anticoagulant but can also modulate important regulatory pathways in stromal cells by influencing miRNA expression. This may alter cellular properties and thus influence stromal cell-based therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Michaela Oeller
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Tanja Schally
- GMP Laboratory, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Research Program Biomedical Data Science, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Department of Artificial Intelligence and Human Interfaces, Faculty of Digital and Analytical Sciences, Paris Lodron University Salzburg, Jakob Haringer Straße 2, 5020 Salzburg, Austria
| | - Wanda Lauth
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Research Program Biomedical Data Science, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
| | - Katharina Schallmoser
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Eva Rohde
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
- GMP Laboratory, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Sandra Laner-Plamberger
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Emonts C, Bauer B, Pitts J, Roger Y, Hoffmann A, Menzel H, Gries T. Mechanical, Biological and In Vitro Degradation Investigation of Braided Scaffolds for Tendon and Ligament Tissue Engineering Based on Different Polycaprolactone Materials with Chitosan-Graft-PCL Surface Modification. Polymers (Basel) 2024; 16:2349. [PMID: 39204570 PMCID: PMC11360056 DOI: 10.3390/polym16162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Injuries to tendons and ligaments are highly prevalent in the musculoskeletal system. Current treatments involve autologous transplants with limited availability and donor site morbidity. Tissue engineering offers a new approach through temporary load-bearing scaffolds. These scaffolds have to fulfill numerous requirements, the majority of which can be met using braiding combined with high-strength polycaprolactone (PCL) fibers. Considering regulatory requirements, several medical-grade PCL materials were assessed regarding their mechanical, degradational and cell biological properties. In the course of the investigation, an excellent fiber tensile strength of up to 850 MPa was achieved. The fibers were braided into multilayer scaffolds and scaled to match the human ACL. These were characterized regarding their morphology and their mechanical and degradational properties. Two strategies were followed to provide biological cues: (a) applying a chitosan-graft-PCL surface modification and (b) using non-circular fiber morphologies as topographical stimuli. Cell vitality assays showed generally positive cytocompatibility and no impairments due to the surface modification or material grade. The best cell vitality was achieved with a scaffold consisting of snowflake-shaped monofilaments combined with a 25° braiding angle. The surface modification equips the scaffold with a release platform for function molecules (as recently demonstrated) so that a holistic approach to addressing the numerous requirements is provided.
Collapse
Affiliation(s)
- Caroline Emonts
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany
| | - Benedict Bauer
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany
| | - Johannes Pitts
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Thomas Gries
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Ferencakova M, Benova A, Raska I, Abaffy P, Sindelka R, Dzubanova M, Pospisilova E, Kolostova K, Cajka T, Paclik A, Zikan V, Tencerova M. Human bone marrow stromal cells: the impact of anticoagulants on stem cell properties. Front Cell Dev Biol 2023; 11:1255823. [PMID: 37791077 PMCID: PMC10544901 DOI: 10.3389/fcell.2023.1255823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/14/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Bone marrow stromal cells (BMSCs) are the source of multipotent stem cells, which are important for regenerative medicine and diagnostic purposes. The isolation of human BMSCs from the bone marrow (BM) cavity using BM aspiration applies the method with collection into tubes containing anticoagulants. Interactions with anticoagulants may affect the characteristics and composition of isolated BMSCs in the culture. Thus, we investigated how anticoagulants in isolation procedures and cultivation affect BMSC molecular characteristics. Methods: BM donors (age: 48-85 years) were recruited from the hematology clinic. BM aspirates were obtained from the iliac crest and divided into tubes coated with ethylenediaminetetraacetic acid (EDTA) or heparin anticoagulants. Isolated BMSCs were analyzed by flow cytometry and RNA-seq analysis. Further cellular and molecular characterizations of BMSCs including CFU, proliferation and differentiation assays, cytometry, bioenergetic assays, metabolomics, immunostaining, and RT-qPCR were performed. Results: The paired samples of isolated BMSCs obtained from the same patient showed increased cellular yield in heparin vs. EDTA samples, accompanied by the increased number of CFU colonies. However, no significant changes in molecular characteristics were found between heparin- and EDTA-isolated BMSCs. On the other hand, RNA-seq analysis revealed an increased expression of genes involved in nucleotide metabolism and cellular metabolism in cultivated vs. non-cultivated BMSCs regardless of the anticoagulant, while genes involved in inflammation and chromatin remodeling were decreased in cultivated vs. non-cultivated BMSCs. Conclusion: The type of anticoagulant in BMSC isolation did not have a significant impact on molecular characteristics and cellular composition, while in vitro cultivation caused the major change in the transcriptomics of BMSCs, which is important for future protocols using BMSCs in regenerative medicine and clinics.
Collapse
Affiliation(s)
- Michaela Ferencakova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Ivan Raska
- Third Department of Medicine-Department of Endocrinology and Metabolism, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Eliska Pospisilova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Prague, Czechia
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Paclik
- First Department of Surgery, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Vit Zikan
- Third Department of Medicine-Department of Endocrinology and Metabolism, First Faculty of Medicine, General University Hospital in Prague, Charles University, Prague, Czechia
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
4
|
The Choice of Anticoagulant Influences the Characteristics of Bone Marrow Aspirate Concentrate and Mesenchymal Stem Cell Bioactivity In Vitro. Stem Cells Int 2022; 2022:8259888. [PMID: 35910535 PMCID: PMC9337942 DOI: 10.1155/2022/8259888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
Bone marrow aspirate concentrate (BMC) is commonly used as a therapeutic agent to resolve orthopedic injuries, using its unique cellularity to reduce inflammation and prime the region for repair. The aspiration of the bone marrow is performed using either sodium citrate (SC) or heparin sodium (HS) as an anticoagulant and processed via centrifugation to concentrate the cellular constituents. To date, the consideration of the impact of the two commonly used anticoagulants on the mesenchymal stem/stromal cell (MSC) population has been overlooked. The current study assesses the differences in the BMCs produced using 15% SC and HS at 1,000 U/mL or 100 U/mL final v./v. as an anticoagulant using in vitro metrics including total nucleated cell counts (TNC) and viability, the ability for mesenchymal stromal/stem cells (MSCs) to establish colony-forming units with fibroblast morphology (CFU-f), and cytokine expression profile of the MSC cultures. Our findings demonstrate that HS-derived BMC cultures result in higher CFU-f formation and CFU-f frequency at both concentrations assessed compared to SC-derived BMC cultures. In addition, there were significant differences in 27% (7 of 26) of the cytokines quantified in HS-derived BMC cultures compared to SC-derived BMC cultures with implications for MSC plasticity and self-renewal.
Collapse
|
5
|
Araldi RP, Prezoto BC, Gonzaga V, Policiquio B, Mendes TB, D’Amélio F, Vigerelli H, Viana M, Valverde CW, Pagani E, Kerkis I. Advanced cell therapy with low tissue factor loaded product NestaCell® does not confer thrombogenic risk for critically ill COVID-19 heparin-treated patients. Pharmacotherapy 2022; 149:112920. [PMID: 36068779 PMCID: PMC8971080 DOI: 10.1016/j.biopha.2022.112920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.
Collapse
|
6
|
Jeyaraman M, Bingi SK, Muthu S, Jeyaraman N, Packkyarathinam RP, Ranjan R, Sharma S, Jha SK, Khanna M, Rajendran SNS, Rajendran RL, Gangadaran P. Impact of the Process Variables on the Yield of Mesenchymal Stromal Cells from Bone Marrow Aspirate Concentrate. Bioengineering (Basel) 2022; 9:57. [PMID: 35200410 PMCID: PMC8869489 DOI: 10.3390/bioengineering9020057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow (BM) has been highlighted as a promising source of mesenchymal stromal cells (MSCs) containing various growth factors and cytokines that can be potentially utilized in regenerative procedures involving cartilage and bone. However, the proportion of MSCs in the nucleated cell population of BM is only around 0.001% to 0.01% thereby making the harvesting and processing technique crucial for obtaining optimal results upon its use in various regenerative processes. Although several studies in the literature have given encouraging results on the utility of BM aspiration concentrate (BMAC) in various regenerative procedures, there is a lack of consensus concerning the harvesting variables such as choice of anesthetic agent to be used, site of harvest, size of the syringe to be used, anticoagulant of choice, and processing variables such as centrifugation time, and speed. In this review article, we aim to discuss the variables in the harvesting and processing technique of BMAC and their impact on the yield of MSCs in the final concentrate obtained from them.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
| | - Shiva Kumar Bingi
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, India
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, India
| | | | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India;
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, India; (S.K.B.); (M.K.)
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226401, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|