1
|
Ge J, Cao M, Zhang Y, Wu T, Liu J, Pu J, He H, Guo Z, Ju S, Yu J. Inhibiting NLRP3 enhances cellular autophagy induced by outer membrane vesicles from Pseudomonas aeruginosa. Microbiol Spectr 2025; 13:e0181924. [PMID: 39873509 DOI: 10.1128/spectrum.01819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The bacterium Pseudomonas aeruginosa is able to invade lung epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, it is currently unclear how OMVs from P. aeruginosa (PA-OMVs) affect lung epithelial cells and their impact on oxidative stress, autophagy, and other physiological activities of lung epithelial cells. In this study, we found that PA-OMVs activated oxidative stress and autophagy in cells. We demonstrated that the NLRP3 (NLR family, pyrin domain containing 3) inhibitor MCC950 can enhance autophagy induced by PA-OMVs. The main function of NLRP3 is related to the body's immune response and inflammation regulation. MCC950 is the most common inhibitor of NLRP3. Additionally, we showed that PA-OMVs not only enhanced the expression of AMP-activated protein kinase, a key regulator of cellular energy homeostasis, and reactive oxygen species, which play a crucial role in cellular signaling and oxidative stress, but also significantly enhanced the expression of NLRP3. Inhibiting the expression of NLRP3 further enhanced the process of PA-OMVs induced autophagy. These results demonstrate that PA-OMVs activate both autophagy and the NLRP3 inflammasome, with NLRP3 suppressing autophagy to a certain extent, hoping to provide broad ideas for the future applications of PA-OMVs.IMPORTANCEThe discovery that lung epithelial cells exposed to outer membrane vesicles from Pseudomonas aeruginosa (PA-OMVs) activate cellular autophagy and induce protective immunity is significant. Specifically, the addition of an NLRP3 inhibitor, MCC950, has been found to decrease NLRP3 targets while simultaneously enhancing the autophagy activity induced by PA-OMVs. This finding unveils a novel theoretical framework for the development of PA-OMVs vaccines, highlighting new targets for enhancing the body's anti-infective responses. By elucidating the mechanisms through which PA-OMVs trigger autophagy and bolster immune defenses, this research opens avenues for innovative vaccine design strategies aimed at combatting infections effectively.
Collapse
Affiliation(s)
- Jing Ge
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Min Cao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yuyao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tianqi Wu
- Krieger School of Arts and Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiayi Liu
- Institute of Public Health, Nantong University, Nantong, China
| | - Jiang Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongye He
- Institute of Public Health, Nantong University, Nantong, China
| | - Zhibin Guo
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Deng Y, Zhang Y, Wu T, Niu K, Jiao X, Ma W, Peng C, Wu W. Complement C3 deposition restricts the proliferation of internalized Staphylococcus aureus by promoting autophagy. Front Cell Infect Microbiol 2024; 14:1400068. [PMID: 39310788 PMCID: PMC11412942 DOI: 10.3389/fcimb.2024.1400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Complement C3 (C3) is usually deposited spontaneously on the surfaces of invading bacteria prior to internalization, but the impact of C3 coating on cellular responses is largely unknown. Staphylococcus aureus (S. aureus) is a facultative intracellular pathogen that subverts autophagy and replicates in both phagocytic and nonphagocytic cells. In the present study, we deposited C3 components on the surface of S. aureus by complement opsonization before cell infection and confirmed that C3-coatings remained on the surface of the bacteria after they have invaded the cells, suggesting S. aureus cannot escape or degrade C3 labeling. We found that the C3 deposition on S. aureus notably enhanced cellular autophagic responses, and distinguished these responses as xenophagy, in contrast to LC3-associated phagocytosis (LAP). Furthermore, this upregulation was due to the recruitment of and direct interaction with autophagy-related 16-like 1 (ATG16L1), thereby resulting in autophagy-dependent resistance to bacterial growth within cells. Interestingly, this autophagic effect occurred only after C3 activation by enzymatic cleavage because full-length C3 without cleavage of the complement cascade reaction, although capable of binding to ATG16L1, failed to promote autophagy. These findings demonstrate the biological function of intracellular C3 upon bacterial infection in enhancing autophagy against internalized S. aureus.
Collapse
Affiliation(s)
- Yining Deng
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Yunke Zhang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Niu
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyu Jiao
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenge Ma
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- National Key Laboratory of Veterinary Public Health, Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Kilinç G, Boland R, Heemskerk MT, Spaink HP, Haks MC, van der Vaart M, Ottenhoff THM, Meijer AH, Saris A. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Microbiol Spectr 2024; 12:e0016724. [PMID: 38916320 PMCID: PMC11302041 DOI: 10.1128/spectrum.00167-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) as well as nontuberculous mycobacteria are intracellular pathogens whose treatment is extensive and increasingly impaired due to the rise of mycobacterial drug resistance. The loss of antibiotic efficacy has raised interest in the identification of host-directed therapeutics (HDT) to develop novel treatment strategies for mycobacterial infections. In this study, we identified amiodarone as a potential HDT candidate that inhibited both intracellular Mtb and Mycobacterium avium in primary human macrophages without directly impairing bacterial growth, thereby confirming that amiodarone acts in a host-mediated manner. Moreover, amiodarone induced the formation of (auto)phagosomes and enhanced autophagic targeting of mycobacteria in macrophages. The induction of autophagy by amiodarone is likely due to enhanced transcriptional regulation, as the nuclear intensity of the transcription factor EB, the master regulator of autophagy and lysosomal biogenesis, was strongly increased. Furthermore, blocking lysosomal degradation with bafilomycin impaired the host-beneficial effect of amiodarone. Finally, amiodarone induced autophagy and reduced bacterial burden in a zebrafish embryo model of tuberculosis, thereby confirming the HDT activity of amiodarone in vivo. In conclusion, we have identified amiodarone as an autophagy-inducing antimycobacterial HDT that improves host control of mycobacterial infections. IMPORTANCE Due to the global rise in antibiotic resistance, there is a strong need for alternative treatment strategies against intracellular bacterial infections, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria. Stimulating host defense mechanisms by host-directed therapy (HDT) is a promising approach for treating mycobacterial infections. This study identified amiodarone, an antiarrhythmic agent, as a potential HDT candidate that inhibits the survival of Mtb and Mycobacterium avium in primary human macrophages. The antimycobacterial effect of amiodarone was confirmed in an in vivo tuberculosis model based on Mycobacterium marinum infection of zebrafish embryos. Furthermore, amiodarone induced autophagy and inhibition of the autophagic flux effectively impaired the host-protective effect of amiodarone, supporting that activation of the host (auto)phagolysosomal pathway is essential for the mechanism of action of amiodarone. In conclusion, we have identified amiodarone as an autophagy-inducing HDT that improves host control of a wide range of mycobacteria.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralf Boland
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Matthias T. Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Xie J, Meijer AH. Xenophagy receptors Optn and p62 and autophagy modulator Dram1 independently promote the zebrafish host defense against Mycobacterium marinum. Front Cell Infect Microbiol 2024; 13:1331818. [PMID: 38264729 PMCID: PMC10803470 DOI: 10.3389/fcimb.2023.1331818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Anti-bacterial autophagy, also known as xenophagy, is a crucial innate immune process that helps maintain cellular homeostasis by targeting invading microbes. This defense pathway is widely studied in the context of infections with mycobacteria, the causative agents of human tuberculosis and tuberculosis-like disease in animal models. Our previous work in a zebrafish tuberculosis model showed that host defense against Mycobacterium marinum (Mm) is impaired by deficiencies in xenophagy receptors, optineurin (Optn) or sequestome 1 (p62), and Damage-regulated autophagy modulator 1 (Dram1). However, the interdependency of these receptors and their interaction with Dram1 remained unknown. In the present study, we used single and double knockout zebrafish lines in combination with overexpression experiments. We show that Optn and p62 can compensate for the loss of each other's function, as their overexpression restores the infection susceptibility of the mutant phenotypes. Similarly, Dram1 can compensate for deficiencies in Optn and p62, and, vice versa, Optn and p62 compensate for the loss of Dram1, indicating that these xenophagy receptors and Dram1 do not rely on each other for host defense against Mm. In agreement, Dram1 overexpression in optn/p62 double mutants restored the interaction of autophagosome marker Lc3 with Mm. Finally, optn/p62 double mutants displayed more severe infection susceptibility than the single mutants. Taken together, these results suggest that Optn and p62 do not function downstream of each other in the anti-mycobacterial xenophagy pathway, and that the Dram1-mediated defense against Mm infection does not rely on specific xenophagy receptors.
Collapse
|
6
|
Dai X, Han YX, Shen QY, Tang H, Cheng LZ, Yang FP, Wei WH, Yang SM. Effect of Food Restriction on Food Grinding in Brandt's Voles. Animals (Basel) 2023; 13:3424. [PMID: 37958179 PMCID: PMC10647212 DOI: 10.3390/ani13213424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Food grinding is supposed to be influenced by multiple factors. However, how those factors affecting this behavior remain unclear. In this study, we investigated the effect of food restriction on food grinding in Brandt's voles (Lasiopodomys brandtii), as well as the potential role of the gut microbiota in this process, through a comparison of the variations between voles with different food supplies. Food restriction reduced the relative amount of ground food to a greater extent than it lowered the relative food consumption, and altered the abundance of Staphylococcus, Aerococcus, Jeotgalicoccus, and Un--s-Clostridiaceae bacterium GM1. Fecal acetate content for the 7.5 g-food supply group was lower than that for the 15 g-food supply group. Our study indicated that food restriction could effectively inhibit food grinding. Further, Un--s-Clostridiaceae bacterium GM1 abundance, Aerococcus abundance, and acetate content were strongly related to food grinding. Variations in gut microbial abundance and short-chain fatty acid content induced by food restriction likely promote the inhibition of food grinding. These results could potentially provide guidance for reducing food waste during laboratory rodent maintenance.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Yu-Xuan Han
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Qiu-Yi Shen
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Hao Tang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Li-Zhi Cheng
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Feng-Ping Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| |
Collapse
|
7
|
Jiang S, He J, Zhang L, Zhao Q, Zhao S. Bacterial lipoprotein plays an important role in the macrophage autophagy and apoptosis induced by Salmonella typhimurium and Staphylococcus aureus. Open Life Sci 2023; 18:20220739. [PMID: 37791056 PMCID: PMC10543702 DOI: 10.1515/biol-2022-0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
This study aimed to determine the role of bacterial lipoprotein (BLP) in autophagy and apoptosis. Western blot was used to examine autophagy biomarkers in mouse bone marrow-derived macrophages (BMDMs) after infection with Salmonella typhimurium (S. typhimurium) and Staphylococcus aureus (S. aureus) and BLP stimulation. In BMDMs, enhanced protein expression of LC3-II was observed after S. typhimurium or S. aureus infection (P < 0.05) and BLP stimulation (P < 0.05). Autophagy inhibition by chloroquine resulted in increased levels of LC3-Ⅱ and p62 protein (P < 0.05). Persistently upregulated expressions of Atg3 and Atg7 were observed following BLP stimulation (P < 0.05), and knockdown of Atg3 or Atg7 significantly attenuated BLP-enhanced protein expression of LC3-Ⅱ in BMDMs. Furthermore, we found that the autophagy inhibitor 3-methyladenine prevented BLP- and infection-induced macrophage apoptosis. BLP is not only required for autophagy and apoptosis activation in macrophages but also for regulating the balance between autophagy and apoptosis.
Collapse
Affiliation(s)
- Shanshan Jiang
- Institute of Hematological Research, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 71000, China
| | - Jinyao He
- Clinical Laboratory, Xi’an Medical University, Xi’an, Shaanxi, 710068, China
| | - Lijie Zhang
- Institute of Hematological Research, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 71000, China
| | - Qiaojiajie Zhao
- Institute of Hematological Research, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 71000, China
| | - Shuqi Zhao
- Institute of Hematological Research, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 71000, China
| |
Collapse
|
8
|
Xie B, Zhao H, Zhang R, Ding Y, Gao C, He Y, Wang R. Bacteria-mimetic nanomedicine for targeted eradication of intracellular MRSA. J Control Release 2023; 357:371-378. [PMID: 37030543 DOI: 10.1016/j.jconrel.2023.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Drug-resistant infections caused by intracellular bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which are often hidden inside macrophages, pose a significant threat to human health. Various nanomedicines have been developed to combat intracellular MRSA; however, their poor uptake and fast clearance from macrophages often result in insufficient enrichment of antibacterial agents intracellularly, leading to low antibacterial efficacy. Here, we developed bacterial membrane-coated mesoporous SiO2 nanoparticles (MSN) loaded with vancomycin (Van), a classic antibiotic. These nanoparticles can be specifically recognized and internalized by macrophages and self-aggregated into micron-sized MSN clusters based on cucurbit[7]uril-adamantane host-guest interactions, allowing for slow clearance and extended retention in infected macrophages. The acid-triggered, sustainable release of Van from MSN aggregates effectively killed MRSA in infected macrophages and significantly alleviated inflammation caused by intracellular bacterial infections both in vitro and in vivo. This work not only provides a practical solution to effectively treat drug-resistant intracellular infections but also offers new insights for the design and development of antibacterial nanomaterials.
Collapse
Affiliation(s)
- Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331 Shapingba, Chongqing, PR China
| | - Huichao Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China
| | - Ruixue Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331 Shapingba, Chongqing, PR China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, 401331 Shapingba, Chongqing, PR China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR 999078, PR China.
| |
Collapse
|
9
|
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, Ehtesham NZ. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023; 19:3-23. [PMID: 35000542 PMCID: PMC9809970 DOI: 10.1080/15548627.2021.2021495] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intracellular pathogens have evolved various efficient molecular armaments to subvert innate defenses. Cellular ubiquitination, a normal physiological process to maintain homeostasis, is emerging one such exploited mechanism. Ubiquitin (Ub), a small protein modifier, is conjugated to diverse protein substrates to regulate many functions. Structurally diverse linkages of poly-Ub to target proteins allow enormous functional diversity with specificity being governed by evolutionarily conserved enzymes (E3-Ub ligases). The Ub-binding domain (UBD) and LC3-interacting region (LIR) are critical features of macroautophagy/autophagy receptors that recognize Ub-conjugated on protein substrates. Emerging evidence suggests that E3-Ub ligases unexpectedly protect against intracellular pathogens by tagging poly-Ub on their surfaces and targeting them to phagophores. Two E3-Ub ligases, PRKN and SMURF1, provide immunity against Mycobacterium tuberculosis (M. tb). Both enzymes conjugate K63 and K48-linked poly-Ub to M. tb for successful delivery to phagophores. Intriguingly, M. tb exploits virulence factors to effectively dampen host-directed autophagy utilizing diverse mechanisms. Autophagy receptors contain LIR-motifs that interact with conserved Atg8-family proteins to modulate phagophore biogenesis and fusion to the lysosome. Intracellular pathogens have evolved a vast repertoire of virulence effectors to subdue host-immunity via hijacking the host ubiquitination process. This review highlights the xenophagy-mediated clearance of M. tb involving host E3-Ub ligases and counter-strategy of autophagy inhibition by M. tb using virulence factors. The role of Ub-binding receptors and their mode of autophagy regulation is also explained. We also discuss the co-opting and utilization of the host Ub system by M. tb for its survival and virulence.Abbreviations: APC: anaphase promoting complex/cyclosome; ATG5: autophagy related 5; BCG: bacille Calmette-Guerin; C2: Ca2+-binding motif; CALCOCO2: calcium binding and coiled-coil domain 2; CUE: coupling of ubiquitin conjugation to ER degradation domains; DUB: deubiquitinating enzyme; GABARAP: GABA type A receptor-associated protein; HECT: homologous to the E6-AP carboxyl terminus; IBR: in-between-ring fingers; IFN: interferon; IL1B: interleukin 1 beta; KEAP1: kelch like ECH associated protein 1; LAMP1: lysosomal associated membrane protein 1; LGALS: galectin; LIR: LC3-interacting region; MAPK11/p38: mitogen-activated protein kinase 11; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK8/JNK: mitogen-activated protein kinase 8; MHC-II: major histocompatibility complex-II; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB1/p50: nuclear factor kappa B subunit 1; OPTN: optineurin; PB1: phox and bem 1; PE/PPE: proline-glutamic acid/proline-proline-glutamic acid; PknG: serine/threonine-protein kinase PknG; PRKN: parkin RBR E3 ubiquitin protein ligase; RBR: RING-in between RING; RING: really interesting new gene; RNF166: RING finger protein 166; ROS: reactive oxygen species; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; Ub: ubiquitin; UBA: ubiquitin-associated; UBAN: ubiquitin-binding domain in ABIN proteins and NEMO; UBD: ubiquitin-binding domain; UBL: ubiquitin-like; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Neha Quadir
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Anwar Alam
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Sheeba Zarin
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid A. Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Neha Sharma
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,Department of Molecular Medicine, Jamia Hamdard-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Uzair Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India,Seyed E. Hasnain ; ; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India
| | - Nasreen Z. Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology-ICMR, Ansari Nagar West, New Delhi, India,CONTACT Nasreen Z. Ehtesham ; ICMR-National Institute of Pathology, Ansari Nagar West, New Delhi110029, India
| |
Collapse
|
10
|
Forn-Cuní G, Welvaarts L, Stel FM, van den Hondel CJ, Arentshorst M, Ram AFJ, Meijer AH. Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis. Autophagy 2023; 19:324-337. [PMID: 35775203 PMCID: PMC9809955 DOI: 10.1080/15548627.2022.2090727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The increasing prevalence of antifungal-resistant human pathogenic fungi, particularly azole-resistant Aspergillus fumigatus, is a life-threatening challenge to the immunocompromised population. Autophagy-related processes such as LC3-associated phagocytosis have been shown to be activated in the host response against fungal infection, but their overall effect on host resistance remains uncertain. To analyze the relevance of these processes in vivo, we used a zebrafish animal model of invasive Aspergillosis. To confirm the validity of this model to test potential treatments for this disease, we confirmed that immunosuppressive treatments or neutropenia rendered zebrafish embryos more susceptible to A. fumigatus. We used GFP-Lc3 transgenic zebrafish to visualize the autophagy-related processes in innate immune phagocytes shortly after phagocytosis of A. fumigatus conidia, and found that both wild-type and melanin-deficient conidia elicited Lc3 recruitment. In macrophages, we observed GFP-Lc3 accumulation in puncta after phagocytosis, as well as short, rapid events of GFP-Lc3 decoration of single and multiple conidia-containing vesicles, while neutrophils covered single conidia-containing vesicles with bright and long-lasting GFP-Lc3 signal. Next, using genetic and pharmacological stimulation of three independent autophagy-inducing pathways, we showed that the antifungal autophagy response improves the host survival against A. fumigatus infection, but only in the presence of phagocytes. Therefore, we provide proof-of-concept that stimulating the (auto)phagolysosomal pathways is a promising approach to develop host-directed therapies against invasive Aspergillosis, and should be explored further either as adjunctive or stand-alone therapy for drug-resistant Aspergillus infections.Abbreviations: DMSO: dimethyl sulfoxide; HR: hazard ratio; HDT: host-directed therapy; Hpf: hours post fertilization; IA: invasive Aspergillosis; LAP: LC3-associated phagocytosis; MTZ: metronidazole; PTU: N-phenylthiourea; ROS: reactive oxygen species.
Collapse
Affiliation(s)
- G Forn-Cuní
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,CONTACT G Forn-Cuní Institute of Biology Leiden, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - L Welvaarts
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - FM Stel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - CJ van den Hondel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - M Arentshorst
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - AFJ Ram
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - AH Meijer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,AH Meijer Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
11
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Li YY, Liu HM, Wang D, Lu Y, Ding C, Zhou LS, Wu XY, Zhou ZW, Xu SQ, Lin C, Qin LH, Li Y, Liu J, Liu HP, Zhang L. Arabinogalactan enhances Mycobacterium marinum virulence by suppressing host innate immune responses. Front Immunol 2022; 13:879775. [PMID: 36090984 PMCID: PMC9459032 DOI: 10.3389/fimmu.2022.879775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Arabinogalactan (AG) participates in forming the cell wall core of mycobacteria, a structure known as the mAGP complex. Few studies have reported the virulence of inartificial AG or its interaction with the host immune system. Using clustered regularly interspaced short palindromic repeats interference gene editing technology, conditional Mycobacterium marinum mutants were constructed with a low expression of embA or glfT2 (EmbA_KD or GlfT2_KD), which are separately involved in the biosynthesis of AG arabinose and galactose domains. High-performance gel permeation chromatography and high-performance liquid chromatography assays confirmed that the EmbA_KD strain showed a remarkable decrease in AG content with fragmentary arabinose chains, and the GlfT2_KD strain displayed less reduction in content with cut-down galactose chains. Based on transmission and scanning electron microscopy observations, the cell walls of the two mutants were found to be dramatically thickened, and the boundaries of different layers were more distinct. Phenotypes including the over-secretion of extracellular substances and enhanced spreading motility with a concomitant decreased resistance to ethambutol appeared in the EmbA_KD strain. The EmbA_KD and GlfT2_KD strains displayed limited intracellular proliferation after infecting murine J774A.1 macrophages. The disease progression infected with the EmbA_KD or GlfT2_KD strain significantly slowed down in zebrafish/murine tail infection models as well. Through transcriptome profiling, macrophages infected by EmbA_KD/GlfT2_KD strains showed enhanced oxidative metabolism. The cell survival measured using the CCK8 assay of macrophages exposed to the EmbA_KD strain was upregulated and consistent with the pathway enrichment analysis of differentially expressed genes in terms of cell cycle/apoptosis. The overexpression of C/EBPβ and the increasing secretion of proinflammatory cytokines were validated in the macrophages infected by the EmbA_KD mutant. In conclusion, the AG of Mycobacterium appears to restrain the host innate immune responses to enhance intracellular proliferation by interfering with oxidative metabolism and causing macrophage death. The arabinose chains of AG influence the Mycobacterium virulence and pathogenicity to a greater extent.
Collapse
Affiliation(s)
- Ye-yu Li
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Han-Mei Liu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Decheng Wang
- School of Medicine, China Three Gorges University, Yichang, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Cairong Ding
- School of Medicine, China Three Gorges University, Yichang, China
| | - Li-Shuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang-Yang Wu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Wei Zhou
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Shu-qin Xu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Lian-Hua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Hai-Peng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| |
Collapse
|
13
|
Yuan J, Zhang Q, Chen S, Yan M, Yue L. LC3-Associated Phagocytosis in Bacterial Infection. Pathogens 2022; 11:pathogens11080863. [PMID: 36014984 PMCID: PMC9415076 DOI: 10.3390/pathogens11080863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
LC3-associated phagocytosis (LAP) is a noncanonical autophagy process reported in recent years and is one of the effective mechanisms of host defense against bacterial infection. During LAP, bacteria are recognized by pattern recognition receptors (PRRs), enter the body, and then recruit LC3 onto a single-membrane phagosome to form a LAPosome. LC3 conjugation can promote the fusion of the LAPosomes with lysosomes, resulting in their maturation into phagolysosomes, which can effectively kill the identified pathogens. However, to survive in host cells, bacteria have also evolved strategies to evade killing by LAP. In this review, we summarized the mechanism of LAP in resistance to bacterial infection and the ways in which bacteria escape LAP. We aim to provide new clues for developing novel therapeutic strategies for bacterial infectious diseases.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Qiuyu Zhang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Shihua Chen
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China; (J.Y.); (Q.Z.); (S.C.)
- Correspondence: (M.Y.); (L.Y.)
| | - Lei Yue
- The Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: (M.Y.); (L.Y.)
| |
Collapse
|
14
|
yingBai Y, meiCheng Y, Wang W, Yang L, Yang Y. In vivo and in vitro studies of Alloimperatorin induced autophagy in cervical cancer cells via reactive oxygen species pathway. Bioengineered 2022; 13:14299-14314. [PMID: 36708242 PMCID: PMC9995126 DOI: 10.1080/21655979.2022.2084243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 01/29/2023] Open
Abstract
Alloimperatorin (Alloi) has been shown to have anti-proliferative effects in our previous studies. we aimed to investigate whether Alloimperatorin induces autophagy through the reactive oxygen species (ROS) pathway and anticancer activity in vivo. The anti-proliferative effect of Alloimperatorin was evaluated using a cell counting kit (CCK-8 kit). Apoptosis was detected using flow cytometry. Confocal microscopy, immunofluorescence, and mRFP-GFP-LC3 lentivirus transfection were used to verify autophagy. Electron microscopy detection of autophagosomes was induced by Alloimperatorin. Western blotting was used to detect autophagy proteins in HeLa and SiHa cells. A xenograft model was used to monitor the inhibitory effect of Alloimperatorin on tumor growth in nude mice. The results showed that Alloimperatorin induced ROS production and inhibited the proliferation of HeLa and SiHa cells. Furthermore, Alloimperatorin increased the apoptosis rate in HeLa and SiHa cells. Confocal microscopy fluorescence indicated that Alloimperatorin increased autophagy fluorescence of HeLa and SiHa cells. mRFP-GFP-LC3 lentivirus transfection and electron microscopy demonstrated that Alloimperatorin increased autophagy in HeLa and SiHa cells. Western blotting showed that Alloimperatorin induced the expression of autophagy proteins in HeLa and SiHa cells. However, N-acetylcysteine reversed the autophagy. These results demonstrate that Alloimperatorin can induce autophagy in HeLa and SiHa cells through the ROS pathway. In vivo xenograft experiments showed that Alloimperatorin could inhibit tumor growth in nude mice. Alloimperatorin is expected to be an effective new drug for cervical cancer treatment.Abbreviations: ROS, reactive oxygen species; Alloi, Alloimperatorin; CCK-8, Cell Counting Kit-8; NAC, N-acetyl-L-cysteine; DCFH-DA, 2,7-dichlorodihydrofluorescein diacetate; OD, optical density; PBS, phosphate buffer solution; BCA, bicinchoninic acid; DAPI, 4,6-diamidino-2-phenylindole; DMSO, dimethyl sulfoxide.
Collapse
Affiliation(s)
- Ying yingBai
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Yue meiCheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Lijuan Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, PR China
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, PR China
| |
Collapse
|
15
|
Gao C, Wang Q, Li J, Kwong CHT, Wei J, Xie B, Lu S, Lee SMY, Wang R. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. SCIENCE ADVANCES 2022; 8:eabn1805. [PMID: 35544569 PMCID: PMC9094661 DOI: 10.1126/sciadv.abn1805] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/29/2022] [Indexed: 05/31/2023]
Abstract
Cell-based drug carriers are mostly prepared in vitro, which may negatively affect the physiological functions of cells, and induce possible immune rejections when applied to different individuals. In addition, the immunosuppressive tumor microenvironment limits immune cell-mediated delivery. Here, we report an in vivo strategy to construct cell-based nanomedicine carriers, where bacteria-mimetic gold nanoparticles (GNPs) are intravenously injected, selectively phagocytosed by phagocytic immune cells, and subsequently self-assemble into sizable intracellular aggregates via host-guest interactions. The intracellular aggregates minimize exocytosis of GNPs from immune cells and activate the photothermal property via plasmonic coupling effects. Phagocytic immune cells carry the intracellular GNP aggregates to melanoma tissue via inflammatory tropism. Moreover, an initial photothermal treatment (PTT) of the tumor induces tumor damage that subsequently provides positive feedback to recruit more immune cell-based carriers for enhanced targeting efficiency. The optimized secondary PTT notably improves antitumor immunotherapy, further strengthened by immune checkpoint blockade.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Cheryl H. T. Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450000, China
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
16
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
17
|
Lapaquette P, Ducreux A, Basmaciyan L, Paradis T, Bon F, Bataille A, Winckler P, Hube B, d’Enfert C, Esclatine A, Dubus E, Bringer MA, Morel E, Dalle F. Membrane protective role of autophagic machinery during infection of epithelial cells by Candida albicans. Gut Microbes 2022; 14:2004798. [PMID: 35086419 PMCID: PMC8803057 DOI: 10.1080/19490976.2021.2004798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogen causing infections ranging from superficial to life-threatening disseminated infections. In a susceptible host, C. albicans is able to translocate through the gut barrier, promoting its dissemination into deeper organs. C. albicans hyphae can invade human epithelial cells by two well-documented mechanisms: epithelial-driven endocytosis and C. albicans-driven active penetration. One mechanism by which host cells protect themselves against intracellular C. albicans is termed autophagy. The protective role of autophagy during C. albicans infection has been investigated in myeloid cells; however, far less is known regarding the role of this process during the infection of epithelial cells. In the present study, we investigated the role of autophagy-related proteins during the infection of epithelial cells, including intestinal epithelial cells and gut explants, by C. albicans. Using cell imaging, we show that key molecular players of the autophagy machinery (LC3-II, PI3P, ATG16L1, and WIPI2) were recruited at Candida invasion sites. We deepened these observations by electron microscopy analyses that reveal the presence of autophagosomes in the vicinity of invading hyphae. Importantly, these events occur during active penetration of C. albicans into host cells and are associated with plasma membrane damage. In this context, we show that the autophagy-related key proteins ATG5 and ATG16L1 contribute to plasma membrane repair mediated by lysosomal exocytosis and participate in protecting epithelial cells against C. albicans-induced cell death. Our findings provide a novel mechanism by which epithelial cells, forming the first line of defense against C. albicans in the gut, can react to limit C. albicans invasion.
Collapse
Affiliation(s)
- Pierre Lapaquette
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,CONTACT Pierre Lapaquette Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | - Amandine Ducreux
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | - Louise Basmaciyan
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon, France
| | - Tracy Paradis
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | - Fabienne Bon
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | | | - Pascale Winckler
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,Dimacell Imaging Facility, Agrosup Dijon, INRA, INSERM, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elisabeth Dubus
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Morel
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Frédéric Dalle
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon, France,Frédéric Dalle Laboratoire de Parasitologie-Mycologie
| |
Collapse
|
18
|
Grijmans BJM, van der Kooij SB, Varela M, Meijer AH. LAPped in Proof: LC3-Associated Phagocytosis and the Arms Race Against Bacterial Pathogens. Front Cell Infect Microbiol 2022; 11:809121. [PMID: 35047422 PMCID: PMC8762105 DOI: 10.3389/fcimb.2021.809121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023] Open
Abstract
Cells of the innate immune system continuously patrol the extracellular environment for potential microbial threats that are to be neutralized by phagocytosis and delivery to lysosomes. In addition, phagocytes employ autophagy as an innate immune mechanism against pathogens that succeed to escape the phagolysosomal pathway and invade the cytosol. In recent years, LC3-associated phagocytosis (LAP) has emerged as an intermediate between phagocytosis and autophagy. During LAP, phagocytes target extracellular microbes while using parts of the autophagic machinery to label the cargo-containing phagosomes for lysosomal degradation. LAP contributes greatly to host immunity against a multitude of bacterial pathogens. In the pursuit of survival, bacteria have developed elaborate strategies to disarm or circumvent the LAP process. In this review, we will outline the nature of the LAP mechanism and discuss recent insights into its interplay with bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
19
|
Varela M, Meijer AH. A fresh look at mycobacterial pathogenicity with the zebrafish host model. Mol Microbiol 2021; 117:661-669. [PMID: 34714579 PMCID: PMC9297993 DOI: 10.1111/mmi.14838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
The zebrafish has earned its place among animal models to study tuberculosis and other infections caused by pathogenic mycobacteria. This model host is especially useful to study the role of granulomas, the inflammatory lesions characteristic of mycobacterial disease. The optically transparent zebrafish larvae provide a window on the initial stages of granuloma development in the context of innate immunity. Application of fluorescent dyes and transgenic markers enabled real-time visualization of how innate immune mechanisms, such as autophagy and inflammasomes, are activated in infected macrophages and how propagating calcium signals drive communication between macrophages during granuloma formation. A combination of imaging, genetic, and chemical approaches has revealed that the interplay between macrophages and mycobacteria is the main driver of tissue dissemination and granuloma development, while neutrophils have a protective function in early granulomas. Different chemokine signaling axes, conserved between humans and zebrafish, have been shown to recruit macrophages permissive to mycobacterial growth, control their microbicidal capacity, drive their spreading and aggregation, and mediate granuloma vascularization. Finally, zebrafish larvae are now exploited to explore cell death processes, emerging as crucial factors in granuloma expansion. In this review, we discuss recent advances in the understanding of mycobacterial pathogenesis contributed by zebrafish models.
Collapse
Affiliation(s)
- Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
20
|
Jagannath C, McBride JW, Vergne I. Editorial: The Autophagy Pathway: Bacterial Pathogen Immunity and Evasion. Front Immunol 2021; 12:768935. [PMID: 34650572 PMCID: PMC8505802 DOI: 10.3389/fimmu.2021.768935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chinnaswamy Jagannath
- Houston Methodist Research Institute, Weill Cornell Medical College of Cornell University, Houston, TX, United States
| | - Jere W McBride
- Department of Pathology and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, Toulouse, France
| |
Collapse
|
21
|
Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP, Pinheiro RO. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front Immunol 2021; 12:674241. [PMID: 34113346 PMCID: PMC8185338 DOI: 10.3389/fimmu.2021.674241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Margareth Pretti Dalcolmo
- Helio Fraga Reference Center, Sergio Arouca National School of Public Health, Fiocruz, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Siegmund A, Afzal MA, Tetzlaff F, Keinhörster D, Gratani F, Paprotka K, Westermann M, Nietzsche S, Wolz C, Fraunholz M, Hübner CA, Löffler B, Tuchscherr L. Intracellular persistence of Staphylococcus aureus in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence 2021; 12:1186-1198. [PMID: 33843450 PMCID: PMC8043190 DOI: 10.1080/21505594.2021.1910455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A large proportion of clinical S. aureus isolates that carry an inactive Agr system are associated with persistent infection that is difficult to treat. Once S. aureus is inside the bloodstream, it can cross the endothelial barrier and invade almost every organ in the human body. Endothelial cells can either be lysed by this pathogen or they serve as a niche for its intracellular long-term survival. Following phagocytosis, several vesicles such as phagosomes and autophagosomes, target intracellular S. aureus for elimination. S. aureus can escape from these vesicles into the host cytoplasm through the activation of phenol-soluble modulins (PSMs) αβ. Thereafter, it replicates and lyses the host cell to disseminate to adjacent tissues. Herein we demonstrate that staphylococcal strains which lack the expression of PSMs employ an alternative pathway to better persist within endothelial cells. The intracellular survival of S. aureus is associated with the co-localization of the autophagy marker LC3. In cell culture infection models, we found that the absence of psmαβ decreased the host cell lysis and increased staphylococcal long-term survival. This study explains the positive selection of agr-negative strains that lack the expression of psmαβ in chronic infection due to their advantage in surviving and evading the clearance system of the host.
Collapse
Affiliation(s)
- Anke Siegmund
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Muhammad Awais Afzal
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Jena, Germany
| | - Felix Tetzlaff
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Jena, Germany
| | - Daniela Keinhörster
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Fabio Gratani
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Kerstin Paprotka
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Christiane Wolz
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Martin Fraunholz
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Tosetti B, Ward B, Grumme D, Herb M, Schramm M, Utermöhlen O, Heukamp LC, Krönke M, Krut O. NOX2 Deficiency Permits Sustained Survival of S. aureus in Macrophages and Contributes to Severity of Infection. Front Immunol 2021; 12:633629. [PMID: 33868252 PMCID: PMC8044967 DOI: 10.3389/fimmu.2021.633629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2 -/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.
Collapse
Affiliation(s)
- Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Beate Ward
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Daniela Grumme
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research, Bonn-Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|