1
|
de Sousa T, Silva C, Igrejas G, Hébraud M, Poeta P. The Interactive Dynamics of Pseudomonas aeruginosa in Global Ecology. J Basic Microbiol 2025; 65:e70004. [PMID: 39972634 DOI: 10.1002/jobm.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium widely distributed in both natural and urban environments, playing a crucial role in global microbial ecology. This article reviews the interactive dynamics of P. aeruginosa across different ecosystems, highlighting its capacity for adaptation and resistance in response to environmental and therapeutic pressures. We analyze the mechanisms of antibiotic resistance, including the presence of resistance genes and efflux systems, which contribute to its persistence in both clinical and nonclinical settings. The interconnection between human, animal, and environmental health, within the context of the One Health concept, is discussed, emphasizing the importance of monitoring and sustainable management practices to mitigate the spread of resistance. Through a holistic approach, this work offers insights into the influence of P. aeruginosa on public health and biodiversity.
Collapse
Affiliation(s)
- Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Catarina Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- LAQV-REQUIMTE, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Michel Hébraud
- INRAE, Université Clermont Auvergne, UMR Microbiologie Environnement Digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Roy SK, Biswas MS, Foyzur Raman M, Hasan R, Rahmann Z, Uddin PK MM. A computational approach to developing a multi-epitope vaccine for combating Pseudomonas aeruginosa-induced pneumonia and sepsis. Brief Bioinform 2024; 25:bbae401. [PMID: 39133098 PMCID: PMC11318047 DOI: 10.1093/bib/bbae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine. Computational tools were employed to forecast the tertiary framework, characteristics, and also to confirm the vaccine's composition. The potency was weighed through population coverage analysis and immune simulation. This project aims to create a multi-epitope vaccine to reduce P. aeruginosa-related illness and mortality using immunoinformatics resources. The ultimate complex has been determined to be stable, soluble, antigenic, and non-allergenic upon inspection of its physicochemical and immunological properties. Additionally, the protein exhibited acidic and hydrophilic characteristics. The Ramachandran plot, ProSA-web, ERRAT, and Verify3D were employed to ensure the final model's authenticity once the protein's three-dimensional structure had been established and refined. The vaccine model showed a significant binding score and stability when interacting with MHC receptors. Population coverage analysis indicated a global coverage rate of 83.40%, with the USA having the highest coverage rate, exceeding 90%. Moreover, the vaccine sequence underwent codon optimization before being cloned into the Escherichia coli plasmid vector pET-28a (+) at the EcoRI and EcoRV restriction sites. Our research has developed a vaccine against P. aeruginosa that has strong binding affinity and worldwide coverage, offering an acceptable way to mitigate nosocomial infections.
Collapse
Affiliation(s)
- Suronjit Kumar Roy
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Mohammad Shahangir Biswas
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
- Department of Public Health, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md Foyzur Raman
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Rubait Hasan
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Sirajganj 6751, Bangladesh
| | - Zahidur Rahmann
- Institute of Biological Science, Rajshahi University, Motihar, Rajshahi 6205, Bangladesh
| | - Md Moyen Uddin PK
- Riceland Healthcare, 538 Broadway Ave, Winnie, TX 77665, United States
| |
Collapse
|
3
|
González-Alsina A, Martín-Merinero H, Mateu-Borrás M, Verd M, Doménech-Sánchez A, Goldberg JB, Rodríguez de Córdoba S, Albertí S. Factor H-related protein 1 promotes complement-mediated opsonization of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1328185. [PMID: 38510967 PMCID: PMC10951071 DOI: 10.3389/fcimb.2024.1328185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Pseudomonas aeruginosa is an important human opportunistic pathogen responsible for a wide range of infections. The complement system is the main early host defense mechanism to control these infections. P. aeruginosa counteracts complement attack by binding Factor H (FH), a complement regulator that inactivates C3b, preventing the formation of the C3-convertase and complement amplification on the bacterial surface. Factor H-related proteins (FHRs) are a group of plasma proteins evolutionarily related to FH that have been postulated to interfere in this bacterial mechanism of resisting complement. Here, we show that FHR-1 binds to P. aeruginosa via the outer membrane protein OprG in a lipopolysaccharide (LPS) O antigen-dependent manner. Binding assays with purified components or with FHR-1-deficient serum supplemented with FHR-1 show that FHR-1 competes with FH for binding to P. aeruginosa. Blockage of FH binding to C3b deposited on the bacteria reduces FH-mediated cofactor activity of C3b degradation, increasing the opsonization of the bacteria and the formation of the potent chemoattractant C5a. Overall, our findings indicate that FHR-1 is a host factor that promotes complement activation, facilitating clearance of P. aeruginosa by opsonophagocytosis.
Collapse
Affiliation(s)
- Alex González-Alsina
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares and Instituto de Investigación Sanitaria de les Illes Balears (IDISBA), Palma de Mallorca, Spain
| | - Héctor Martín-Merinero
- Center for Biological Research-Margarita Salas and Centro Investigación Biomédica En Red (CIBER) de Enfermedades Raras, Madrid, Spain
| | - Margalida Mateu-Borrás
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares and Instituto de Investigación Sanitaria de les Illes Balears (IDISBA), Palma de Mallorca, Spain
| | - María Verd
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares and Instituto de Investigación Sanitaria de les Illes Balears (IDISBA), Palma de Mallorca, Spain
| | - Antonio Doménech-Sánchez
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares and Instituto de Investigación Sanitaria de les Illes Balears (IDISBA), Palma de Mallorca, Spain
| | - Joanna B. Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Santiago Rodríguez de Córdoba
- Center for Biological Research-Margarita Salas and Centro Investigación Biomédica En Red (CIBER) de Enfermedades Raras, Madrid, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares and Instituto de Investigación Sanitaria de les Illes Balears (IDISBA), Palma de Mallorca, Spain
| |
Collapse
|
4
|
Cheng X, Chen Z, Gao C, Zhang Y, Yang L, Wan J, Wei Y, Zeng S, Zhang Y, Zhang Y, Li Y, Zhang W, Zou Q, Lu G, Gu J. Structural and biological insights into outer membrane protein lipotoxin F of Pseudomonas aeruginosa: Implications for vaccine application. Int J Biol Macromol 2023; 253:127634. [PMID: 37884248 DOI: 10.1016/j.ijbiomac.2023.127634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Due to the increasing antibiotic resistance of Pseudomonas aeruginosa (PA), an effective vaccine is urgently needed. However, no PA vaccine has been approved to date, and new protective antigens are needed to improve their efficacy. In this study, Luminex beads were used to identify new candidate antigens, after which their crystal structure was determined, and their potential contribution to bacterial pathogenesis was assessed in vitro and in vivo. Notably, a significant antibody response against the outer membrane protein LptF (lipotoxin F) was detected in sera from 409 volunteers. Moreover, vaccination with recombinant LptF conferred effective protection in an acute PA pneumonia model. The crystal structure showed that LptF comprises a 3-stranded β-sheet (β1-β3) and three α-helices (α1-α3) that are organized in an α/β/α/β/α/β pattern, which is structurally homologous to OmpA and related outer membrane proteins. In addition, LptF binds to peptidoglycan in an atypical manner, contributing to the pathogenesis and survival of PA under stress. Our data indicate that LptF is an important virulence factor and thus a promising candidate antigen for PA vaccines.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Chen Gao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yi Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Liuyang Yang
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiqing Wan
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yujie Wei
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Sheng Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yiwen Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yueyue Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yuhang Li
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weijun Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | - Jiang Gu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
5
|
Lu S, Chen K, Song K, Pilewski JM, Gunn BM, Poch KR, Rysavy NM, Vestal BE, Saavedra MT, Kolls JK. Systems serology in cystic fibrosis: Anti-Pseudomonas IgG1 responses and reduced lung function. Cell Rep Med 2023; 4:101210. [PMID: 37852181 PMCID: PMC10591031 DOI: 10.1016/j.xcrm.2023.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Nearly one-half of patients with cystic fibrosis (CF) carry the homozygous F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but exhibit variable lung function phenotypes. How adaptive immunity influences their lung function remains unclear, particularly the serological antibody responses to antigens from mucoid Pseudomonas in sera from patients with CF with varying lung function. Sera from patients with CF with reduced lung function show higher anti-outer membrane protein I (OprI) immunoglobulin G1 (IgG1) titers and greater antibody-mediated complement deposition. Induction of anti-OprI antibody isotypes with complement activity enhances lung inflammation in preclinical mouse models. This enhanced inflammation is absent in immunized Rag2-/- mice and is transferrable to unimmunized mice through sera. In a CF cohort undergoing treatment with elexacaftor-tezacaftor-ivacaftor, the declination in anti-OprI IgG1 titers is associated with lung function improvement and reduced hospitalizations. These findings suggest that antibody responses to specific Pseudomonas aeruginosa (PA) antigens worsen lung function in patients with CF.
Collapse
Affiliation(s)
- Shiping Lu
- Department of Immunology and Microbiology, Tulane University, New Orleans, LA, USA; Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kejing Song
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, USA
| | | | | | - Brian E Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | | | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
6
|
Cocorullo M, Chiarelli LR, Stelitano G. Improving Protection to Prevent Bacterial Infections: Preliminary Applications of Reverse Vaccinology against the Main Cystic Fibrosis Pathogens. Vaccines (Basel) 2023; 11:1221. [PMID: 37515037 PMCID: PMC10384294 DOI: 10.3390/vaccines11071221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Reverse vaccinology is a powerful tool that was recently used to develop vaccines starting from a pathogen genome. Some bacterial infections have the necessity to be prevented then treated. For example, individuals with chronic pulmonary diseases, such as Cystic Fibrosis, are prone to develop infections and biofilms in the thick mucus that covers their lungs, mainly caused by Burkholderia cepacia complex, Haemophilus influenzae, Mycobacterium abscessus complex, Pseudomonas aeruginosa and Staphylococcus aureus. These infections are complicated to treat and prevention remains the best strategy. Despite the availability of vaccines against some strains of those pathogens, it is necessary to improve the immunization of people with Cystic Fibrosis against all of them. An effective approach is to develop a broad-spectrum vaccine to utilize proteins that are well conserved across different species. In this context, reverse vaccinology, a method based on computational analysis of the genome of various microorganisms, appears as one of the most promising tools for the identification of putative targets for broad-spectrum vaccine development. This review provides an overview of the vaccines that are under development by reverse vaccinology against the aforementioned pathogens, as well as the progress made so far.
Collapse
Affiliation(s)
- Mario Cocorullo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Stelitano
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
7
|
Scherhag A, Räschle M, Unbehend N, Venn B, Glueck D, Mühlhaus T, Keller S, Pérez Patallo E, Zehner S, Frankenberg-Dinkel N. Characterization of a soluble library of the Pseudomonas aeruginosa PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes. MICROLIFE 2023; 4:uqad028. [PMID: 37441524 PMCID: PMC10335732 DOI: 10.1093/femsml/uqad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.
Collapse
Affiliation(s)
- Anna Scherhag
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Markus Räschle
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Niklas Unbehend
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Benedikt Venn
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - David Glueck
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Timo Mühlhaus
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Sandro Keller
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Eugenio Pérez Patallo
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | | | - Nicole Frankenberg-Dinkel
- Corresponding author. RPTU Kaiserslautern-Landau, Microbiology, Kaiserslautern 67655, Germany. E-mail:
| |
Collapse
|
8
|
Urquhart CG, Pinheiro TDR, da Silva JLG, Leal DBR, Burgo TAL, Iglesias BA, Santos RCV. Antimicrobial activity of water-soluble tetra-cationic porphyrins on Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2022; 42:103266. [PMID: 36587859 DOI: 10.1016/j.pdpdt.2022.103266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
This manuscript presents the cytotoxicity, antimicrobial activity, antibiofilm preliminary properties, and associated therapy with commercial drugs using water-soluble tetra-cationic porphyrins against Pseudomonas aeruginosa. Two commercial tetra-cationic porphyrins were tested against a standard strain of P. aeruginosa 01 (PA01) in antibacterial activity assays under dark conditions and irradiated with white light for 120 min. Porphyrin 4-H2TMePor showed better antimicrobial activity and was chosen for further tests. Increased minimum inhibitory concentration was observed in the presence of reactive oxygen species, suggesting that photooxidation was mediated by the singlet oxygen production. In the time-kill curve assay, 4-H2TMePor inhibited bacterial growth in 90 min of irradiation. The checkerboard assay revealed synergistic interactions. Biofilms of the standard PA01 strain and three clinical isolates were formed. The biofilm destruction assay was more efficient for PA01, significantly reducing the biofilm biomass formed compared to the positive control. The associated treatment to destroy the biofilm potentiated a significant decrease in the biofilm biomass compared to the positive control. The photosensitizer did not damage human keratinocytes or mouse fibroblasts in the cytotoxicity assays, demonstrating the safety of using 4-H2TMePor. Atomic force microscopy indicated lower adhesion force, higher cell wall deformation, and higher dissipation energy in the treated control compared to untreated PA01. Given our findings, it is evident that water-soluble tetra-cationic porphyrins have excellent antimicrobial and a preliminary antibiofilm activity against Gram-negative bacteria, proving to be a potential photosensitizer for clinical use.
Collapse
Affiliation(s)
- Carolina Gonzalez Urquhart
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Ticiane da Rosa Pinheiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunologia Experimental e Aplicada (LABIBIO), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thiago Augusto Lima Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, Sao Paulo State University (Unesp), R. Cristovao Colombo, 2265, S. J. Rio Preto, SP 15014-100, Brazil
| | - Bernardo Almeida Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos (LBMP), Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Roberto Christ Vianna Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Departamento de Microbiologia e Parasitologia (LAPEMICRO), Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Vdovenko D, Balbi C, Di Silvestre D, Passignani G, Puspitasari YM, Zarak-Crnkovic M, Mauri P, Camici GG, Lüscher TF, Eriksson U, Vassalli G. Microvesicles released from activated CD4 + T cells alter microvascular endothelial cell function. Eur J Clin Invest 2022; 52:e13769. [PMID: 35316536 PMCID: PMC9287044 DOI: 10.1111/eci.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/18/2021] [Accepted: 01/02/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Microvesicles are vesicles shed by plasma membranes following cell activation and apoptosis. The role of lymphocyte-derived microvesicles in endothelial function remains poorly understood. METHODS CD4+ T cells isolated from peripheral blood of healthy human donors were stimulated using anti-CD3/anti-CD28-coated beads. Proteomic profiling of microvesicles was performed using linear discriminant analysis (LDA) from activated T cells (MV.Act) and nonactivated T cells (MV.NAct). In addition, data processing analysis was performed using MaxQUANT workflow. Differentially expressed proteins found in MV.Act or MV.NAct samples with identification frequency = 100%, which were selected by both LDA (p < .01) and MaxQUANT (p < .01) workflows, were defined as "high-confidence" differentially expressed proteins. Functional effects of MV.Act on human primary microvascular endothelial cells were analysed. RESULTS T cells released large amounts of microvesicles upon stimulation. Proteomic profiling of microvesicles using LDA identified 2279 proteins (n = 2110 and n = 851 proteins in MV.Act and MV.NAct, respectively). Protein-protein interaction network models reconstructed from both differentially expressed proteins (n = 594; LDA p ≤ .01) and "high-confidence" differentially expressed proteins (n = 98; p ≤ .01) revealed that MV.Act were enriched with proteins related to immune responses, protein translation, cytoskeleton organisation and TNFα-induced apoptosis. For instance, MV.Act were highly enriched with IFN-γ, a key proinflammatory pathway related to effector CD4+ T cells. Endothelial cell incubation with MV.Act induced superoxide generation, apoptosis, endothelial wound healing impairment and endothelial monolayer barrier disruption. CONCLUSIONS T cell receptor-mediated activation of CD4+ T cells stimulates the release of microvesicles enriched with proteins involved in immune responses, inflammation and apoptosis. T cell-derived microvesicles alter microvascular endothelial function and barrier permeability, potentially promoting tissue inflammation.
Collapse
Affiliation(s)
- Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland.,Laboratories for Translational Research-EOC, Bellinzona, Switzerland
| | | | | | | | | | | | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Royal Brompton & Harefield Hospital, Imperial College, London, UK
| | - Urs Eriksson
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Medicine, GZO - Zurich Regional Health Center, Wetzikon, Switzerland
| | - Giuseppe Vassalli
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Laboratory of Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino-EOC, Lugano, Switzerland.,Laboratories for Translational Research-EOC, Bellinzona, Switzerland.,Department of Biomedicine, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
10
|
Stamboulian M, Canderan J, Ye Y. Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species. PLoS Comput Biol 2022; 18:e1009397. [PMID: 35302987 PMCID: PMC8967034 DOI: 10.1371/journal.pcbi.1009397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/30/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
Host-microbiome interactions and the microbial community have broad impact in human health and diseases. Most microbiome based studies are performed at the genome level based on next-generation sequencing techniques, but metaproteomics is emerging as a powerful technique to study microbiome functional activity by characterizing the complex and dynamic composition of microbial proteins. We conducted a large-scale survey of human gut microbiome metaproteomic data to identify generalist species that are ubiquitously expressed across all samples and specialists that are highly expressed in a small subset of samples associated with a certain phenotype. We were able to utilize the metaproteomic mass spectrometry data to reveal the protein landscapes of these species, which enables the characterization of the expression levels of proteins of different functions and underlying regulatory mechanisms, such as operons. Finally, we were able to recover a large number of open reading frames (ORFs) with spectral support, which were missed by de novo protein-coding gene predictors. We showed that a majority of the rescued ORFs overlapped with de novo predicted protein-coding genes, but on opposite strands or in different frames. Together, these demonstrate applications of metaproteomics for the characterization of important gut bacterial species. Many reference genomes for studying human gut microbiome are available, but knowledge about how microbial organisms work is limited. Identification of proteins at individual species or community level provides direct insight into the functionality of microbial organisms. By analyzing more than a thousand metaproteomics datasets, we examined protein landscapes of more than two thousands of microbial species that may be important to human health and diseases. This work demonstrated new applications of metaproteomic datasets for studying individual genomes. We made the analysis results available through a website (called GutBac), which we believe will become a resource for studying microbial species important for human health and diseases.
Collapse
Affiliation(s)
- Moses Stamboulian
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Jamie Canderan
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
| | - Yuzhen Ye
- Computer Science Department, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Identification of thermodynamic quantities of the stability of peptide-MHC I complex using nanoscale differential scanning fluorimetry. Mol Immunol 2021; 141:338-339. [PMID: 34895765 DOI: 10.1016/j.molimm.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
|
12
|
Photoinactivation of Pseudomonas aeruginosa Biofilm by Dicationic Diaryl-Porphyrin. Int J Mol Sci 2021; 22:ijms22136808. [PMID: 34202773 PMCID: PMC8269057 DOI: 10.3390/ijms22136808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, antimicrobial photodynamic therapy (aPDT) has received increasing attention as a promising tool aimed at both treating microbial infections and sanitizing environments. Since biofilm formation on biological and inert surfaces makes difficult the eradication of bacterial communities, further studies are needed to investigate such tricky issue. In this work, a panel of 13 diaryl-porphyrins (neutral, mono- and di-cationic) was taken in consideration to photoinactivate Pseudomonas aeruginosa. Among cationic photosensitizers (PSs) able to efficiently bind cells, in this study two dicationic showed to be intrinsically toxic and were ruled out by further investigations. In particular, the dicationic porphyrin (P11) that was not toxic, showed a better photoinactivation rate than monocationic in suspended cells. Furthermore, it was very efficient in inhibiting the biofilms produced by the model microorganism Pseudomonas aeruginosa PAO1 and by clinical strains derived from urinary tract infection and cystic fibrosis patients. Since P. aeruginosa represents a target very difficult to inactivate, this study confirms the potential of dicationic diaryl-porphyrins as photo-activated antimicrobials in different applicative fields, from clinical to environmental ones.
Collapse
|
13
|
Sousa SA, Seixas AMM, Marques JMM, Leitão JH. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia cepacia Complex Infections. Vaccines (Basel) 2021; 9:vaccines9060670. [PMID: 34207253 PMCID: PMC8234409 DOI: 10.3390/vaccines9060670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Human infections caused by the opportunist pathogens Burkholderia cepacia complex and Pseudomonas aeruginosa are of particular concern due to their severity, their multiple antibiotic resistance, and the limited eradication efficiency of the current available treatments. New therapeutic options have been pursued, being vaccination strategies to prevent or limit these infections as a rational approach to tackle these infections. In this review, immunization and immunotherapy approaches currently available and under study against these bacterial pathogens is reviewed. Ongoing active and passive immunization clinical trials against P. aeruginosa infections is also reviewed. Novel identified bacterial targets and their possible exploitation for the development of immunization and immunotherapy strategies against P. aeruginosa and B. cepacia complex and infections are also presented and discussed.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - António M. M. Seixas
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joana M. M. Marques
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
| | - Jorge H. Leitão
- Department of Bioengineering, IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.M.M.S.); (J.M.M.M.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
14
|
Equine Mesenchymal Stem/Stromal Cells Freeze-Dried Secretome (Lyosecretome) for the Treatment of Musculoskeletal Diseases: Production Process Validation and Batch Release Test for Clinical Use. Pharmaceuticals (Basel) 2021; 14:ph14060553. [PMID: 34200627 PMCID: PMC8226765 DOI: 10.3390/ph14060553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases
Collapse
|
15
|
Balbi C, Milano G, Fertig TE, Lazzarini E, Bolis S, Taniyama Y, Sanada F, Di Silvestre D, Mauri P, Gherghiceanu M, Lüscher TF, Barile L, Vassalli G. An exosomal-carried short periostin isoform induces cardiomyocyte proliferation. Am J Cancer Res 2021; 11:5634-5649. [PMID: 33897872 PMCID: PMC8058720 DOI: 10.7150/thno.57243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/28/2021] [Indexed: 01/19/2023] Open
Abstract
Although a small number of cardiomyocytes may reenter the cell cycle after injury, the adult mammalian heart is incapable of a robust cardiomyocyte proliferation. Periostin, a secreted extracellular matrix protein, has been implicated as a regulator of cardiomyocyte proliferation; however, this role remains controversial. Alternative splicing of the human periostin gene results in 6 isoforms lacking sequences between exons 17 and 21, in addition to full-length periostin. We previously showed that exosomes (Exo) secreted by human cardiac explant-derived progenitor cells (CPC) carried periostin. Here, we aimed to investigate their cell cycle activity. Methods: CPC were derived as the cellular outgrowth of ex vivo cultured cardiac atrial explants. Exo were purified from CPC conditioned medium using size exclusion chromatography. Exosomal periostin was analyzed by Western blotting using a pair of antibodies (one raised against aa 537-836, and one raised against amino acids mapping at exon 17 of human periostin), by ELISA, and by cryo-EM with immune-gold labeling. Cell cycle activity was assessed in neonatal rat cardiomyocytes, in human induced pluripotent stem cell (iPS)-derived cardiomyocytes, and in adult rat cardiomyocytes after myocardial infarction. The role of periostin in cell cycle activity was investigated by transfecting donor CPC with a siRNA against this protein. Results: Periostin expression in CPC-secreted exosomes was detected using the antibody raised against aa 537-836 of the human protein, but not with the exon 17-specific antibody, consistent with an isoform lacking exon 17. Periostin was visualized on vesicle surfaces by cryo-EM and immune-gold labeling. CPC-derived exosomes induced cell proliferation in neonatal rat cardiomyocytes both in vitro and in vivo, in human iPS-derived cardiomyocytes, and in adult rat cardiomyocytes after myocardial infarction. Exo promoted phosphorylation of focal adhesion kinase (FAK), actin polymerization, and nuclear translocation of Yes-associated protein (YAP) in cardiomyocytes. Knocking down of periostin or YAP, or blocking FAK phosphorylation with PF-573228 nullified Exo-induced proliferation. A truncated human periostin peptide (aa 22-669), but not recombinant human full-length periostin, mimicked the pro-proliferative activity of exosomes. Conclusions: Our results show, for the first time, that CPC-secreted exosomes promote cardiomyocyte cell cycle-reentry via a short periostin isoform expressed on their surfaces, whereas recombinant full-length periostin does not. These findings highlight isoform-specific roles of periostin in cardiomyocyte proliferation.
Collapse
|