1
|
Fdez-Sanromán A, Bernárdez-Rodas N, Rosales E, Pazos M, González-Romero E, Sanromán MÁ. Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. BIOSENSORS 2025; 15:189. [PMID: 40136986 PMCID: PMC11940157 DOI: 10.3390/bios15030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
This review explores the development, technological foundations, and applications of biosensor technologies across various fields, such as medicine for disease diagnosis and monitoring, and the food industry. However, the primary focus is on their use in detecting contaminants and pathogens, as well as in environmental monitoring for water quality assessment. The review classifies different types of biosensors based on their bioreceptor and transducer, highlighting how they are specifically designed for the detection of emerging contaminants (ECs) and pathogens in water. Key innovations in this technology are critically examined, including advanced techniques such as systematic evolution of ligands by exponential enrichment (SELEX), molecularly imprinted polymers (MIPs), and self-assembled monolayers (SAMs), which enable the fabrication of sensors with improved sensitivity and selectivity. Additionally, the integration of microfluidic systems into biosensors is analyzed, demonstrating significant enhancements in performance and detection speed. Through these advancements, this work emphasizes the fundamental role of biosensors as key tools for safeguarding public health and preserving environmental integrity.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Nuria Bernárdez-Rodas
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Marta Pazos
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| | - Elisa González-Romero
- Department of Analytical and Food Chemistry, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain;
| | - Maria Ángeles Sanromán
- CINTECX, Universidade de Vigo, BIOSUV, Departamento de Ingeniería Química, 36310 Vigo, Spain; (A.F.-S.); (N.B.-R.); (E.R.); (M.P.)
| |
Collapse
|
2
|
Chen L, Zeng X, Yang F, Yang T, Chen Y, Zhao Y, Luo X, Li Y. Rapid and Sensitive Detection of Mutations in SARS-CoV-2 by Surface-Enhanced Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3583-3591. [PMID: 39884846 DOI: 10.1021/acs.langmuir.4c04725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Since the outbreak of the novel coronavirus (SARS-CoV-2), the world has suffered significant losses. At present, the pneumonia disease caused by SARS-CoV-2 virus has not been eliminated, and SARS-CoV-2 has a high mutation rate, and its variant strains also have a high prevalence rate, which has always threatened the health of all mankind. This study aims to develop a rapid and sensitive method to complement existing SARS-CoV-2 diagnostic tools by utilizing surface-enhanced Raman spectroscopy (SERS) for the direct detection of the intrinsic SERS signal from the S proteins of SARS-CoV-2 and its variants (Omicron and Delta) within 5 min using a portable Raman spectrometer. The linear range of S protein detection of Wild-type, Omicron and Delta variants ranged from 1.0 × 10-7 to 1.0 × 10-3 g·mL-1, the limits of detection (LOD) were down to ∼10-8 g·mL-1 level. Our proposed method uses portable Raman spectrometer for direct detection, which is characterized by its simplicity, rapidity, portability, and wide applicability. It enables simultaneous detection of diverse mutated targets, thereby playing a pivotal role in the early diagnosis of viral diseases. Moreover, it holds promising prospects in the fields of chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Liping Chen
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xuanjiang Zeng
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Fan Yang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Tao Yang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yushi Chen
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Yuanyuan Li
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|
3
|
Bel Hadj Ali I, Souguir H, Melliti M, Mohamed MVT, Ardhaoui M, Ayouni K, Haddad-Boubaker S, Saadi Ben Aoun Y, Triki H, Guizani I. Rapid detection of SARS-CoV-2 RNA using a one-step fast multiplex RT-PCR coupled to lateral flow immunoassay. BMC Infect Dis 2024; 24:1417. [PMID: 39695471 DOI: 10.1186/s12879-024-10296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The COVID-19 has put emphasis on pivotal needs for diagnosis and surveillance worldwide, with the subsequent shortage of diagnostic reagents and kits. Therefore, it has become strategic for the countries to access diagnostics, expand testing capacity, and develop their own diagnostic capabilities and alternative rapid accurate nucleic acid diagnostics that are at lower costs. Here, we propose a visual SARS-CoV-2 detection using a one-step fast multiplex reverse transcription-PCR (RT-PCR) amplification coupled to lateral flow immunoassay detection on a PCRD device (Abingdon Health, UK). METHODS We developed various simplex fast-PCRs for screening sets of primer pairs newly designed or selected from literature or from validated WHO diagnostics, targeting S, N, E, RdRp or ORF1ab genes. We retained primers showing specific and stable amplification to assess for their suitability for detection on PCRD. Thus, fast RT-PCR amplifications were performed using the retained primers. They were doubly labeled with Fam and Biotin or Dig and Biotin to allow visual detection of the labeled amplicons on the lateral flow immunoassay PCR Detection (PCRD) device, looking at lack of interaction of the labeled primers (or primer dimers) with the test-lines in negative or no RNA controls. We set up all the assays using RNAs isolated from patients' nasopharyngeal swabs. We used two simplex assays, targeting two different viral genomic regions (N and E) and showing specific detection on PCRD, to set up a one-step fast multiplex RT-PCR assay (where both differently labeled primer pairs were engaged) coupled to amplicons' detection on a PCRD device. We evaluated this novel assay on 50 SARS-CoV-2 positive and 50 SARS-CoV-2 negative samples and compared its performance to the results of the quantitative RT-PCR (RT-qPCR) assays used for diagnosing the patients, here considered as the standard tests. RESULTS The new assay achieved a sensitivity of 88% (44/50) and a specificity of 98% (49/50). All patients who presented Ct values lower than 33 were positive for our assay. Except for one patient, those with Ct values above 33 returned negative results. CONCLUSION Our results have brought proof of principle on the usefulness of the one-step fast multiplex RT- PCR assay coupled to PCRD as a new assay for specific, sensitive, and rapid detection of SARS-CoV-2 without requiring costly laboratory equipment, and thus, at reduced costs in a format prone to be deployed when resources are limited. This assay offers a viable alternative for COVID-19 diagnosis or screening at points of need.
Collapse
Affiliation(s)
- Insaf Bel Hadj Ali
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia.
| | - Hejer Souguir
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia
| | - Mouna Melliti
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia
| | - Mohamed Vall Taleb Mohamed
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia
| | - Monia Ardhaoui
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, Tunis, Tunisia
- Laboratory of Virus, Host and Vectors, LR20 IPT02, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, Tunis, Tunisia
- Laboratory of Virus, Host and Vectors, LR20 IPT02, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yusr Saadi Ben Aoun
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles for the EMR, Institut Pasteur de Tunis, Tunis, Tunisia
- Laboratory of Virus, Host and Vectors, LR20 IPT02, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia
| |
Collapse
|
4
|
Feng Y, Yi K, Gong F, Zhang Y, Shan X, Ji X, Zhou F, He Z. Ultra-sensitive detection of SARS-CoV-2 S1 protein by coupling rolling circle amplification with poly(N-isopropylacrylamide)-based sandwich-type assay. Talanta 2024; 279:126572. [PMID: 39024855 DOI: 10.1016/j.talanta.2024.126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
In the past few years, the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) seriously threatens global public health security due to its high contagiousness. It remains of vital importance to develop a rapid and sensitive assay for SARS-CoV-2. In this work, we proposed a sandwich-type assay based on poly(N-isopropylacrylamide) (PNIPAM), allowing efficient detection of the SARS-CoV-2 S1 protein in the homogeneous solution. Firstly, a direct sandwich-type assay was established with a linear range of 0.2-2 μg/mL and a limit of detection (LOD) of 0.11 μg/mL, which could realize rapid detection in about 1 h. Furthermore, the sandwich-type assay coupled with rolling circle amplification (RCA) obtained an increase in sensitivity of 5.9 × 104 folds with a wide linear range of 0.01 - 100 ng/mL and a LOD of 1.88 pg/mL. The average recoveries in unpretreated saliva were 90 %-113.0 %, indicating the potential of the developed method for application in practical samples. Given the high selectivity and sensitivity of the developed method, it has a significant potential for rapid and early detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoyun Shan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Zhou L, Simonian AL. CRISPR/Cas Technology: The Unique Synthetic Biology Genome-Editing Tool Shifting the Paradigm in Viral Diagnostics, Defense, and Therapeutics. Annu Rev Biomed Eng 2024; 26:247-272. [PMID: 38346278 DOI: 10.1146/annurev-bioeng-081723-013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The emergence of the COVID-19 pandemic has starkly exposed our significantly limited ability to promptly identify and respond to emergent biological threats. Consequently, there is an urgent need to advance biotechnological methods for addressing both known and unforeseen biological hazards. Recently, the CRISPR/Cas system has revolutionized genetic engineering, enabling precise and efficient synthetic biology applications. Therefore, this review aims to provide a comprehensive introduction to the fundamental principles underlying the CRISPR/Cas system and assess the advantages and limitations of various CRISPR/Cas-based techniques applicable to the detection of, defense against, and treatment of viral infections. These techniques include viral diagnostics, the development of antiviral vaccines, B cell engineering for antibody production, viral activation/interference, and epigenetic modifications. Furthermore, this review delves into the challenges and bioethical considerations associated with use of the CRISPR/Cas system. With the continuous evolution of technology, the CRISPR/Cas system holds considerable promise for addressing both existing and unforeseen biological threats.
Collapse
Affiliation(s)
- Lang Zhou
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| | - Aleksandr L Simonian
- Department of Materials Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
6
|
Jung J, Sung JS, Bong JH, Kim TH, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Shin HJ, Pyun JC. One-step immunoassay of SARS-CoV-2 using screened Fv-antibodies and switching peptides. Biosens Bioelectron 2024; 245:115834. [PMID: 37995624 DOI: 10.1016/j.bios.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The Fv-antibodies were correponded to VH region of immunoglobulin G, which were composed of three complementarity determining regions (CDRs) for the specific binding of antigens. In this work, the Fv-antibodies against SARS-CoV-2 spike protein (SP) were screened from an autodisplayed Fv-antibody library which was expressed on E. coli outer membrane, and the receptor binding domain (RBD) of SP was used as a screening probe. The screened target clones were analyzed to have quantitative binding properties to the RBD, and the Fv-antibodies from the screened target clones were expressed as soluble proteins. The binding affinity (KD) of expressed Fv-antibodies to the RBD was estimated to be 70-85 nM using SPR biosensor. The specific binding properties of Fv-antibodies were analyzed for pseudo-virus particles with SARS-CoV-2 SP on the Lenti-virus envelope, such as wild type (Wuhan-1) and variants (Delta, Omicron BA.2, Omicron BA.4/5) using a SPR biosensor. The detection of real SARS-CoV-2 (Wild type, Wuhan-1) based on a SPR biosensor was also presented using the Fv-antibodies with the binding constant (KD) of cycle threshold value (Ct) = 33.8-32.9 (2.19-4.08 copies/μL) and LOD of 0.67-0.83 copies/μL (Ct = 35.5-35.2). Finally, one-step immunoassay based on switching peptide was demonstrated for the detection of the real SARS-CoV-2 (Wuhan-1) without any washing step. The binding constant (KD) was estimated to be Ct = 35.2-33.9 (0.83-2.04 copies/μL), and LOD was estimated to be 0.14-0.47 copies/μL (Ct = 37.8-36.0). Considering the LOD of the conventional RT-PCR (Ct = 35), the LOD of the one-step immunoassay based on the switching peptide was determined to be feasible for the medical diagnosis of COVID-19.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, 02456, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster 48149, Germany
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
8
|
Jung J, Bong JH, Sung JS, Park JH, Kim TH, Kwon S, Kang MJ, Jose J, Pyun JC. Immunoaffinity biosensors for the detection of SARS-CoV-1 using screened Fv-antibodies from an autodisplayed Fv-antibody library. Biosens Bioelectron 2023; 237:115439. [PMID: 37301177 PMCID: PMC10223632 DOI: 10.1016/j.bios.2023.115439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The detection of severe acute respiratory syndrome coronavirus (SARS-CoV-1) was demonstrated using screened Fv-antibodies for SPR biosensor and impedance spectrometry. The Fv-antibody library was first prepared on the outer membrane of E. coli using autodisplay technology and the Fv-variants (clones) with a specific affinity toward the SARS-CoV-1 spike protein (SP) were screened using magnetic beads immobilized with the SP. Upon screening the Fv-antibody library, two target Fv-variants (clones) with a specific binding affinity toward the SARS-CoV-1 SP were determined and the Fv-antibodies on two clones were named "Anti-SP1" (with CDR3 amino acid sequence: 1GRTTG5NDRPD11Y) and "Anti-SP2" (with CDR3 amino acid sequence: 1CLRQA5GTADD11V). The binding affinities of the two screened Fv-variants (clones) were analyzed using flow cytometry and the binding constants (KD) were estimated to be 80.5 ± 3.6 nM for Anti-SP1 and 45.6 ± 8.9 nM for Anti-SP2 (n = 3). In addition, the Fv-antibody including three CDR regions (CDR1, CDR2, and CDR3) and frame regions (FRs) between the CDR regions was expressed as a fusion protein (Mw. 40.6 kDa) with a green fluorescent protein (GFP) and the KD values of the expressed Fv-antibodies toward the SP estimated to be 15.3 ± 1.5 nM for Anti-SP1 (n = 3) and 16.3 ± 1.7 nM for Anti-SP2 (n = 3). Finally, the expressed Fv-antibodies screened against SARS-CoV-1 SP (Anti-SP1 and Anti-SP2) were applied for the detection of SARS-CoV-1. Consequently, the detection of SARS-CoV-1 was demonstrated to be feasible using the SPR biosensor and impedance spectrometry utilizing the immobilized Fv-antibodies against the SARS-CoV-1 SP.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westphalian Wilhelms-University Münster, Münster, 48149, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
9
|
Robin P, Barnabei L, Marocco S, Pagnoncelli J, Nicolis D, Tarantelli C, Tavilla AC, Robortella R, Cascione L, Mayoraz L, Journot CMA, Mensi M, Bertoni F, Stefanini I, Gerber-Lemaire S. A DNA biosensors-based microfluidic platform for attomolar real-time detection of unamplified SARS-CoV-2 virus. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100302. [PMID: 36589921 PMCID: PMC9793959 DOI: 10.1016/j.biosx.2022.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The emergence of the coronavirus 2019 (COVID-19) arose the need for rapid, accurate and massive virus detection methods to control the spread of infectious diseases. In this work, a device, deployable in non-medical environments, has been developed for the detection of non-amplified SARS-CoV-2 RNA. A SARS-CoV-2 specific probe was designed and covalently immobilized at the surface of glass slides to fabricate a DNA biosensor. The resulting system was integrated in a microfluidic platform, in which viral RNA was extracted from non-treated human saliva, before hybridizing at the surface of the sensor. The formed DNA/RNA duplex was detected in presence of SYBR Green I using an opto-electronic system, based on a high-power LED and a photo multiplier tube, which convert the emitted fluorescence into an electrical signal that can be processed in less than 10 min. The limit of detection of the resulting microfluidic platform reached six copies of viral RNA per microliter of sample (equal to 10 aM) and satisfied the safety margin. The absence of non-specific adsorption and the selectivity for SARS-CoV-2 RNA were established. In addition, the designed device could be applicable for the detection of a variety of viruses by simple modification of the immobilized probe.
Collapse
Affiliation(s)
- Perrine Robin
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Laura Barnabei
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, CH-6500, Bellinzona, Switzerland
| | - Stefano Marocco
- Medical Devices area, Institute of Digital Technologies for Personalized Healthcare - MeDiTech, Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
| | - Jacopo Pagnoncelli
- Medical Devices area, Institute of Digital Technologies for Personalized Healthcare - MeDiTech, Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
| | - Daniele Nicolis
- Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, CH-6500, Bellinzona, Switzerland
| | - Agatino Christian Tavilla
- Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
| | - Roberto Robortella
- Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, CH-6500, Bellinzona, Switzerland
| | - Lucas Mayoraz
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Céline M A Journot
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mounir Mensi
- ISIC-XRDSAP, EPFL Valais-Wallis, Rue de l'Industrie 17, CH-1951, Sion, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, CH-6500, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH-6500, Bellinzona, Switzerland
| | - Igor Stefanini
- Medical Devices area, Institute of Digital Technologies for Personalized Healthcare - MeDiTech, Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
- Department of Innovative Technologies, University of Applied Sciences of Southern Switzerland, Via la Santa 1, CH-6962, Lugano, Viganello, Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
11
|
Eftimov T, Genova-Kalou P, Dyankov G, Bock WJ, Mankov V, Shoar Ghaffari S, Veselinov P, Arapova A, Makouei S. Capabilities of Double-Resonance LPG and SPR Methods for Hypersensitive Detection of SARS-CoV-2 Structural Proteins: A Comparative Study. BIOSENSORS 2023; 13:318. [PMID: 36979530 PMCID: PMC10046782 DOI: 10.3390/bios13030318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication.
Collapse
Affiliation(s)
- Tinko Eftimov
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
| | - Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria
| | - Georgi Dyankov
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Wojtek J. Bock
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Sanaz Shoar Ghaffari
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Petar Veselinov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Alla Arapova
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Somayeh Makouei
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
12
|
Moza A, Duica F, Antoniadis P, Bernad ES, Lungeanu D, Craina M, Bernad BC, Paul C, Muresan C, Nitu R, Dumache R, Iacob D. Outcome of Newborns with Confirmed or Possible SARS-CoV-2 Vertical Infection-A Scoping Review. Diagnostics (Basel) 2023; 13:245. [PMID: 36673058 PMCID: PMC9858608 DOI: 10.3390/diagnostics13020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome virus 2 (SARS-CoV-2), the virus that causes 2019 coronavirus disease (COVID-19), has been isolated from various tissues and body fluids, including the placenta, amniotic fluid, and umbilical cord of newborns. In the last few years, much scientific effort has been directed toward studying SARS-CoV-2, focusing on the different features of the virus, such as its structure and mechanisms of action. Moreover, much focus has been on developing accurate diagnostic tools and various drugs or vaccines to treat COVID-19. However, the available evidence is still scarce and consistent criteria should be used for diagnosing vertical transmission. Applying the PRISMA ScR guidelines, we conducted a scoping review with the primary objective of identifying the types, and examining the range, of available evidence of vertical transmission of SARS-CoV-2 from mother to newborn. We also aimed to clarify the key concepts and criteria for diagnosis of SARS-CoV-2 vertical infection in neonates and summarize the existing evidence and advance the awareness of SARS-CoV-2 vertical infection in pregnancy. Most studies we identified were case reports or case series (about 30% of poor quality and inconsistent reporting of the findings). Summarizing the existing classification criteria, we propose an algorithm for consistent diagnosis. Registration: INPLASY2022120093.
Collapse
Affiliation(s)
- Andreea Moza
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Florentina Duica
- Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania
| | - Panagiotis Antoniadis
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Elena S. Bernad
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Diana Lungeanu
- Center for Modeling Biological Systems and Data Analysis, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Functional Sciences, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Brenda C. Bernad
- Department of Neuroscience, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cezara Muresan
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Nitu
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department of Neuroscience, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daniela Iacob
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Neonatology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
13
|
Ai Y, Wang H, Zheng Q, Li S, Liu J, Huang J, Tang J, Meng X. Add fuel to the fire: Inflammation and immune response in lung cancer combined with COVID-19. Front Immunol 2023; 14:1174184. [PMID: 37033918 PMCID: PMC10076709 DOI: 10.3389/fimmu.2023.1174184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The corona virus disease 2019 (COVID-19) global pandemic has had an unprecedented and persistent impact on oncological practice, especially for patients with lung cancer, who are more vulnerable to the virus than the normal population. Indeed, the onset, progression, and prognosis of the two diseases may in some cases influence each other, and inflammation is an important link between them. The original chronic inflammatory environment of lung cancer patients may increase the risk of infection with COVID-19 and exacerbate secondary damage. Meanwhile, the acute inflammation caused by COVID-19 may induce tumour progression or cause immune activation. In this article, from the perspective of the immune microenvironment, the pathophysiological changes in the lungs and whole body of these special patients will be summarised and analysed to explore the possible immunological storm, immunosuppression, and immune escape phenomenon caused by chronic inflammation complicated by acute inflammation. The effects of COVID-19 on immune cells, inflammatory factors, chemokines, and related target proteins in the immune microenvironment of tumours are also discussed, as well as the potential role of the COVID-19 vaccine and immune checkpoint inhibitors in this setting. Finally, we provide recommendations for the treatment of lung cancer combined with COVID-19 in this special group.
Collapse
Affiliation(s)
- Yanling Ai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hengyi Wang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao Zheng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jianyuan Tang, ; Xiangrui Meng,
| | - Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jianyuan Tang, ; Xiangrui Meng,
| |
Collapse
|
14
|
Tessaro L, Aquino A, Panzenhagen P, Ochioni AC, Mutz YS, Raymundo-Pereira PA, Vieira IRS, Belem NKR, Conte-Junior CA. Development and Application of an SPR Nanobiosensor Based on AuNPs for the Detection of SARS-CoV-2 on Food Surfaces. BIOSENSORS 2022; 12:bios12121101. [PMID: 36551068 PMCID: PMC9776341 DOI: 10.3390/bios12121101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 06/12/2023]
Abstract
A new transmission route of SARS-CoV-2 through food was recently considered by the World Health Organization (WHO), and, given the pandemic scenario, the search for fast, sensitive, and low-cost methods is necessary. Biosensors have become a viable alternative for large-scale testing because they overcome the limitations of standard techniques. Herein, we investigated the ability of gold spherical nanoparticles (AuNPs) functionalized with oligonucleotides to detect SARS-CoV-2 and demonstrated their potential to be used as plasmonic nanobiosensors. The loop-mediated isothermal amplification (LAMP) technique was used to amplify the viral genetic material from the raw virus-containing solution without any preparation. The detection of virus presence or absence was performed by ultraviolet-visible (UV-Vis) absorption spectroscopy, by monitoring the absorption band of the surface plasmonic resonance (SPR) of the AuNPs. The displacement of the peak by 525 nm from the functionalized AuNPs indicated the absence of the virus (particular region of gold). On the other hand, the region ~300 nm indicated the presence of the virus when RNA bound to the functionalized AuNPs. The nanobiosensor system was designed to detect a region of the N gene in a dynamic concentration range from 0.1 to 50 × 103 ng·mL-1 with a limit of detection (LOD) of 1 ng·mL-1 (2.7 × 103 copy per µL), indicating excellent sensitivity. The nanobiosensor was applied to detect the SARS-CoV-2 virus on the surfaces of vegetables and showed 100% accuracy compared to the standard quantitative reverse transcription polymerase chain reaction (RT-qPCR) technique. Therefore, the nanobiosensor is sensitive, selective, and simple, providing a viable alternative for the rapid detection of SARS-CoV-2 in ready-to-eat vegetables.
Collapse
Affiliation(s)
- Leticia Tessaro
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
| | - Adriano Aquino
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
| | - Pedro Panzenhagen
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Alan Clavelland Ochioni
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Yhan S. Mutz
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Paulo A. Raymundo-Pereira
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13566-590, SP, Brazil
| | - Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Natasha Kilsy Rocha Belem
- Laboratory of Immunogenetics and Molecular Biology of the General Hospital and Maternity Hospital of Cuiabá, Cuiabá 78020-840, MT, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- COVID-19 Research Group, Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), University City, Rio de Janeiro 21941-598, RJ, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-909, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), University City, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
15
|
Zasada AA, Mosiej E, Prygiel M, Polak M, Wdowiak K, Formińska K, Ziółkowski R, Żukowski K, Marchlewicz K, Nowiński A, Nowińska J, Rastawicki W, Malinowska E. Detection of SARS-CoV-2 Using Reverse Transcription Helicase Dependent Amplification and Reverse Transcription Loop-Mediated Amplification Combined with Lateral Flow Assay. Biomedicines 2022; 10:biomedicines10092329. [PMID: 36140431 PMCID: PMC9496027 DOI: 10.3390/biomedicines10092329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/20/2022] Open
Abstract
Rapid and accurate detection and identification of pathogens in clinical samples is essential for all infection diseases. However, in the case of epidemics, it plays a key role not only in the implementation of effective therapy but also in limiting the spread of the epidemic. In this study, we present the application of two nucleic acid isothermal amplification methods—reverse transcription helicase dependent amplification (RT-HDA) and reverse transcription loop-mediated amplification (RT-LAMP)—combined with lateral flow assay as the tools for the rapid detection of SARS-CoV-2, the etiological agent of COVID-19, which caused the ongoing global pandemic. In order to optimize the RT-had, the LOD was 3 genome copies per reaction for amplification conducted for 10–20 min, whereas for RT-LAMP, the LOD was 30–300 genome copies per reaction for a reaction conducted for 40 min. No false-positive results were detected for RT-HDA conducted for 10 to 90 min, but false-positive results occurred when RT-LAMP was conducted for longer than 40 min. We concluded that RT-HDA combined with LFA is more sensitive than RT-LAMP, and it is a good alternative for the development of point-of-care tests for SARS-CoV-2 detection as this method is simple, inexpensive, practical, and does not require qualified personnel to perform the test and interpret its results.
Collapse
Affiliation(s)
- Aleksandra Anna Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
- Correspondence:
| | - Ewa Mosiej
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Marta Prygiel
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Karol Wdowiak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Kamila Formińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
| | - Robert Ziółkowski
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Kamil Żukowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Kasper Marchlewicz
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Adam Nowiński
- 2nd Dept of Respiratory Medicine, National Institute of Tuberculosis and Lung, 01-138 Warsaw, Poland
| | - Julia Nowińska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Waldemar Rastawicki
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland
| | - Elżbieta Malinowska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|