1
|
Alves ES, Santos JDM, Cruz AG, Camargo FN, Talarico CHZ, Santos ARM, Silva CAA, Morgan HJN, Matos SL, Araujo LCC, Camporez JP. Hepatic Estrogen Receptor Alpha Overexpression Protects Against Hepatic Insulin Resistance and MASLD. PATHOPHYSIOLOGY 2025; 32:1. [PMID: 39846638 PMCID: PMC11755535 DOI: 10.3390/pathophysiology32010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with cardiometabolic risk. Although studies have shown that estradiol positively contributes to energy metabolism via estrogen receptor alpha (ERα), its role specifically in the liver is not defined. Therefore, this study aimed to evaluate the effects of ERα overexpression, specifically in the liver in mice fed a high-fat diet (HFD). Methods: Male C57BL/6J mice were divided into four groups, vehicle fed with regular chow (RC) (RC-Vehicle); vehicle fed an HFD (HFD-Vehicle); AAV-treated fed with RC (RC-AAV); and AAV-treated fed an HFD (HFD-AAV), for 6 weeks (8-10 mice per group). AAV was administered intravenously to induce ERα overexpression. Results: We demonstrate that overexpression of ERα in RC-fed mice reduces body fat (28%). These mice show increased oxygen consumption in cultured primary hepatocytes, both in basal (19%) and maximal respiration (34%). In HFD-fed mice, we showed a decrease in hepatic TAG content (43%) associated with improved hepatic insulin sensitivity (145%). Conclusions: From this perspective, our results prove that hepatic ERα signaling is responsible for some of the metabolic protective effects of estrogen in mice. Overexpression of ERα improves hepatocyte mitochondrial function, consequently reducing hepatic lipid accumulation and protecting animals from hepatic steatosis and hepatic insulin resistance. Further investigations will be needed to determine the exact molecular mechanism by which ERα improves hepatic metabolic health.
Collapse
Affiliation(s)
- Ester S. Alves
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Jessica D. M. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Alessandra G. Cruz
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Felipe N. Camargo
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Carlos H. Z. Talarico
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Anne R. M. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Carlos A. A. Silva
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Henrique J. N. Morgan
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Sandro L. Matos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Layanne C. C. Araujo
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza 60714-903, Brazil;
| | - João Paulo Camporez
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| |
Collapse
|
2
|
Pagano S, Somm E, Juillard C, Liaudet N, Ino F, Ferrari J, Braunersreuther V, Jornayvaz FR, Vuilleumier N. Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice. Int J Mol Sci 2024; 25:11875. [PMID: 39595946 PMCID: PMC11594174 DOI: 10.3390/ijms252211875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a common liver and health issue associated with heightened cardiovascular disease (CVD) risk, with Cytokeratin 18 (CK-18) as a marker of liver injury across the MASLD to cirrhosis spectrum. Autoantibodies against apolipoprotein A-1 (AAA-1s) predict increased CVD risk, promoting atherosclerosis and liver steatosis in apoE-/- mice, though their impact on liver inflammation and fibrosis remains unclear. This study examined AAA-1s' impact on low-grade inflammation, liver steatosis, and fibrosis using a MASLD mouse model exposed to AAA-1s passive immunization (PI). Ten-week-old male C57BL/6J mice under a high-fat diet underwent PI with AAA-1s or control antibodies for ten days. Compared to controls, AAA-1-immunized mice showed higher plasma CK-18 (5.3 vs. 2.1 pg/mL, p = 0.031), IL-6 (13 vs. 6.9 pg/mL, p = 0.035), IL-10 (27.3 vs. 9.8 pg/mL, p = 0.007), TNF-α (32.1 vs. 24.2 pg/mL, p = 0.032), and liver steatosis (93.4% vs. 73.8%, p = 0.007). Transcriptomic analyses revealed hepatic upregulation of pro-fibrotic mRNAs in AAA-1-recipient mice, though histological changes were absent. In conclusion, short-term AAA-1 PI exacerbated liver steatosis, inflammation, and pro-fibrotic gene expression, suggesting that AAA-1s may play a role in MASLD progression. Further research with prolonged AAA-1 exposure is warranted to clarify their potential role in liver fibrosis and associated complications.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medicine, Medical Faculty, Geneva University, 1211 Geneva, Switzerland;
| | - Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (E.S.); (F.I.); (F.R.J.)
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Catherine Juillard
- Department of Medicine, Medical Faculty, Geneva University, 1211 Geneva, Switzerland;
| | - Nicolas Liaudet
- Bioimaging Core Facility, Medical Faculty, University of Geneva, 1211 Geneva, Switzerland;
| | - Frédérique Ino
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (E.S.); (F.I.); (F.R.J.)
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Johan Ferrari
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; (J.F.); (V.B.)
| | - Vincent Braunersreuther
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; (J.F.); (V.B.)
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (E.S.); (F.I.); (F.R.J.)
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medicine, Medical Faculty, Geneva University, 1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Chaix A, Lin T, Ramms B, Cutler RG, Le T, Lopez C, Miu P, Pinto AFM, Saghatelian A, Playford MP, Mehta NN, Mattson MP, Gordts P, Witztum JL, Panda S. Time-Restricted Feeding Reduces Atherosclerosis in LDLR KO Mice but Not in ApoE Knockout Mice. Arterioscler Thromb Vasc Biol 2024; 44:2069-2087. [PMID: 39087348 PMCID: PMC11409897 DOI: 10.1161/atvbaha.124.320998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Dyslipidemia increases cardiovascular disease risk, the leading cause of death worldwide. Under time-restricted feeding (TRF), wherein food intake is restricted to a consistent window of <12 hours, weight gain, glucose intolerance, inflammation, dyslipidemia, and hypercholesterolemia are all reduced in mice fed an obesogenic diet. LDLR (low-density lipoprotein receptor) mutations are a major cause of familial hypercholesterolemia and early-onset cardiovascular disease. METHODS We subjected benchmark preclinical models, mice lacking LDLR-knockout or ApoE knockout to ad libitum feeding of an isocaloric atherogenic diet either ad libitum or 9 hours TRF for up to 13 weeks and assessed disease development, mechanism, and global changes in hepatic gene expression and plasma lipids. In a regression model, a subset of LDLR-knockout mice were ad libitum fed and then subject to TRF. RESULTS TRF could significantly attenuate weight gain, hypercholesterolemia, and atherosclerosis in mice lacking the LDLR-knockout mice under experimental conditions of both prevention and regression. In LDLR-knockout mice, increased hepatic expression of genes mediating β-oxidation during fasting is associated with reduced VLDL (very-low-density lipoprotein) secretion and lipid accumulation. Additionally, increased sterol catabolism coupled with fecal loss of cholesterol and bile acids contributes to the atheroprotective effect of TRF. Finally, TRF alone or combined with a cholesterol-free diet can reduce atherosclerosis in LDLR-knockout mice. However, mice lacking ApoE, which is an important protein for hepatic lipoprotein reuptake do not respond to TRF. CONCLUSIONS In a preclinical animal model, TRF is effective in both the prevention and regression of atherosclerosis in LDLR knockout mice. The results suggest TRF alone or in combination with a low-cholesterol diet can be a lifestyle intervention for reducing cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bastian Ramms
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Roy G. Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
| | - Tiffani Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Catherine Lopez
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Phuong Miu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Antonio F. M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States. 21205
| | - Philip Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L. Witztum
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
4
|
Araujo L, Dias C, Sucupira F, Ramalho L, Camporez J. A short-term rodent model for non-alcoholic steatohepatitis induced by a high-fat diet and carbon tetrachloride. Biosci Rep 2024; 44:BSR20231532. [PMID: 38660995 PMCID: PMC11081943 DOI: 10.1042/bsr20231532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/15/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Several models of mice-fed high-fat diets have been used to trigger non-alcoholic steatohepatitis and some chemical substances, such as carbon tetrachloride. The present study aimed to evaluate the joint action of a high-fat diet and CCl4 in developing a short-term non-alcoholic steatohepatitis model. C57BL6/J mice were divided into two groups: standard diet-fed (SD), the high-fat diet-fed (HFD) and HFD + fructose-fed and carbon tetrachloride (HFD+CCl4). The animals fed with HFD+CCl4 presented increased lipid deposition compared with both SD and HFD mice. Plasma cholesterol was increased in animals from the HFD+CCl4 group compared with the SD and HFD groups, without significant differences between the SD and HFD groups. Plasma triglycerides showed no significant difference between the groups. The HFD+CCl4 animals had increased collagen deposition in the liver compared with both SD and HFD groups. Hydroxyproline was also increased in the HFD+CCl4 group. Liver enzymes, alanine aminotransferase and aspartate aminotransferase, were increased in the HFD+CCl4 group, compared with SD and HFD groups. Also, CCl4 was able to trigger an inflammatory process in the liver of HFD-fed animals by promoting an increase of ∼2 times in macrophage activity, ∼6 times in F4/80 gene expression, and pro-inflammatory cytokines (IL-1b and TNFa), in addition to an increase in inflammatory pathway protein phosphorylation (IKKbp). HFD e HFD+CCl4 animals increased glucose intolerance compared with SD mice, associated with reduced insulin-stimulated AKT activity in the liver. Therefore, our study has shown that short-term HFD feeding associated with fructose and CCl4 can trigger non-alcoholic steatohepatitis and cause damage to glucose metabolism.
Collapse
Affiliation(s)
- Layanne C.C. Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Brazil
| | - Carolina C.B. Dias
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Brazil
| | - Felipe G. Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Brazil
| | - Leandra N.Z. Ramalho
- Department of Pathology and Legal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo, Brazil
| | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Brazil
| |
Collapse
|
5
|
Santos JDM, Silva JFT, Alves EDS, Cruz AG, Santos ARM, Camargo FN, Talarico CHZ, Silva CAA, Camporez JP. Strength Training Protects High-Fat-Fed Ovariectomized Mice against Insulin Resistance and Hepatic Steatosis. Int J Mol Sci 2024; 25:5066. [PMID: 38791103 PMCID: PMC11120807 DOI: 10.3390/ijms25105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Menopause is characterized by a reduction in sex hormones in women and is associated with metabolic changes, including fatty liver and insulin resistance. Lifestyle changes, including a balanced diet and physical exercise, are necessary to prevent these undesirable changes. Strength training (ST) has been widely used because of the muscle and metabolic benefits it provides. Our study aims to evaluate the effects of ST on hepatic steatosis and insulin resistance in ovariectomized mice fed a high-fat diet (HFD) divided into four groups as follows: simulated sedentary surgery (SHAM-SED), trained simulated surgery (SHAM-EXE), sedentary ovariectomy (OVX-SED), and trained ovariectomy (OVX-EXE). They were fed an HFD for 9 weeks. ST was performed thrice a week. ST efficiently reduced body weight and fat percentage and increased lean mass in OVX mice. Furthermore, ST reduced the accumulation of ectopic hepatic lipids, increased AMPK phosphorylation, and inhibited the de novo lipogenesis pathway. OVX-EXE mice also showed a better glycemic profile, associated with greater insulin sensitivity identified by the euglycemic-hyperinsulinemic clamp, and reduced markers of hepatic oxidative stress compared with sedentary animals. Our data support the idea that ST can be indicated as a non-pharmacological treatment approach to mitigate metabolic changes resulting from menopause.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil (J.F.T.S.); (E.d.S.A.); (A.G.C.); (A.R.M.S.); (F.N.C.); (C.H.Z.T.); (C.A.A.S.)
| |
Collapse
|
6
|
Haase T, Ludwig A, Stach A, Mohtashamdolatshahi A, Hauptmann R, Mundhenk L, Kratz H, Metzkow S, Kader A, Freise C, Mueller S, Stolzenburg N, Radon P, Liebl M, Wiekhorst F, Hamm B, Taupitz M, Schnorr J. Repeated Injection of Very Small Superparamagnetic Iron Oxide Particles (VSOPs) in Murine Atherosclerosis: A Safety Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:773. [PMID: 38727367 PMCID: PMC11085881 DOI: 10.3390/nano14090773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Citrate-coated electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) have been successfully tested as magnetic resonance angiography (MRA) contrast agents and are promising tools for molecular imaging of atherosclerosis. Their repeated use in the background of pre-existing hyperlipidemia and atherosclerosis has not yet been studied. This study aimed to investigate the effect of multiple intravenous injections of VSOPs in atherosclerotic mice. Taurine-formulated VSOPs (VSOP-T) were repeatedly intravenously injected at 100 µmol Fe/kg in apolipoprotein E-deficient (ApoE KO) mice with diet-induced atherosclerosis. Angiographic imaging was carried out by in vivo MRI. Magnetic particle spectrometry was used to detect tissue VSOP content, and tissue iron content was quantified photometrically. Pathological changes in organs, atherosclerotic plaque development, and expression of hepatic iron-related proteins were evaluated. VSOP-T enabled the angiographic imaging of heart and blood vessels with a blood half-life of one hour. Repeated intravenous injection led to VSOP deposition and iron accumulation in the liver and spleen without affecting liver and spleen pathology, expression of hepatic iron metabolism proteins, serum lipids, or atherosclerotic lesion formation. Repeated injections of VSOP-T doses sufficient for MRA analyses had no significant effects on plaque burden, steatohepatitis, and iron homeostasis in atherosclerotic mice. These findings underscore the safety of VSOP-T and support its further development as a contrast agent and molecular imaging tool.
Collapse
Affiliation(s)
- Tobias Haase
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Antje Ludwig
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| | - Anke Stach
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Azadeh Mohtashamdolatshahi
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Ralf Hauptmann
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany;
| | - Harald Kratz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Susanne Metzkow
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Avan Kader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Freise
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Susanne Mueller
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
- Charité 3R|Replace, Reduce, Refine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nicola Stolzenburg
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Patricia Radon
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany; (P.R.); (M.L.); (F.W.)
| | - Maik Liebl
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany; (P.R.); (M.L.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany; (P.R.); (M.L.); (F.W.)
| | - Bernd Hamm
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Taupitz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Schnorr
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.L.); (A.M.); (R.H.); (H.K.); (S.M.); (A.K.); (C.F.); (S.M.); (N.S.); (B.H.); (M.T.); (J.S.)
- Department of Radiology, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
7
|
Huerta CT, Zhang L, Ortiz YY, Li Y, Zeynaloo E, Dikici E, Siahaan TJ, Deo SK, Daunert S, Liu ZJ, Velazquez OC. Directing Cell Delivery to Murine Atherosclerotic Aortic Lesions via Targeting Inflamed Circulatory Interface using Nanocarriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578719. [PMID: 38370711 PMCID: PMC10871190 DOI: 10.1101/2024.02.02.578719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Stem cell therapy holds significant potential for many inflammatory diseases and regenerative medicine applications. However, delivery of therapeutic cells to specific disease sites after systemic administration without indiscriminate trafficking to other non-target tissues is a major limitation of current cell therapies. Here, we describe a novel nanocarrier-directed targeted cell delivery system that enables cell surface coating with dendrimer nanocarriers containing adhesion moieties to serve as a global positioning system "GPS" to guide circulating cells to targeted lesions and mediate the anchoring of cells at the inflammation site. By exploiting cell surface ligands/receptors selectively and/or molecular moieties that are highly expressed on activated endothelium in pathologic disease states, nanocarrier-coated cells containing the counterpart binding receptors/ligands can be enabled to specifically traffic to and dock at vasculature within target lesions. We demonstrate the efficacy of the I-domain fragment of LFA-1 ( id LFA-1) complexed to modified nanocarriers to facilitate homing of mesenchymal stem cells (MSCs) to inflamed luminal endothelial cells on which ICAM-1 is highly expressed in a murine model of aortic atherosclerosis. Our method can overcome challenges imposed by the high velocity and dynamic circulatory flow of the aorta to successfully deliver MSCs to atherosclerotic regions and allow for docking of the potentially therapeutic and immunomodulating cells. This targeted cell-delivery platform can be tailored for selective systemic delivery of various types of therapeutic cells to different disease areas.
Collapse
|
8
|
Sato T, Oishi K. Time-restricted feeding has a limited effect on hepatic lipid accumulation, inflammation and fibrosis in a choline-deficient high-fat diet-induced murine NASH model. PLoS One 2024; 19:e0296950. [PMID: 38285666 PMCID: PMC10824409 DOI: 10.1371/journal.pone.0296950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) occurs worldwide and is characterized by lipid accumulation in hepatocytes, hepatic inflammation, fibrosis, and an increased risk of cirrhosis. Although a major proportion of NASH patients exhibit obesity and insulin resistance, 20% lack a high body mass and are categorized as "non-obese NASH". Time-restricted feeding (TRF), limiting daily food intake within certain hours, improves obesity, lipid metabolism, and liver inflammation. Here, we determined whether TRF affects NASH pathology induced by a choline-deficient high-fat diet (CDAHFD), which does not involve obesity. TRF ameliorated the increase in epididymal white adipose tissue and plasma alanine transaminase and aspartate transaminase levels after 8 weeks of a CDAHFD. Although gene expression of TNF alpha in the liver was suppressed by TRF, it did not exhibit a suppressive effect on hepatic lipid accumulation, gene expression of cytokines and macrophage markers (Mcp1, IL1b, F4/80), or fibrosis, as evaluated by Sirius red staining and western blot analysis of alpha-smooth muscle actin. A CDAHFD-induced increase in gene expression related to fibrogenesis (Collagen 1a1 and TGFβ) was neither suppressed by TRF nor that of alpha-smooth muscle actin but was increased by TRF. Our results indicated that TRF has a limited suppressive effect on CDAHFD-induced NASH pathology.
Collapse
Affiliation(s)
- Tomoyuki Sato
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan
| |
Collapse
|
9
|
Jin S, Chen P, Yang J, Li D, Liu X, Zhang Y, Xia Q, Li Y, Chen G, Li Y, Tong Y, Yu W, Fan X, Lin H. Phocaeicola vulgatus alleviates diet-induced metabolic dysfunction-associated steatotic liver disease progression by downregulating histone acetylation level via 3-HPAA. Gut Microbes 2024; 16:2309683. [PMID: 38312099 PMCID: PMC10854360 DOI: 10.1080/19490976.2024.2309683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder with limited effective interventions available. A novel approach to address this issue is through gut microbiota-based therapy. In our study, we utilized multi-omics analysis to identify Phocaeicola vulgatus (P. vulgatus) as a potential probiotic for the treatment of MASLD. Our findings from murine models clearly illustrate that the supplementation of P. vulgatus mitigates the development of MASLD. This beneficial effect is partly attributed to the metabolite 3-Hydroxyphenylacetic acid (3-HPAA) produced by P. vulgatus, which reduces the acetylation levels of H3K27 and downregulates the transcription of Squalene Epoxidase (SQLE), a rate-limiting enzyme in steroid biosynthesis that promotes lipid accumulation in liver cells. This study underscores the significant role of P. vulgatus in the development of MASLD and the critical importance of its metabolite 3-HPAA in regulating lipid homeostasis. These findings offer a promising avenue for early intervention therapy in the context of MASLD.
Collapse
Affiliation(s)
- Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiling Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixuan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Liu GT, Kuo CY. Bioactives and Inflammation. Curr Issues Mol Biol 2023; 45:5824-5829. [PMID: 37504284 PMCID: PMC10377902 DOI: 10.3390/cimb45070368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Inflammation is one of the body's most complex physiological defense mechanisms against harmful substances [...].
Collapse
Affiliation(s)
- Guan-Ting Liu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| |
Collapse
|
11
|
Araujo LCC, Cruz AG, Camargo FN, Sucupira FG, Moreira GV, Matos SL, Amaral AG, Murata GM, Carvalho CRO, Camporez JP. Estradiol Protects Female ApoE KO Mice against Western-Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2023; 24:9845. [PMID: 37372993 DOI: 10.3390/ijms24129845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.
Collapse
Affiliation(s)
- Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Alessandra G Cruz
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Felipe N Camargo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Felipe G Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Gabriela V Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sandro L Matos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andressa G Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gilson Masahiro Murata
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Carla R O Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Joao Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
12
|
Cruz-Chamorro I, Santos-Sánchez G, Bollati C, Bartolomei M, Capriotti AL, Cerrato A, Laganà A, Pedroche J, Millán F, Del Carmen Millán-Linares M, Arnoldi A, Carrillo-Vico A, Lammi C. Chemical and biological characterization of the DPP-IV inhibitory activity exerted by lupin (Lupinus angustifolius) peptides: From the bench to the bedside investigation. Food Chem 2023; 426:136458. [PMID: 37329795 DOI: 10.1016/j.foodchem.2023.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain.
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
13
|
Talarico CHZ, Alves ES, Dos Santos JDM, Sucupira FGS, Araujo LCC, Camporez JP. Progesterone Has No Impact on the Beneficial Effects of Estradiol Treatment in High-Fat-Fed Ovariectomized Mice. Curr Issues Mol Biol 2023; 45:3965-3976. [PMID: 37232722 DOI: 10.3390/cimb45050253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
In recent decades, clinical and experimental studies have revealed that estradiol contributes enormously to glycemic homeostasis. However, the same consensus does not exist in women during menopause who undergo replacement with progesterone or conjugated estradiol and progesterone. Since most hormone replacement treatments in menopausal women are performed with estradiol (E2) and progesterone (P4) combined, this work aimed to investigate the effects of progesterone on energy metabolism and insulin resistance in an experimental model of menopause (ovariectomized female mice-OVX mice) fed a high-fat diet (HFD). OVX mice were treated with E2 or P4 (or both combined). OVX mice treated with E2 alone or combined with P4 displayed reduced body weight after six weeks of HFD feeding compared to OVX mice and OVX mice treated with P4 alone. These data were associated with improved glucose tolerance and insulin sensitivity in OVX mice treated with E2 (alone or combined with P4) compared to OVX and P4-treated mice. Additionally, E2 treatment (alone or combined with P4) reduced both hepatic and muscle triglyceride content compared with OVX control mice and OVX + P4 mice. There were no differences between groups regarding hepatic enzymes in plasma and inflammatory markers. Therefore, our results revealed that progesterone replacement alone does not seem to influence glucose homeostasis and ectopic lipid accumulation in OVX mice. These results will help expand knowledge about hormone replacement in postmenopausal women associated with metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Carlos H Z Talarico
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Ester S Alves
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Jessica D M Dos Santos
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Felipe G S Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
14
|
Law SH, Chan HC, Ke GM, Kamatam S, Marathe GK, Ponnusamy VK, Ke LY. Untargeted Lipidomic Profiling Reveals Lysophosphatidylcholine and Ceramide as Atherosclerotic Risk Factors in apolipoprotein E Knockout Mice. Int J Mol Sci 2023; 24:ijms24086956. [PMID: 37108120 PMCID: PMC10138920 DOI: 10.3390/ijms24086956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Swetha Kamatam
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
15
|
Griffett K, Burris TP. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front Med (Lausanne) 2023; 10:1102469. [PMID: 36817797 PMCID: PMC9932051 DOI: 10.3389/fmed.2023.1102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Activation of LXR activity by synthetic agonists has been the focus of many drug discovery efforts with a focus on treatment of dyslipidemia and atherosclerosis. Many agonists have been developed, but all have been hindered due to their ability to efficaciously stimulate de novo lipogenesis. Here, we review the development of LXR inverse agonists that were originally optimized for their ability to enable recruitment of corepressors leading to silencing of genes that drive de novo lipogenesis. Such compounds have efficacy in animal models of MAFLD, dyslipidemia, and cancer. Several classes of LXR inverse agonists have been identified and one is now in clinical trials for treatment of severe dyslipidemia.
Collapse
Affiliation(s)
- Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas P. Burris
- The University of Florida Genetics Institute, Gainesville, FL, United States,*Correspondence: Thomas P. Burris,
| |
Collapse
|
16
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
17
|
Freitas IN, da Silva Jr JA, de Oliveira KM, Lourençoni Alves B, Dos Reis Araújo T, Camporez JP, Carneiro EM, Davel AP. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14:1090039. [PMID: 36896173 PMCID: PMC9989466 DOI: 10.3389/fendo.2023.1090039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.
Collapse
Affiliation(s)
- Israelle Netto Freitas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - João Paulo Camporez
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- *Correspondence: Ana Paula Davel,
| |
Collapse
|