1
|
Hidayat MI, Hardiansyah A, Khoiriah K, Yulianti E, Wardhani RAK, Fahrialdi F, Yusuf MRI. Composite films based on chitosan incorporating molybdenum disulfide nanosheets and zinc oxide nanoparticles with potential antibacterial application. Food Chem 2025; 477:143480. [PMID: 40023025 DOI: 10.1016/j.foodchem.2025.143480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
There is a growing interest in finding alternative materials for food packaging because synthetic plastic materials pose a significant risk to the environment. Chitosan, a natural polymer, is both biodegradable and non-toxic. The present study aimed to prepare composite films made from chitosan, molybdenum disulfide, and zinc oxide (chi-ZnO-MoS2). MoS2 improved mechanical properties and ZnO improved the antimicrobial properties of the films. The tensile strength, Young modulus, and break elongation of the chi-ZnO-MoS2 were 22.6 MPa, 22.4 MPa, and 3.0 % respectively. Thermogravimetric analysis at 600 °C resulted in a residue percentage of 37.87 %. Water contact angle and water vapor permeability were 88o and 1.94 g.m-2.h-1 respectively. The chi-ZnO-MoS2 films showed the highest antimicrobial performance against Gram-positive and Gram-negative bacteria. The composite film showed excellent fruit packaging performance and confirmed the weight loss of 24 % during the 15-day storage period. Therefore, films show great potential for future utility in food packaging.
Collapse
Affiliation(s)
- Muhammad Iqbal Hidayat
- Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia; Research Center for Chemistry, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Andri Hardiansyah
- Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia.
| | - Khoiriah Khoiriah
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Evi Yulianti
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Riesca Ayu Kusuma Wardhani
- Research Center for Nanotechnology System, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Fahrialdi Fahrialdi
- Renewable Energy Engineering Department, Faculty of Engineering, Prasetiya Mulya University, Tangerang Region, Banten 15339, Indonesia
| | - Muhammad Rayhan Izzati Yusuf
- Physics Department, Faculty of Mathematics and Natural Science, State University of Jakarta, Jakarta 11520, Indonesia
| |
Collapse
|
2
|
Sultan M, Ibrahim H, El-Masry HM, Hassan YR. Antimicrobial gelatin-based films with cinnamaldehyde and ZnO nanoparticles for sustainable food packaging. Sci Rep 2024; 14:22499. [PMID: 39341844 PMCID: PMC11438991 DOI: 10.1038/s41598-024-72009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Cinnamaldehyde (CIN), a harmless bioactive chemical, is used in bio-based packaging films for its antibacterial and antioxidant properties. However, high amounts can change food flavor and odor. Thus, ZnO nanoparticles (NPs) as a supplementary antimicrobial agent are added to gelatin film with CIN. The CIN/ZnO interactions are the main topic of this investigation. FTIR-Attenuated Total Reflection (ATR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were utilized to investigate CIN/ZnO@gelatin films. Transmission electron microscope (TEM) images revealed nanospheres morphology of ZnO NPs, with particle sizes ranging from 12 to 22 nm. ZnO NPs integration increased the overall activation energy of CIN/ZnO@gelatin by 11.94%. The incorporation of ZnO NPs into the CIN@gelatin film significantly reduced water vapour permeability (WVP) of the CIN/ZnO@gelatin film by 12.07% and the oxygen permeability (OP) by 86.86%. The water sorption isotherms of CIN/ZnO@gelatin were described using Guggenheim-Anderson-de Boer (GAB) model. The incorporation of ZnO NPs into the CIN@gelatin film reduced monolayer moisture content (M0) by 35.79% and significantly decreased the solubility of CIN/ZnO@gelatin by 15.15%. The inclusion of ZnO into CIN@gelatin film significantly decreased tensile strength of CIN/ZnO@gelatin by 13.32% and Young`s modulus by 18.33% and enhanced elongation at break by 11.27%. The incorporation of ZnO NPs into the CIN@gelatin film caused a significant decrease of antioxidant activity of CIN/ZnO@gelatin film by 9.09%. The most susceptible organisms to the CIN/ZnO@gelatin film included Candida albicans, Helicobacter pylori, and Micrococcus leutus. The inhibition zone produced by the CIN/ZnO@gelatin film versus Micrococcus leutus was 25.0 mm, which was comparable to the inhibition zone created by antibacterial gentamicin (23.33 mm) and cell viability assessment revealed that ZnO/CIN@gelatin (96.8 ± 0.1%) showed great performance as potent biocompatible active packaging material.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt
| | - Hassan Ibrahim
- Pre-Treatment and Finishing of Cellulosic Fibres Department, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt.
| | - Hossam Mohammed El-Masry
- Chemistry of Natural and Microbial Products, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt
| | - Youssef R Hassan
- Packaging Materials Department, National Research Centre, 33 El-Behouth St., P.O.12622, Dokki, Cairo, Egypt
| |
Collapse
|
3
|
Sultan M, Youssef A, Baseer RA. Fabrication of multifunctional ZnO@tannic acid nanoparticles embedded in chitosan and polyvinyl alcohol blend packaging film. Sci Rep 2024; 14:18533. [PMID: 39122764 PMCID: PMC11316066 DOI: 10.1038/s41598-024-68571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The current study explores biodegradable packaging materials that have high food quality assurance, as food deterioration is mostly caused by UV degradation and oxidation, which can result in bad flavor and nutrition shortages. Thus, new multifunctional zinc oxide nanoparticles/tannic acid (ZnO@TA) with antioxidant and antibacterial activities were incorporated into polyvinyl alcohol/chitosan (PVA/CH) composite films with different ratios (1%, 3%, and 5% based on the total dry weight of the film) via a solution blending method in a neutral aqueous solution. Additionally, ZnO nanoparticles have unique antibacterial mechanisms through the generation of excessive reactive oxygen species (ROS) that may lead to intensify pathogen resistance to conventional antibacterial agents. Thus, minimizing the negative effects caused by excessive levels of ROS may be possible by developing unique, multifunctional ZnO nanoparticles with antioxidant potential via coordination bond between tannic acid and ZnO nanoparticles (ZnO@TA). ZnO@TA nanoparticles were examined using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of the incorporation of ZnO@TA nanoparticles on the barrier, mechanical, thermal, antioxidant, antimicrobial, and UV blocking characteristics of chitosan/polyvinyl alcohol (ZnO@TA@CH/PVA) films was investigated. The lowest water vapor and oxygen permeability and the maximum antioxidant capacity% are 31.98 ± 1.68 g mm/m2 kPa day, 0.144 ± 5.03 × 10-2 c.c/m2.day, and 69.35 ± 1.6%, respectively, which are related to ZnO@TA(50)@CH/PVA. Furthermore, ZnO@TA(50)@CH/PVA film exhibits the maximum UV shielding capacity of UVB (99.994). ZnO@TA(50) @PVA/CH films displayed better tensile strength and Young`s modulus of 48.72 ± 0.23 MPa and 2163.46 ± 61.4 MPa, respectively, than the other film formulations. However, elongation % at break exhibited the most reduced value of 19.62 ± 2.3%. ZnO@TA@CH/PVA film exhibits the largest inhibition zones of 11 ± 1.0, 12.3 ± 0.57, and 13.6 ± 0.57 mm against Staphylococcus aureus, Aspergillus flavus, and Candida albicans, respectively. In accordance with these results, ZnO@TA@CH/PVA films could be utilized for food preservation for the long-term.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Ahmed Youssef
- Packaging Materials Department, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Rasha A Baseer
- Department of Polymers and Pigments Technology, Chemical Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
4
|
Santos CF, Andrade SM, Mil-Homens D, Montemor MF, Alves MM. Antibacterial Activity of ZnO Nanoparticles in a Staphylococcus- aureus-Infected Galleria mellonella Model Is Tuned by Different Apple-Derived Phytocargos. J Funct Biomater 2023; 14:463. [PMID: 37754877 PMCID: PMC10532052 DOI: 10.3390/jfb14090463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
This research investigates pH changes during the green synthesis of ZnO nanoparticles (NPs) and emphasises its importance in their physicochemical, antibacterial, and biological properties. Varying the synthesis pH from 8 to 12 using "Bravo de Esmolfe" apple extracts neither affected the morphology nor crystallinity of ZnO but impacted NP phytochemical loads. This difference is because alkaline hydrolysis of phytochemicals occurred with increasing pH, resulting in BE-ZnO with distinct phytocargos. To determine the toxicity of BE-ZnO NPs, Galleria mellonella was used as an alternative to non-rodent models. These assays showed no adverse effects on larvae up to a concentration of 200 mg/kg and that NPs excess was relieved by faeces and silk fibres. This was evaluated by utilising fluorescence-lifetime imaging microscopy (FLIM) to track NPs' intrinsic fluorescence. The antibacterial efficacy against Staphylococcus aureus was higher for BE-ZnO12 than for BE-ZnO8; however, a different trend was attained in an in vivo infection model. This result may be related to NPs' residence in larvae haemocytes, modulated by their phytocargos. This research demonstrates, for the first time, the potential of green synthesis to modulate the biosafety and antibacterial activity of NPs in an advanced G. mellonella infection model. These findings support future strategies to overcome antimicrobial resistance by utilizing distinct phytocargos to modulate NPs' action over time.
Collapse
Affiliation(s)
- Catarina F. Santos
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910-761 Setúbal, Portugal
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
| | - Suzana M. Andrade
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
- Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M. Fátima Montemor
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
- Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta M. Alves
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química (DEQ), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.M.A.); (M.F.M.)
- Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
7
|
Suyatma NE, Gunawan S, Putri RY, Tara A, Abbès F, Hastati DY, Abbès B. Active Biohybrid Nanocomposite Films Made from Chitosan, ZnO Nanoparticles, and Stearic Acid: Optimization Study to Develop Antibacterial Films for Food Packaging Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:926. [PMID: 36769933 PMCID: PMC9917979 DOI: 10.3390/ma16030926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Chitosan is a biopolymer with great potential as food packaging due to its ability to create a film without additives and its better mechanical and antibacterial qualities compared to other biopolymers. However, chitosan film still has limitations due to its high moisture sensitivity and limited flexibility. Incorporating ZnO nanoparticles (ZnO-NPs) and stearic acid (SA) into chitosan films was expected to improve tensile strength, water vapor barrier, and antibacterial capabilities. This study aims to find the optimal formula for biohybrid nanocomposite films composed of chitosan, ZnO-NPs, and SA. The full factorial design approach-4 × 2 with 3 replicates, i.e., two independent variables, namely %ZnO-NPs at 4 levels (0%, 0.5%, 1%, and 3%, w/w) and %SA at 2 levels (0% and 5%, w/w)-was utilized to optimize chitosan-based biohybrid nanocomposite films, with the primary interests being antibacterial activities, water vapor barrier, and tensile strength. The incorporation of ZnO-NPs into chitosan films could increase antibacterial activity, while SA decreased it. The addition of SA had a good effect only in decreasing water vapor transmission rate (WVTR) values but a detrimental effect on other film properties mentioned above. The incorporation of ZnO-NPs enhanced all functional packaging properties of interest. The suggested solution of the optimization study has been validated. As a result, the formula with the inclusion of 1% ZnO-NPs without SA is optimal for the fabrication of active antibacterial films with excellent multifunctional packaging capabilities.
Collapse
Affiliation(s)
- Nugraha Edhi Suyatma
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16880, Indonesia
| | - Sanjaya Gunawan
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16880, Indonesia
| | - Rani Yunia Putri
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor 16880, Indonesia
| | - Ahmed Tara
- MATIM, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
| | - Fazilay Abbès
- MATIM, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
| | - Dwi Yuni Hastati
- Food Quality Assurance, College of Vocational Studies, IPB University, Bogor 16128, Indonesia
| | - Boussad Abbès
- MATIM, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Campus Moulin de la Housse, 51100 Reims, France
| |
Collapse
|
8
|
Green synthesis of bioinspired chitosan-ZnO-based polysaccharide gums hydrogels with propolis extract as novel functional natural biomaterials. Int J Biol Macromol 2022; 211:410-424. [PMID: 35569685 DOI: 10.1016/j.ijbiomac.2022.05.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 01/30/2023]
Abstract
A facile, green synthesis methodology to obtain zinc oxide nanoparticles using three polysaccharide gums (Acacia gum, Guar gum and Xanthan gum) of biological origin was developed. Subsequently, biosynthesized zinc oxide nanoparticles were incorporated into a sustainable chitosan hydrogel matrix functionalized with propolis extract. This study has revealed that the selected polysaccharides as chelates represents a suitable approach to synthesize ZnO nanoparticles of particular interest with controlled morphology. The formation of ZnO nanoparticles using polysaccharide gums was confirmed by FTIR, XRD, UV-Vis spectroscopy, thermal analysis, SEM, Raman and photoluminescence spectroscopies. The rheological behaviour of obtained hydrogels was evaluated. The AFM studies demonstrate that all synthesized chitosan incorporated ZnO composites hydrogels functionalized with propolis extract exhibit corrugated topographies. The present study highlights the possible incorporation of various guest molecules into hydrogel matrix due to its tuneable morphologies. The obtained hydrogel composites were cytocompatible in L929 fibroblast cell culture, in a range of concentrations between 50 and 1000 μg/mL, as assessed by MTT, LDH and Live/Dead double staining assays. By enhancing the biological properties, these novel green hydrogels show attractive superior performance in a wide concentration range to develop future in vivo suitable natural platforms as effective delivery systems of pharmacologic agents for biomedical applications.
Collapse
|
9
|
Couto C, Almeida A. Metallic Nanoparticles in the Food Sector: A Mini-Review. Foods 2022; 11:402. [PMID: 35159552 PMCID: PMC8833908 DOI: 10.3390/foods11030402] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Nanomaterials, and in particular metallic nanoparticles (MNPs), have significantly contributed to the production of healthier, safer, and higher-quality foods and food packaging with special properties, such as greater mechanical strength, improved gas barrier capacity, increased water repellency and ability to inhibit microbial contamination, ensuring higher quality and longer product shelf life. MNPs can also be incorporated into chemical and biological sensors, enabling the design of fast and sensitive monitoring devices to assess food quality, from freshness to detection of allergens, food-borne pathogens or toxins. This review summarizes recent developments in the use of MNPs in the field of food science and technology. Additionally, a brief overview of MNP synthesis and characterization techniques is provided, as well as of the toxicity, biosafety and regulatory issues of MNPs in the agricultural, feed and food sectors.
Collapse
Affiliation(s)
- Cristina Couto
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
10
|
Strategies to Improve the Barrier and Mechanical Properties of Pectin Films for Food Packaging: Comparing Nanocomposites with Bilayers. COATINGS 2022. [DOI: 10.3390/coatings12020108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional food packaging systems help reduce food wastage, but they also produce environmental impacts when not properly disposed of. Bio-based polymers are a promising solution to overcome these impacts, but they have poor barrier and mechanical properties. This work evaluates two strategies to improve these properties in pectin films: the incorporation of cellulose nanocrystals (CNC) or sodium montmorillonite (MMT) nanoparticles, and an additional layer of chitosan (i.e., a bilayer film). The bionanocomposites and bilayer films were characterized in terms of optical, morphological, hygroscopic, mechanical and barrier properties. The inclusion of the nanofillers in the polymer reduced the water vapor permeability and the hydrophilicity of the films without compromising their visual properties (i.e., their transparency). However, the nanoparticles did not substantially improve the mechanical properties of the bionanocomposites. Regarding the bilayer films, FTIR and contact angle studies revealed no surface and/or chemical modifications, confirming only physical coating/lamination between the two polymers. These bilayer films exhibited a dense homogenous structure, with intermediate optical and hygroscopic properties. An additional layer of chitosan did not improve the mechanical, water vapor and oxygen barrier properties of the pectin films. However, this additional layer made the material more hydrophobic, which may play an important role in the application of pectin as a food packaging material.
Collapse
|