1
|
Sathiyaseelan A, Jang Y, Zhang X, Hong IK, Wang MH. Development and efficacy of arbutin-loaded agarose hydrogel for antioxidant and depigmentation applications. Int J Biol Macromol 2025; 309:142642. [PMID: 40158597 DOI: 10.1016/j.ijbiomac.2025.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Skin whitening and depigmentation are key strategies in skincare, representing a major global market. However, prolonged use of high concentrations of chemicals in skincare products can lead to skin disorders and premature aging. Biopolymer-based hydrogels offer a promising alternative by enabling sustained transdermal delivery of bioactive molecules while minimizing adverse effects. This study aimed to develop a novel bioactive hydrogel using thermosensitive, low-temperature-melting agarose (AGE) and the non-toxic tyrosinase inhibitor arbutin (ABN). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the successful incorporation of ABN into the AGE hydrogel, while X-ray diffraction (XRD) analysis revealed the formation of new amorphous peaks, indicating composite hydrogel formation. Field emission scanning electron microscope (FE-SEM) imaging showed that freeze-dried AGE-ABN exhibited a smaller, more longitudinal porous structure compared to AGE alone. ABN release was dependent on its initial concentration, with higher release rates correlating with increased antioxidant activity. The 10-minute extract of freeze-dried AGE-ABN (0.1 %) hydrogel demonstrated DPPH (39.16 ± 0.72 %), FRAP (78.37 ± 2.24 %), and ABTS (92.40 ± 0.02 %) radical scavenging activities. Additionally, AGE-ABN (0.1 %) exhibited significant tyrosinase inhibition (27.90 ± 0.02 %), highlighting its potential for depigmentation. Importantly, the hydrogel promoted a human keratinocyte (HaCaT) cell growth without inducing cytotoxicity.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - YoungSun Jang
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - In-Kee Hong
- FB R&D reserch center, Frombio Co., Ltd., Yongin 17108, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Wang L, Wu Z, Wang X, Wang X, Mao J, Yan Y, Zhang L, Zhang Z. Overview of Peptides and Their Potential Roles in Skin Health and Beauty. J Pept Sci 2025; 31:e3668. [PMID: 39777813 DOI: 10.1002/psc.3668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Peptides are molecules that consist of at least two amino acids linked by peptide bonds. The difference between peptides and proteins is primarily based on size and structure. Typically, oligopeptides consist of fewer than about 10-20 amino acids, and polypeptides consist of more than 20 amino acids, whereas proteins usually are made up more than 50 amino acids and often contain multiple peptide subunits as stated in the International Union of Pure and Applied Chemistry rules. Beyond the nutritional properties, peptides are also structural components of hormones, enzymes, toxins, and antibiotics and play several fundamental physiological roles in the body. Since the introduction of the first commercial peptide drug, insulin, peptide-based drugs have gained increased interest. So far, more than 80 peptide-based drugs have reached the market for a wide range of conditions, such as diabetes, cardiovascular diseases, and urological disorders. Meanwhile, peptides have also gained significant attention in the cosmetic industry because of their potential in boosting skin health. In this review, peptides were comprehensively summarized in the aspects of sources, function, the use of peptides in cosmetics and skin care, and indications for the delivery of cosmetic peptides.
Collapse
Affiliation(s)
- Leyang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Zhijing Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xinyu Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoli Wang
- Beijing Innovation Center, The Procter & Gamble Company, Beijing, China
| | - Jingzhuo Mao
- Beijing Innovation Center, The Procter & Gamble Company, Beijing, China
| | - Yan Yan
- Singapore Innovation Center, The Procter & Gamble Company, Singapore
| | - Lu Zhang
- Singapore Innovation Center, The Procter & Gamble Company, Singapore
| | - Zhuzhen Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Yeom J, Kang M, Goh A, Jeon J, Shim WS, Kang NG. Timed-Release Silica Microcapsules for Consistent Fragrance Release in Topical Formulations. APPLIED SCIENCES 2024; 14:11308. [DOI: 10.3390/app142311308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Microcapsules are widely utilized in various applications to preserve active ingredients for prolonged durations while enabling controlled release. However, limited release of active ingredients often hampers their effectiveness in daily-use products. In this study, we demonstrated the synthesis of silica core–shell microcapsules designed for controlled fragrance release in topical formulations. The microcapsules were synthesized via the sol–gel polymerization of tetraethyl orthosilicate (TEOS) on the surface of an oil/water emulsion, leveraging the shrinkage and deformation characteristics of sol–gel-derived silica during drying. The concentrations of dipalmitoylethyl dimethylammonium chloride, a cationic emulsifier used in cosmetics, and TEOS were optimized to sustain fragrance release for up to 24 h after topical application. An additional silica coating on the microcapsules reduced the Brunauer–Emmett–Teller surface area by 76.54%, enhancing fragrance stability for long-term storage. The timed-release behavior was assessed using fragrance evaluation tests and gas chromatography–mass spectrometry. The fragrance intensity and release profiles confirmed the potential of these microcapsules in daily-use cosmetics. These findings suggest that silica microcapsules with extended-release properties have application potential in both cosmetic and pharmaceutical products.
Collapse
Affiliation(s)
- Junseok Yeom
- R&D Center, LG Household and Healthcare, E10 Building, LG Science Park, 70 Magokjungang-10-ro, Seoul 07911, Republic of Korea
| | - Minseo Kang
- R&D Center, LG Household and Healthcare, E10 Building, LG Science Park, 70 Magokjungang-10-ro, Seoul 07911, Republic of Korea
| | - Areum Goh
- R&D Center, LG Household and Healthcare, E10 Building, LG Science Park, 70 Magokjungang-10-ro, Seoul 07911, Republic of Korea
| | - Jeonghoon Jeon
- R&D Center, LG Household and Healthcare, E10 Building, LG Science Park, 70 Magokjungang-10-ro, Seoul 07911, Republic of Korea
| | - Woo Sun Shim
- R&D Center, LG Household and Healthcare, E10 Building, LG Science Park, 70 Magokjungang-10-ro, Seoul 07911, Republic of Korea
| | - Nae Gyu Kang
- R&D Center, LG Household and Healthcare, E10 Building, LG Science Park, 70 Magokjungang-10-ro, Seoul 07911, Republic of Korea
| |
Collapse
|
4
|
Spence C, Zhang T. Multisensory contributions to skin-cosmetic product interactions. Int J Cosmet Sci 2024; 46:833-849. [PMID: 38761125 DOI: 10.1111/ics.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024]
Abstract
The human face is one of the most salient regions of the body surface. Ratings of facial attractiveness, as well as judgements of a person's age, are influenced by the appearance of facial skin (not to mention the presence/absence of wrinkles). Unsurprisingly, many consumers spend huge amounts of money on trying to protect, maintain, and/or enhance their facial appearance. As highlighted by the evidence presented in this narrative review, both the skin and the cosmetic products that many consumers use are fundamentally multisensory in nature. The complex interaction between the particular skin site stimulated and the multisensory attributes of the product (e.g., when it is applied) can exert a number of effects on an individual's mood, their emotions, as well as on their self-perception (and self-confidence), over-and-above any functional effects that the cream or lotion may have on the skin itself. In this narrative historical review, the literature on the multisensory perception of facial skin is summarized and critically evaluated. Multisensory interactions taking place between the cosmetic product, its packaging, as well as its use/application at the sensory, cognitive, and emotional levels are all discussed.
Collapse
Affiliation(s)
- Charles Spence
- Department of Experimental Psychology, New Radcliffe House, University of Oxford, Oxford, UK
| | - Tianyi Zhang
- Department of Experimental Psychology, New Radcliffe House, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Maloney ME, Iglesia S, Kononov T, Zahr AS, Gold MH. A Randomized, Single-Center, Double-Blind, Controlled Case Study Evaluating Procedure Pairing of a Neurocosmetic Postprocedure Cream With Radiofrequency Microneedling for Facial Rejuvenation. J Cosmet Dermatol 2024; 23:4077-4084. [PMID: 39385645 PMCID: PMC11626329 DOI: 10.1111/jocd.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Radiofrequency (RF) microneedling produces patient discomfort which deters patients from completing the recommended treatment series. OBJECTIVE The primary objective was to determine the tolerability, safety, and efficacy of a neurocosmetic postprocedure cream post-RF microneedling in reducing patient discomfort and enhancing recovery across the length of the study and, secondarily, to evaluate against a leading comparator. The third objective was to evaluate the efficacy of the neurocosmetic on self-perceived improvement and objective grading. MATERIALS AND METHODS An Institutional Review Board (IRB) approved, fourteen-day, randomized, single-center, double-blind, controlled clinical case study was conducted with 11 healthy female subjects, 6 randomized to the neurocosmetic and 5 to the comparator cell. Following a 7-day washout period, subjects received RF microneedling (face and neck) and applied the postprocedure cream twice daily for 7 days. Objective and subjective tolerability, self-assessments, and clinical photography were performed immediately postprocedure, 24 h, three and seven days following the procedure. RESULTS The neurocosmetic was tolerable and safe. Erythema and stinging immediately decreased postprocedure, postneurocosmetic application. After 24 h, 83% favorably agreed the neurocosmetic "reduced irritation on the skin post-procedure," and after 7 days, 100% favorably agreed "experience with the product was positive and I would be interested in returning for a second treatment." The neurocosmetic reduced skin tone redness in the face and neck faster and to a greater degree when measured against a comparator. CONCLUSION The neurocosmetic postprocedure cream improved patient discomfort and enhanced recovery when used immediately post-RF microneedling and after 7 days. IRB PROTOCOL NUMBER Pro00064211.
Collapse
Affiliation(s)
| | | | | | | | - Michael H. Gold
- Gold Skin CenterTennessee Clinical Research CenterNashvilleTennesseeUSA
| |
Collapse
|
6
|
Lima NF, Maciel GM, Lima NP, Fernandes IDAA, Haminiuk CWI. Bacterial cellulose in cosmetic innovation: A review. Int J Biol Macromol 2024; 275:133396. [PMID: 38945719 DOI: 10.1016/j.ijbiomac.2024.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.
Collapse
Affiliation(s)
- Nicole Folmann Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | - Nayara Pereira Lima
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), CEP (81531-980) Curitiba, Paraná, Brazil
| | - Isabela de Andrade Arruda Fernandes
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA), Universidade Tecnológica Federal do Paraná (UTFPR), CEP (81280-340) Curitiba, Paraná, Brazil
| | | |
Collapse
|
7
|
Bang J, Hwang YL, Kim MY, Yun JN, Hyun E, Chang MY, Shin DH, Kim S, Lee JH. Wrinkle-Improving Effect of Novel Peptide That Binds to Nicotinic Acetylcholine Receptor. Int J Mol Sci 2024; 25:7860. [PMID: 39063099 PMCID: PMC11277145 DOI: 10.3390/ijms25147860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Wrinkles, one of the most common signs of aging, are primarily caused by the continuous contraction of muscles. Muscle contraction is induced by the binding of acetylcholine (ACh), released at the neuromuscular junction, to nicotinic acetylcholine receptor (nAChR) present on the muscle cell surface. In this study, we aimed to develop a wrinkle-improving peptide that inhibits the binding of ACh to nAChR using peptide phage display technology. Our peptide showed a remarkably high binding affinity to nAChR subunit α1, with a value below 1 µM, and was found to inhibit the action of ACh through its interaction with these receptors. Furthermore, it increased collagen synthesis in skin cells and upregulated the expression of the aquaporin-3 (AQP3) and hyaluronan synthase-2 (HAS2) genes. These results confirm that the peptide effectively inhibits muscle contraction and enhances skin elasticity and hydration, contributing to its wrinkle-reducing effects. Clinical studies on humans observed significant improvement in wrinkles after three weeks of use, with substantial reduction observed after six weeks. In conclusion, these findings demonstrate the efficacy of the peptide (named Medipep) in reducing wrinkles.
Collapse
Affiliation(s)
- Jinho Bang
- SKINMED R&D Center, Daejeon 34037, Republic of Korea; (J.B.); (Y.-L.H.); (M.Y.K.); (J.N.Y.); (E.H.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Yul-Lye Hwang
- SKINMED R&D Center, Daejeon 34037, Republic of Korea; (J.B.); (Y.-L.H.); (M.Y.K.); (J.N.Y.); (E.H.)
| | - Mi Yoon Kim
- SKINMED R&D Center, Daejeon 34037, Republic of Korea; (J.B.); (Y.-L.H.); (M.Y.K.); (J.N.Y.); (E.H.)
| | - Jae Nam Yun
- SKINMED R&D Center, Daejeon 34037, Republic of Korea; (J.B.); (Y.-L.H.); (M.Y.K.); (J.N.Y.); (E.H.)
| | - Eujin Hyun
- SKINMED R&D Center, Daejeon 34037, Republic of Korea; (J.B.); (Y.-L.H.); (M.Y.K.); (J.N.Y.); (E.H.)
| | - Min Youl Chang
- SKINMED Clinical Trials Center, Daejeon 34050, Republic of Korea;
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea;
| | - Sunghyun Kim
- Bio-Healthcare Materials Center, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
| | - Jeung-Hoon Lee
- SKINMED R&D Center, Daejeon 34037, Republic of Korea; (J.B.); (Y.-L.H.); (M.Y.K.); (J.N.Y.); (E.H.)
| |
Collapse
|
8
|
Juncan AM, Rus LL, Morgovan C, Loghin F. Evaluation of the Safety of Cosmetic Ingredients and Their Skin Compatibility through In Silico and In Vivo Assessments of a Newly Developed Eye Serum. TOXICS 2024; 12:451. [PMID: 39058103 PMCID: PMC11280982 DOI: 10.3390/toxics12070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
The term "risk assessment" is often substituted with "safety assessment", to demonstrate the safe properties of cosmetic ingredients and formulations. With respect to the actual legislative framework, the proper use of in silico evaluation could offer a representative non-animal substitute for the toxicity evaluation of cosmetic ingredients. The in silico assessment needs to be integrated with other lines of proof (in vitro and/or in vivo data) in the form of a complex methodology in order to demonstrate the safety evaluation of cosmetic ingredients/products. The present study aimed to develop and characterize a new cosmetic formulation, designed for the skin care of the periorbital area. Quality control comprising stability, physicochemical, and microbiological evaluation was performed. Another objective of this study was to present a screening model for the safety evaluation of the cosmetic formulation by identifying individual ingredients, and to confirm the skin compatibility based on in vivo evaluation. The results demonstrated the in silico and in vivo safety profile of the cosmetic ingredients used in the present formulation. In silico evaluation, using a novel, specific software applicable for the risk evaluation of ingredients and formulations, showed that the incorporated ingredients were non-mutagenic and non-sensitizing, and considering the margin of safety (MoS), the cosmetic raw materials could be considered safe. Skin compatibility was confirmed by the patch test performed under dermatological control, evidencing the "non-irritating" potential of the developed cosmetic formulation.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinic Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (C.M.)
| | - Luca-Liviu Rus
- Preclinic Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (C.M.)
| | - Claudiu Morgovan
- Preclinic Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (C.M.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
9
|
Choi S, Han S, Lee S, Kim J, Kim J, Kang DK. Synergistic Antioxidant and Anti-Inflammatory Effects of Phenolic Acid-Conjugated Glutamine-Histidine-Glycine-Valine (QHGV) Peptides Derived from Oysters ( Crassostrea talienwhanensis). Antioxidants (Basel) 2024; 13:447. [PMID: 38671896 PMCID: PMC11047712 DOI: 10.3390/antiox13040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The glutamine-histidine-glycine-valine (QHGV), a peptide derived from oysters, exhibits antioxidant activity and is being actively researched as a potential pharmaceutical and functional cosmetic ingredient. In this study, we synthesized the QHGV peptide and explored the hitherto unknown anti-inflammatory effects of QHGV. The antioxidant property was also characterized by conjugating with various naturally derived phenolic acids, such as caffeic, gallic, ferulic, sinapinic, and vanillic acids. Conjugation with phenolic acids not only enhanced the antioxidant activity of QHGV but also diminished the lipopolysaccharide-induced generation of reactive oxygen species (ROS) in the murine macrophage cell line, RAW 264.7. The reduction in the levels of reactive oxygen species led to the reduced mRNA expression of inducible nitric oxide synthase (iNos) and cyclooxygenase 2 (Cox-2), resulting in an anti-inflammatory effect through the inhibition of the phosphorylation of mitogen-activated protein kinase, including extracellular signal-activated protein kinase, c-Jun NH2-terminal kinase, and p38. Furthermore, the phenolic acid-conjugated peptides increased the mRNA and protein levels of collagen type I, indicative of a wrinkle-improvement effect. The phenolic acid conjugates of the peptide were not cytotoxic to human keratinocytes such as HaCaT cells. These results suggest that phenolic acid conjugation can enhance the potential of peptides as drug and cosmetic resources.
Collapse
Affiliation(s)
- Soyun Choi
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Sohee Han
- WellPep Co., Ltd., Incheon 22012, Republic of Korea; (S.H.); (J.K.)
| | - Seungmi Lee
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Jongmin Kim
- WellPep Co., Ltd., Incheon 22012, Republic of Korea; (S.H.); (J.K.)
| | - Jinho Kim
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
| | - Dong-Ku Kang
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea; (S.C.); (S.L.); (J.K.)
- Bioplastic Research Center, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
10
|
Sousa P, Tavares-Valente D, Amorim M, Azevedo-Silva J, Pintado M, Fernandes J. β-Glucan extracts as high-value multifunctional ingredients for skin health: A review. Carbohydr Polym 2023; 322:121329. [PMID: 37839841 DOI: 10.1016/j.carbpol.2023.121329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
β-Glucans, which are naturally present in cereals, yeast, and mushrooms, have gained attention as a potential natural source for functional foods and pharmaceuticals. Due to the availability of β-glucans from several sources, different extraction methods can be employed to obtain high purity extracts that can be further modified to enhance their solubility or other biological properties. Apart from their known ability to interact with the immune system, β-glucans possess specific properties that could benefit overall skin health and prevent age-related signs, including soothing and antioxidant activities. As a result, the use of β-glucans to mitigate damage caused by environmental stressors or skin-related issues that accelerate skin aging or trigger chronic inflammation may represent a promising, natural, eco-friendly, and cost-effective approach to maintaining skin homeostasis balance. This review outlines β-glucan extraction methodologies, molecular structure, functionalization approaches, and explores skin-related benefits of β-glucans, along with an overview of related products in the market.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
11
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
12
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
13
|
Ma Y, Wang N, Li K, Liang H, Bai J, Ji X. Effect of geometric parameters of electrodes on skin heating for the design of non-ablative radiofrequency device. Skin Res Technol 2023; 29:e13472. [PMID: 37881053 PMCID: PMC10560826 DOI: 10.1111/srt.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Non-ablative radiofrequency (RF) has been widely used in clinical and at-home cosmetics devices. RF electrode geometry can influence the heat distribution in the tissue. This study analyzes the influence of geometric parameters of the electrode on the heat distribution in the layered tissue. MATERIALS & METHODS The finite element simulation of the electrothermal coupling field was performed to obtain the three-dimensional (3D) temperature distribution of the four-layer tissue. The electrode geometric parameters including the inter-electrode spacing (5-12 mm), width (1-3 mm), length (3-10 mm), shapes (bar, dot and circle), and the coupling gel's electrical conductivity (0.2-1.5 S/m) were simulated. The maximum temperature at 2 mm depth (T-2 mm ) and the temperature difference (Tdiff ) between the maximum skin surface temperature and T-2 mm were obtained to evaluate the effectiveness and safety. RESULTS The effect of geometric parameters on the effectiveness and safety was mixed. The maximum T-2 mm occurred with the 5 mm inter-electrode spacing, 3 mm width, 10 mm length, the circle-shaped electrode, and the 1.5 S/m coupling gel's electrical conductivity. The ratio of inter-electrode spacing to width at around four can achieve rapid temperature rise and skin surface temperature protection. The electrode shape influenced the area of temperature rise in the tissue's cross-section. The coupling gel's electrical conductivity should be close to that of the skin to avoid energy accumulation on the skin surface. CONCLUSION The electrode's geometric parameters affect the effectiveness and safety of the RF product. This study has provided the simulation procedure for the electrode design.
Collapse
Affiliation(s)
- Yiyou Ma
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Nianou Wang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Shenzhen Accompany Tech co., ltdShenzhenChina
| | - Ke Li
- Shenzhen Accompany Tech co., ltdShenzhenChina
| | - Huan Liang
- Shenzhen Accompany Tech co., ltdShenzhenChina
| | - Jingfeng Bai
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Xiang Ji
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
14
|
Zhang Y, Guo J, Guan F, Song X, Yang Q, Ji X, Li Z, Tao J. Guar gum-based multilayer fiber membranes inspired by plant transpiration for enhancing the functionality of dry facial masks. Int J Biol Macromol 2023; 248:125965. [PMID: 37487991 DOI: 10.1016/j.ijbiomac.2023.125965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
As more eco-friendly and economical choice for wet facial masks, dry facial masks have always had the problem of cumbersome application process and poor water retention property. In this study, based on the mechanism of directional water transport of Janus membrane and plant transpiration, the hydrophobic polylactic acid (PLA) nanofiber layer and the superhydrophilic guar gum (GG) nanofiber layer were prepared on both sides of the silk facial mask (SM) by electrospinning to obtain the guar gum-based bionic Janus directional water transport facial mask (G-DFM). The results showed that the directional water transport function improved the facial mask's water retention by 37 %, and the nicotinamide (NAM) encapsulated in the GG layer gave the facial mask excellent whitening and antibacterial properties. The GG layer could be directed to swell after absorbing water to form the "gel-like", which ensured that the G-DFM could continue to release NAM during its work and would enhance the attachment between the G-DFM and the skin. G-DFM not only retained the advantages of SM but also expanded the functions that SM did not have, providing an idea for designing more practical and ideal facial masks in the future.
Collapse
Affiliation(s)
- Yihang Zhang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jing Guo
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China; Liaoning Engineering Technology Research Centre of Function Fiber and its Composites, Dalian 116034, PR China.
| | - Fucheng Guan
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Xuecui Song
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Qiang Yang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Xinbin Ji
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zheng Li
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jing Tao
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
15
|
Fitzpatrick LLJ, Ligabue-Braun R, Nekaris KAI. Slowly Making Sense: A Review of the Two-Step Venom System within Slow ( Nycticebus spp.) and Pygmy Lorises ( Xanthonycticebus spp.). Toxins (Basel) 2023; 15:514. [PMID: 37755940 PMCID: PMC10536643 DOI: 10.3390/toxins15090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow (Nycticebus spp.) and pygmy lorises (Xanthonycticebus spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-170, Brazil
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
16
|
Isaifan D, Crovella S, Soubra L, Al-Nesf M, Steinhoff M. Fc Epsilon RI-Neuroimmune Interplay in Pruritus Triggered by Particulate Matter in Atopic Dermatitis Patients. Int J Mol Sci 2023; 24:11851. [PMID: 37511610 PMCID: PMC10380572 DOI: 10.3390/ijms241411851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis (AD) is the most common chronic relapsing neuroinflammatory skin disease that is characterized by a complex and multifactorial pathophysiology. It reflects a profound interplay between genetic and environmental factors, and a recently disclosed neuroimmune dysregulation that drives skin barrier disruption, pruritus, and microbial imbalance. In terms of the key external environmental players that impact AD, air quality and itch severity linkage have been thoroughly researched. The impact of ambient air pollutants including particulate matter (PM) and AD pruritic exacerbation has been recorded despite reductions in air pollution levels in in developed countries. The developing countries have, on the contrary, experienced significant urbanization and industrialization with limited environmental protection standards in the past decades. This unprecedented construction, petrochemical industry utilization, and increment in population counts has been paired with consistent exposure to outdoor PM. This may present a key cause of AD pruritic exacerbation supported by the fact that AD prevalence has intensified globally in the past 50 years, indicating that environmental exposure may act as a trigger that could flare up itch in vulnerable persons. At the molecular level, the impact of PM on severe pruritus in AD could be interpreted by the toxic effects on the complex neuroimmune pathways that govern this disease. AD has been recently viewed as a manifestation of the disruption of both the immune and neurological systems. In light of these facts, this current review aims to introduce the basic concepts of itch sensory circuits in the neuroimmune system. In addition, it describes the impact of PM on the potential neuroimmune pathways in AD pathogenesis with a special focus on the Fc Epsilon RI pathway. Finally, the review proposes potential treatment lines that could be targeted to alleviate pruritus based on immune mediators involved in the Fc Epsilon signaling map.
Collapse
Affiliation(s)
- Dina Isaifan
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Lama Soubra
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Al-Nesf
- Allergy and Immunology Division, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Martin Steinhoff
- Department of Dermatology & Venereology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
Delivery of Active Peptides by Self-Healing, Biocompatible and Supramolecular Hydrogels. Molecules 2023; 28:molecules28062528. [PMID: 36985499 PMCID: PMC10057174 DOI: 10.3390/molecules28062528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Supramolecular and biocompatible hydrogels with a tunable pH ranging from 5.5 to 7.6 lead to a wide variety of formulations useful for many different topical applications compatible with the skin pH. An in vitro viability/cytotoxicity test of the gel components demonstrated that they are non-toxic, as the cells continue to proliferate after 48 h. An analysis of the mechanical properties demonstrates that the hydrogels have moderate strength and an excellent linear viscoelastic range with the absence of a proper breaking point, confirmed with thixotropy experiments. Two cosmetic active peptides (Trifluoroacetyl tripeptide-2 and Palmitoyl tripeptide-5) were successfully added to the hydrogels and their transdermal permeation was analysed with Franz diffusion cells. The liquid chromatography-mass spectrometry (HPLC-MS) analyses of the withdrawn samples from the receiving solutions showed that Trifluoroacetyl tripeptide-2 permeated in a considerable amount while almost no transdermal permeation of Palmitoyl tripeptide-5 was observed.
Collapse
|
18
|
Baglamis S, Feyzioğlu-Demir E, Akgöl S. New insight into anti-wrinkle treatment: Using nanoparticles as a controlled release system to increase acetyl octapeptide-3 efficiency. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-022-04663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
He B, Chen Y, Yu S, Hao Y, Wang F, Qu L. Food plant extracts for sleep-related skin health: Mechanisms and prospects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Measurement of Stress Relief during Scented Cosmetic Product Application Using a Mood Questionnaire, Stress Hormone Levels and Brain Activation. COSMETICS 2022. [DOI: 10.3390/cosmetics9050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, consumers’ well-being plays a decisive role in the purchase of cosmetic products. Although factors influencing consumers' well-being are very subjective, companies strive to develop their products in such a way that a positive effect is likely. Therefore, methods are required to objectively explore and scientifically prove the product’s performance on humans. In this placebo-controlled study, a method was developed to evaluate relaxation or stress relief associated with one olfactory ingredient of a cosmetic product (face cream). Our experimental protocol included product testing in 25 healthy females, while an emotion questionnaire, analysis of saliva samples regarding the concentration of the hormones cortisol and α-amylase and mobile EEG measurement for quantification of the alpha brain waves before and after stress induction were conducted. It was shown that with this experimental design, the sample with the ingredient produced significant stress relief, as evidenced by significantly less negative emotion, significantly lowered cortisol levels and showed a trend towards a significant increase in alpha activity compared to placebo application. Our data provide evidence that this method is suitable for analyzing the differences between the two samples. In the future, this method can be utilized in the current or a further optimized form to evaluate the psychophysiological effects of cosmetic products on humans.
Collapse
|
21
|
Abstract
People with self-reported sensitive skin may reluctantly use performing anti-ageing skin care products as it could elicit skin discomfort. We thus aimed to design and test an anti-ageing skin care routine that is suitable for people reporting sensitive skin. Key principles for developing products for sensitive skin were applied and formulas were screened for their mildness in vitro using the Reconstructed Human Epidermis ET50 method. Anti-ageing efficacy and mildness was evaluated during a clinical study in China, with 33 female volunteers aged 40–65 years, with sensitive skin. The anti-ageing benefits were measured using Primos 3D, the cutometer and clinical evaluation. Hallmarks for sensitive skin such as skin hydration, skin barrier, skin redness and response to lactic acid were also measured. The ET50 method yielded values suggesting moderate to mild expected irritancy effect in vivo for most of them, and non-irritating effect for the serum. During the clinical study, no physical or functional signs of discomfort were reported with twice-daily usage of the routine. Instrumental evaluation of Wrinkle depth, skin elasticity/firmness, skin hydration, skin barrier and skin redness revealed improvement at 4 and 8 weeks. Clinical evaluation evidenced skin smoothness, skin suppleness and radiance improvements. The skin was less reactive to lactic acid stimuli, while the sensitive skin burden was lowered according to the dermatological quality of life index. Lastly, a separate investigation suggested the potential relief aspect of such routines to alleviate discomforts from mask wearing. With the right formulation design, the benefits of layering products from a routine can be made accessible to people with sensitive skin while simultaneously alleviating the burden of sensitive skin.
Collapse
|
22
|
Meftahi A, Samyn P, Geravand SA, Khajavi R, Alibkhshi S, Bechelany M, Barhoum A. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications. Carbohydr Polym 2022; 278:118956. [PMID: 34973772 DOI: 10.1016/j.carbpol.2021.118956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, skin biocompatible products are fast-growing markets for nanocelluloses with increasing number of patents published in last decade. This review highlights recent developments, market trends, safety assessments, and regulations for different nanocellulose types (i.e. nanoparticles, nanocrystals, nanofibers, nanoyarns, bacterial nanocellulose) used in skincare, cosmetics, and healthcare. The specific properties of nanocelluloses for skincare include high viscosity and shear thinning properties, surface functionality, dispersion stability, water-holding capacity, purity, and biocompatibility. Depending on their morphology (e.g. size, aspect ratio, geometry, porosity), nanocelluloses can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. Nanocellulose composite particles were recently developed as carriers for bioactive compounds or UV-blockers and platforms for wound healing and skin sensors. As toxicological assessment depends on morphologies and intrinsic properties, stringent regulation is needed from the testing of efficient nanocellulose dosages. The challenges and perspectives for an industrial breakthrough are related to optimization of production and processing conditions.
Collapse
Affiliation(s)
- Amin Meftahi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pieter Samyn
- Institute for Materials Research (IMO-IMOMEC), Applied and Circular Chemistry, University Hasselt, 3500 Hasselt, Belgium
| | - Sahar Abbasi Geravand
- Department of Technical & Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramin Khajavi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt; School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland.
| |
Collapse
|
23
|
Licorice (Glycyrrhiza glabra, G. uralensis, and G. inflata) and Their Constituents as Active Cosmeceutical Ingredients. COSMETICS 2022. [DOI: 10.3390/cosmetics9010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interest in plant extracts and natural compounds in cosmetic formulations is growing. Natural products may significantly improve cosmetics performance since they have both cosmetic and therapeutic-like properties, known as cosmeceutical effects. Glycyrrhiza genus, belonging to the Leguminosae family, comprises more than 30 species, widely distributed worldwide. The rhizomes and roots are the most important medicinal parts currently used in pharmaceutical industries and in the production of functional foods and food supplements. In the last few years, the interest in their potential activities in cosmetic formulations has greatly increased. Glycyrrhiza spp. extracts are widely implemented in cosmetic products for their good whitening effect. The biological effects of Glycyrrhiza extracts are especially ascribable to the occurrence of specialized metabolites belonging to the flavonoid class. This review focuses on the botany and the chemistry of the main investigated Glycyrrhiza spp. (G. glabra, G. uralensis, and G. inflata) along with their cosmeceutical activities categorized as skin anti-aging, photoprotective, hair care, and anti-acne. It has been highlighted how, along with Glycyrrhiza extracts, three main flavonoids namely licochalcone A, glabridin, and dehydroglyasperin C are the most investigated compounds. It is noteworthy that other molecules from licorice show potential cosmeceutical effects. These data suggest further investigations to clarify their potential value for cosmetic industries.
Collapse
|