1
|
Kryukov DM, Rozhkov AV, Gomila RM, Frontera A, Kukushkin VY. Perfluoroaromatic Bisselanes: From Molecular Design to Supramolecular Architecture Through Tandem σ/π-hole Interactions. Chem Asian J 2025:e202500247. [PMID: 40034066 DOI: 10.1002/asia.202500247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The molecular design of a series of perfluoroarylbisselanes (30-68 %) o-, m- and p-(ArFSe)2C6F4 and (ArFSe)2C12F8 (ArF=C6F5 and p-C6F4CF3) were achieved through the reaction of ArFSeCu with diiodoperfluoroarenes bearing phenyl and biphenyl rings. Analysis of the X-ray diffraction (XRD) data for the resulting perfluoroaromatic bisselanes 5-12 demonstrated their significant potential for constructing supramolecular architectures through tandem noncovalent interactions, including chalcogen bonding (ChB) and πhole-π interactions. 1,2-Bis(pentafluorophenylseleno)tetrafluorobenzene 5 was cocrystallized with dibenzyl ether, yielding the adduct 52⋅Bn2O, which exhibited a triad structural motif. Its XRD data provided structural insights into the ChB-based catalysis mechanism of Friedel-Crafts type reaction involving benzyl ether derivatives. Comprehensive density functional theory studies: energy decomposition analysis (EDA), molecular electrostatic potential (MEP) assessments, van der Waals potential evaluations, electrostatic potential and energy density (ED/ESP) plots, as well as natural bond orbital (NBO) analysis - revealed that Se⋅⋅⋅O chalcogen bonding (10.1 kcal/mol) and πhole-π interactions (12.6 kcal/mol) contribute comparably to the overall energetics, thus playing a significant role in guiding molecular assembly.
Collapse
Affiliation(s)
- Dmitry M Kryukov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Anton V Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049, Barnaul, Russian Federation
| |
Collapse
|
2
|
Mehmood A, Janesko BG. An orbital-overlap complement to σ-hole electrostatic potentials. Phys Chem Chem Phys 2025; 27:861-867. [PMID: 39661027 DOI: 10.1039/d4cp03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A σ-hole is an electron-deficient region of positive electrostatic potential (ESP) opposite from a half-filled p orbital involved in forming a covalent bond. The σ-hole concept helps rationalize directional noncovalent interactions, known as σ-hole bonds, between covalently bonded group V-VII atoms and electron-pair donors. The magnitude and orientation of σ-holes are correlated with the strength and geometry of halogen bonds. However, ESP computed for isolated σ-holes are not always predictive of interaction energies. For example, the σ-holes of isolated CHFBr2 and isolated CH2FI have identical ESP on the molecule surface, but halogen bonds to these molecules generally have different strengths. Here we show that the compact/diffuse nature of the orbitals involved plays an important role. Our orbital overlap distance quantifies the compact/diffuse nature of the "test orbital" that best overlaps with a systems orbitals at each point. The overlap distance captures the response properties of σ-holes: diffuse σ-holes with large overlap distance are typically "softer" and more polarizable. This aids visualization and interpretation. A linear fit to overlap distance and ESP is predictive of the halogen bond strengths of CH3X and CF3X (X = Cl, Br and I). We suggest that the overlap distance will be a useful partner to ESP for characterizing σ-holes.
Collapse
Affiliation(s)
- Arshad Mehmood
- Division of Information Technology - Research Computing, Informatics & Innovation and Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| |
Collapse
|
3
|
Ramasami P, Murray JS. Radial Behavior of Electrostatic Potentials of Atoms and Ions Revisited: Isotropy and Anisotropy. Chemphyschem 2024; 25:e202400450. [PMID: 38775267 DOI: 10.1002/cphc.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Indexed: 07/12/2024]
Abstract
In this paper we revisit earlier work relating to monoatomic atoms and ions published by pioneers in the area of electrostatic potentials. We include plots of the radial distributions of the electrostatic potentials for spherically symmetric atoms and cations, and for singly, doubly and triply negative anions. For atoms with anisotropy in their densities and electrostatic potentials, such as the halonium cations, it is shown how the molecular surface approach for plotting electrostatic potentials complements that achieved by directional radial distributions.
Collapse
Affiliation(s)
- Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry Faculty of Science, University of Mauritius, Reduit, 80837, Mauritius
- Centre of Natural Product Research, Department of Chemical Sciences University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
| |
Collapse
|
4
|
Lu T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J Chem Phys 2024; 161:082503. [PMID: 39189657 DOI: 10.1063/5.0216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Analysis of electron wavefunction is a key component of quantum chemistry investigations and is indispensable for the practical research of many chemical problems. After more than ten years of active development, the wavefunction analysis program Multiwfn has accumulated very rich functions, and its application scope has covered numerous aspects of theoretical chemical research, including charge distribution, chemical bond, electron localization and delocalization, aromaticity, intramolecular and intermolecular interactions, electronic excitation, and response property. This article systematically introduces the features and functions of the latest version of Multiwfn and provides many representative examples. Through this article, readers will be able to fully understand the characteristics and recognize the unique value of Multiwfn. The source code and precompiled executable files of Multiwfn, as well as the manual containing a detailed introduction to theoretical backgrounds and very rich tutorials, can all be downloaded for free from the Multiwfn website (http://sobereva.com/multiwfn).
Collapse
Affiliation(s)
- Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100024, People's Republic of China
| |
Collapse
|
5
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
6
|
Murray JS. The Formation of σ-Hole Bonds: A Physical Interpretation. Molecules 2024; 29:600. [PMID: 38338346 PMCID: PMC10856353 DOI: 10.3390/molecules29030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
This paper discusses two quite different computational experiments relating to the formation of σ-hole bonds A···B. The first involves looking at the complex at equilibrium and finding the contour X of the electronic density which allows the iso-density envelopes of A and B to be nearly touching. This contour increases, becoming closer to the nuclei, as the strength of the interaction increases. The second experiment involves allowing A and B to approach each other, with the aim of finding the distance at which their 0.001 a.u. iso-density envelopes are nearly merging into one envelope. What is found in the second experiment may be somewhat surprising, in that the ratio of the distance between interacting atoms at this nearly merging point-divided by the sum of the van der Waals radii of these atoms-covers a narrow range, typically between 1.2 and 1.3. It is intriguing to note that for the dataset presented, approaching molecules attracted to each other appear to do so unknowing of the strength of their ultimate interaction. This second experiment also supports the notion that one should expect favorable interactions, in some instances, to have close contacts significantly greater than the sums of the van der Waals radii.
Collapse
Affiliation(s)
- Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
7
|
Echeverría J, Alvarez S. The borderless world of chemical bonding across the van der Waals crust and the valence region. Chem Sci 2023; 14:11647-11688. [PMID: 37920358 PMCID: PMC10619631 DOI: 10.1039/d3sc02238b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 11/04/2023] Open
Abstract
The definition of the van der Waals crust as the spherical section between the atomic radius and the van der Waals radius of an element is discussed and a survey of the application of the penetration index between two interacting atoms in a wide variety of covalent, polar, coordinative or noncovalent bonding situations is presented. It is shown that this newly defined parameter permits the comparison of bonding between pairs of atoms in structural and computational studies independently of the atom sizes.
Collapse
Affiliation(s)
- Jorge Echeverría
- Instituto de Síntesis Química y Catalisis Homogénea (ISQCH) and Departmento de Química Inorgánica, Facultad de Ciencias, Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Santiago Alvarez
- Department de Química Inorgànica i Orgànica, Secció de Química Inorgànica, e Institut de Química Teòrica i Computacional, Universitat de Barcelona Martí i Franquès 1-11 08028 -Barcelona Spain
| |
Collapse
|
8
|
Puttreddy R, Rautiainen JM, Yu S, Rissanen K. N-X⋅⋅⋅O-N Halogen Bonds in Complexes of N-Haloimides and Pyridine-N-oxides: A Large Data Set Study. Angew Chem Int Ed Engl 2023; 62:e202307372. [PMID: 37314001 DOI: 10.1002/anie.202307372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
N-X⋅⋅⋅- O-N+ halogen-bonded systems formed by 27 pyridine N-oxides (PyNOs) as halogen-bond (XB) acceptors and two N-halosuccinimides, two N-halophthalimides, and two N-halosaccharins as XB donors are studied in silico, in solution, and in the solid state. This large set of data (132 DFT optimized structures, 75 crystal structures, and 168 1 H NMR titrations) provides a unique view to structural and bonding properties. In the computational part, a simple electrostatic model (SiElMo) for predicting XB energies using only the properties of halogen donors and oxygen acceptors is developed. The SiElMo energies are in perfect accord with energies calculated from XB complexes optimized with two high-level DFT approaches. Data from in silico bond energies and single-crystal X-ray structures correlate; however, data from solution do not. The polydentate bonding characteristic of the PyNOs' oxygen atom in solution, as revealed by solid-state structures, is attributed to the lack of correlation between DFT/solid-state and solution data. XB strength is only slightly affected by the PyNO oxygen properties [(atomic charge (Q), ionization energy (Is,min ) and local negative minima (Vs,min )], as the σ-hole (Vs,max ) of the donor halogen is the key determinant leading to the sequence N-halosaccharin>N-halosuccinimide>N-halophthalimide on the XB strength.
Collapse
Affiliation(s)
- Rakesh Puttreddy
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - J Mikko Rautiainen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - Shilin Yu
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| |
Collapse
|
9
|
Brinck T, Sahoo SK. Anomalous π-backbonding in complexes between B(SiR 3) 3 and N 2: catalytic activation and breaking of scaling relations. Phys Chem Chem Phys 2023; 25:21006-21019. [PMID: 37519222 DOI: 10.1039/d3cp00248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Chemical transformations of molecular nitrogen (N2), including the nitrogen reduction reaction (NRR), are difficult to catalyze because of the weak Lewis basicity of N2. In this study, it is shown that Lewis acids of the types B(SiR3)3 and B(GeR3)3 bind N2 and CO with anomalously short and strong B-N or B-C bonds. B(SiH3)3·N2 has a B-N bond length of 1.48 Å and a complexation enthalpy of -15.9 kcal mol-1 at the M06-2X/jun-cc-pVTZ level. The selective binding enhancement of N2 and CO is due to π-backbonding from Lewis acid to Lewis base, as demonstrated by orbital analysis and density difference plots. The π-backbonding is found to be a consequence of constructive orbital interactions between the diffuse and highly polarizable B-Si and B-Ge bond regions and the π and π* orbitals of N2. This interaction is strengthened by electron donating substituents on Si or Ge. The π-backbonding interaction is predicted to activate N2 for chemical transformation and reduction, as it decreases the electron density and increases the length of the N-N bond. The binding of N2 and CO by the B(SiR3)3 and B(GeR3)3 types of Lewis acids also has a strong σ-bonding contribution. The relatively high σ-bond strength is connected to the highly positive surface electrostatic potential [VS(r)] above the B atom in the tetragonal binding conformation, but the σ-bonding also has a significant coordinate covalent (dative) contribution. Electron withdrawing substituents increase the potential and the σ-bond strength, but favor the binding of regular Lewis acids, such as NH3 and F-, more strongly than binding of N2 and CO. Molecules of the types B(SiR3)3 and B(GeR3)3 are chemically labile and difficult to synthesize. Heterogenous catalysts with the wanted B(Si-)3 or B(Ge-)3 bonding motif may be prepared by boron doping of nanostructured silicon or germanium compounds. B-doped and hydrogenated silicene is found to have promising properties as catalyst for the electrochemical NRR.
Collapse
Affiliation(s)
- Tore Brinck
- Department of Chemistry, CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Suman Kalyan Sahoo
- Department of Chemistry, CBH, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
10
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. Methylammonium Tetrel Halide Perovskite Ion Pairs and Their Dimers: The Interplay between the Hydrogen-, Pnictogen- and Tetrel-Bonding Interactions. Int J Mol Sci 2023; 24:10554. [PMID: 37445738 DOI: 10.3390/ijms241310554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The structural stability of the extensively studied organic-inorganic hybrid methylammonium tetrel halide perovskite semiconductors, MATtX3 (MA = CH3NH3+; Tt = Ge, Sn, Pb; X = Cl, Br, I), arises as a result of non-covalent interactions between an organic cation (CH3NH3+) and an inorganic anion (TtX3-). However, the basic understanding of the underlying chemical bonding interactions in these systems that link the ionic moieties together in complex configurations is still limited. In this study, ion pair models constituting the organic and inorganic ions were regarded as the repeating units of periodic crystal systems and density functional theory simulations were performed to elucidate the nature of the non-covalent interactions between them. It is demonstrated that not only the charge-assisted N-H···X and C-H···X hydrogen bonds but also the C-N···X pnictogen bonds interact to stabilize the ion pairs and to define their geometries in the gas phase. Similar interactions are also responsible for the formation of crystalline MATtX3 in the low-temperature phase, some of which have been delineated in previous studies. In contrast, the Tt···X tetrel bonding interactions, which are hidden as coordinate bonds in the crystals, play a vital role in holding the inorganic anionic moieties (TtX3-) together. We have demonstrated that each Tt in each [CH3NH3+•TtX3-] ion pair has the capacity to donate three tetrel (σ-hole) bonds to the halides of three nearest neighbor TtX3- units, thus causing the emergence of an infinite array of 3D TtX64- octahedra in the crystalline phase. The TtX44- octahedra are corner-shared to form cage-like inorganic frameworks that host the organic cation, leading to the formation of functional tetrel halide perovskite materials that have outstanding optoelectronic properties in the solid state. We harnessed the results using the quantum theory of atoms in molecules, natural bond orbital, molecular electrostatic surface potential and independent gradient models to validate these conclusions.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Helder M Marques
- School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Otte F, Kleinheider J, Grabe B, Hiller W, Busse F, Wang R, Kreienborg NM, Merten C, Englert U, Strohmann C. Gauging the Strength of the Molecular Halogen Bond via Experimental Electron Density and Spectroscopy. ACS OMEGA 2023; 8:21531-21539. [PMID: 37360450 PMCID: PMC10286298 DOI: 10.1021/acsomega.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Strong and weak halogen bonds (XBs) in discrete aggregates involving the same acceptor are addressed by experiments in solution and in the solid state. Unsubstituted and perfluorinated iodobenzenes act as halogen donors of tunable strength; in all cases, quinuclidine represents the acceptor. NMR titrations reliably identify the strong intermolecular interactions in solution, with experimental binding energies of approx. 7 kJ/mol. Interaction of the σ hole at the halogen donor iodine leads to a redshift in the symmetric C-I stretching vibration; this shift reflects the interaction energy in the halogen-bonded adducts and may be assessed by Raman spectroscopy in condensed phase even for weak XBs. An experimental picture of the electronic density for the XBs is achieved by high-resolution X-ray diffraction on suitable crystals. Quantum theory of atoms in molecules (QTAIM) analysis affords the electron densities and energy densities in the bond critical points of the halogen bonds and confirms stronger interaction for the shorter contacts. For the first time, the experimental electron density shows a significant effect on the atomic volumes and Bader charges of the quinuclidine N atoms, the halogen-bond acceptor: strong and weak XBs are reflected in the nature of their acceptor atom. Our experimental findings at the acceptor atom match the discussed effects of halogen bonding and thus the proposed concepts in XB activated organocatalysis.
Collapse
Affiliation(s)
- Felix Otte
- Inorganic
Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Johannes Kleinheider
- Inorganic
Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Bastian Grabe
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Wolf Hiller
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Franziska Busse
- Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
| | - Ruimin Wang
- Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
- Institute
of Molecular Science, Shanxi University, Wucheng Road 92, 030006 Taiyuan, P. R. China
| | - Nora M. Kreienborg
- Organic Chemistry
II, Ruhr University Bochum, Universitätstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Organic Chemistry
II, Ruhr University Bochum, Universitätstraße 150, 44801 Bochum, Germany
| | - Ulli Englert
- Inorganic
Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany
- Institute
of Molecular Science, Shanxi University, Wucheng Road 92, 030006 Taiyuan, P. R. China
| | - Carsten Strohmann
- Inorganic
Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
12
|
Weinhold F. "Noncovalent Interaction": A Chemical Misnomer That Inhibits Proper Understanding of Hydrogen Bonding, Rotation Barriers, and Other Topics. Molecules 2023; 28:molecules28093776. [PMID: 37175185 PMCID: PMC10179974 DOI: 10.3390/molecules28093776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
We discuss the problematic terminology of "noncovalent interactions" as commonly applied to hydrogen bonds, rotation barriers, steric repulsions, and other stereoelectronic phenomena. Although categorization as "noncovalent" seems to justify classical-type pedagogical rationalizations, we show that these phenomena are irreducible corollaries of the same orbital-level conceptions of electronic covalency and resonance that govern all chemical bonding phenomena. Retention of such nomenclature is pedagogically misleading in supporting superficial dipole-dipole and related "simple, neat, and wrong" conceptions as well as perpetuating inappropriate bifurcation of the introductory chemistry curriculum into distinct "covalent" vs. "noncovalent" modules. If retained at all, the line of dichotomization between "covalent" and "noncovalent" interaction should be re-drawn beyond the range of quantal exchange effects (roughly, at the contact boundary of empirical van der Waals radii) to better unify the pedagogy of molecular and supramolecular bonding phenomena.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Grabowski SJ. Halogen bonds with carbenes acting as Lewis base units: complexes of imidazol-2-ylidene: theoretical analysis and experimental evidence. Phys Chem Chem Phys 2023; 25:9636-9647. [PMID: 36943198 DOI: 10.1039/d3cp00348e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
ωB97XD/aug-cc-pVDZ and ωB97XD/aug-cc-pVTZ calculations were performed on complexes of imidazol-2-ylidene that are linked by halogen bonds. This singlet carbene acts as the Lewis base through a lone electron pair located at the carbon centre. The XCCH, XCN and X2 units were chosen here as those that interact through the X Lewis acid halogen centre (X = Cl, Br and I); if X = F the complexes are linked by interactions which are not classified as halogen bonds. The properties of interactions that occur in complexes are analyzed using the results of DFT calculations which are supported by parameters derived from the Quantum Theory of Atoms in Molecules, QTAIM, and the Natural Bond Orbital, NBO, approaches. The energy decomposition analysis, EDA, applied here provided additional characteristics of interactions linking complexes analyzed. The majority of complexes are linked by the medium in strength and strong halogen bonds which often possess characteristics typical for covalent bonds. Searches through the Cambridge Structural Database were also performed and structures analogues to complexes analyzed theoretically were found, and these structures are also discussed in this study.
Collapse
Affiliation(s)
- Sławomir J Grabowski
- Faculty of Chemistry, University of the Basque Country and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
14
|
Ellington TL, Devore DP, Uvin G De Alwis WM, French KA, Shuford KL. Shedding Light on the Vibrational Signatures in Halogen-Bonded Graphitic Carbon Nitride Building Blocks. Chemphyschem 2022; 24:e202200812. [PMID: 36480235 DOI: 10.1002/cphc.202200812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The relative contributions of halogen and hydrogen bonding to the interaction between graphitic carbon nitride monomers and halogen bond (XB) donors containing C-X and C≡C bonds were evaluated using computational vibrational spectroscopy. Conventional probes into select vibrational stretching frequencies can often lead to disconnected results. To elucidate this behavior, local mode analyses were performed on the XB donors and complexes identified previously at the M06-2X/aVDZ-PP level of theory. Due to coupling between low and high energy C-X vibrations, the C≡C stretch is deemed a better candidate when analyzing XB complex properties or detecting XB formation. The local force constants support this conclusion, as the C≡C values correlate much better with the σ-hole magnitude than their C-X counterparts. The intermolecular local stretching force constants were also assessed, and it was found that attractive forces other than halogen bonding play a supporting role in complex formation.
Collapse
Affiliation(s)
- Thomas L Ellington
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - Daniel P Devore
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - W M Uvin G De Alwis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - Kirk A French
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| | - Kevin L Shuford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798-7348, USA
| |
Collapse
|
15
|
Miriyala VM, Lo R, Bouř P, Wu T, Nachtigallová D, Hobza P. Unexpected Strengthening of the H-Bond Complexes in a Polar Solvent Due to a More Efficient Solvation of the Complex Compared to Isolated Monomers. J Phys Chem A 2022; 126:7938-7943. [PMID: 36263696 DOI: 10.1021/acs.jpca.2c05992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is generally assumed that hydrogen-bonded complexes are less stable in solvents than in the gas phase and that their stability decreases with increasing solvent polarity. This assumption is based on the size of the area available to the solvent, which is always smaller in the complex compared to the subsystems, thereby reducing the solvation energy. This reduction prevails over the amplification of the electrostatic hydrogen bond by the polar solvent. In this work, we show, using experimental IR spectroscopy and DFT calculations, that there are hydrogen-bonded complexes whose stability becomes greater with increasing solvent polarity. The explanation for this surprising stabilization is based on the analysis of the charge redistribution in the complex leading to increase of its dipole moment and solvation energy. Constrained DFT calculations have shown a dominant role of charge transfer over polarization effects for dipole moment and solvation energy.
Collapse
Affiliation(s)
- Vijay Madhav Miriyala
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 77900 Olomouc, Czech Republic
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 77900 Olomouc, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic
| | - Tau Wu
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic.,IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Poruba, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000 Prague, Czech Republic.,IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Poruba, Czech Republic
| |
Collapse
|
16
|
Zhang L, Zeng Y, Li X, Zhang X. Noncovalent interactions between benzochalcogenadiazoles and nitrogen bases. J Mol Model 2022; 28:248. [PMID: 35932432 DOI: 10.1007/s00894-022-05247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
A theoretical study has been carried out on the intermolecular interactions between tetrafluoro-benzochalcogenadiazoles (chalcogen = S, Se, Te) and a series of nitrogen bases (FCN, ClCN, NP, trans-N2H2, pyridine, pyrazole, imidazole) at the B97-D3/def2-TZVP level, to obtain a better insight into the nature and strength of Ch···N chalcogen bond and secondary interaction in the binary and 1:2 ternary complexes. The dispersion force plays a prominent role on the stability of the sulfur complexes, and the electrostatic effect enhanced for the heavier chalcogen complexes. Most of intermolecular bonds display the characters of closed-shell and noncovalent interaction. For the complexes involving pyridine and imidazole, chalcogen bond is stronger than hydrogen bond, while the strength of chalcogen bond is equivalent to the secondary interaction for other complexes. With the addition of nitrogen base in the 1:2 complexes, chalcogen bond is weakened, while the secondary interaction remains unchanged. In the 1:2 complexes formed by pyridine and imidazole, stronger chalcogen bond results in larger negative cooperativity than that of other complexes.
Collapse
Affiliation(s)
- Lili Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
17
|
Tiekink ERT. A bibliographic survey of the supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in metal-organic crystals. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A survey of the crystallographic literature of metal-organic crystal structures for the presence of C–I···π(arene) interactions where the iodide atom occupies a position close to plumb to the ring centroid, corresponding to a delocalised interaction, and is within the assumed sum of the van der Waals radii, i.e. 3.88 Å, has been undertaken. The majority of the 26 identified examples feature supramolecular chains of varying topology whereby C–I···π(arene) contacts are readily identified and apparently operating independently of other obvious supramolecular synthons. The next most prevalent supramolecular aggregate was zero-dimensional, containing up to a maximum of three molecules. While there were three examples of two-dimensional arrays among a series of isostructural crystal structures, no examples of three-dimensional structures largely sustained by C–I···π(arene) interactions were noted. This distribution of supramolecular aggregation patterns matched that noted for all-organic systems. In terms of the overall adoption rate, delocalised C–I···π(arene) interactions were found in 3% of crystals of metal-organic species where they could form, a percentage lower than 4% noted for all-organic crystals.
Collapse
Affiliation(s)
- Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University , 5 Jalan Universiti, Bandar Sunway , Selangor Darul Ehsan 47500 , Malaysia
| |
Collapse
|
18
|
|
19
|
Calabrese M, Pizzi A, Daolio A, Frontera A, Resnati G. Periodate anions as a halogen bond donor: formation of anion⋯anion dimers and other adducts. Chem Commun (Camb) 2022; 58:9274-9277. [PMID: 35904031 DOI: 10.1039/d2cc03191d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Single crystal X-ray analyses show that iodine in pyridinium periodates acts as a halogen bond (HaB) donor forming short and almost linear contacts with neutral and anionic electron donors. A combination of QTAIM and NCIplot computational tools proves the attractive nature of these contacts.
Collapse
Affiliation(s)
- Miriam Calabrese
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Andrea Pizzi
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Andrea Daolio
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| | - Antonio Frontera
- Department Chemistry, Universitat de les Illes Balears, Crta, de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Giuseppe Resnati
- NFMLab, Department Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via L. Mancinelli 7, I-20131 Milano, Italy.
| |
Collapse
|
20
|
Zhao C, Wang Y, Shi B, Li M, Yan W, Yang H. Domination of H-Bond Interactions in the Solvent-Triggering Gelation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7965-7975. [PMID: 35731623 DOI: 10.1021/acs.langmuir.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gels prepared with the solvent-triggering method are attractive for their easy and fast preparation; however, the role of solvents in this process remains unclear, which hinders the efficient and accurate control of desired gel properties. In this study, the role of solvents in the solvent-triggering gelation process is studied using 9-fluorenylmethoxycarbonyl (Fmoc)-protected diphenylalanine (Fmoc-FF) as the gelator. Density functional theory (DFT)-based calculations and corresponding wavefunction analyses are conducted to identify the H-bonding interaction sites between the molecules. The calculation results clearly annotate the activating role of DMF and the triggering role of H2O in the gelation process. The solvation of Fmoc-FF by DMF can activate the H-bonding sites on the peptide chain, showing a conformation reversal and higher electrostatic potentials. Then, the H-bonding between Fmoc-FF and H2O is facilitated to trigger gelation. The physical Fmoc-FF/DMF/H2O gels show easily tuned mechanical strengths (G' of 102-105 Pa), injectable potentials (general yield strain < 100%), and stable recoverability (80-98% within 100 s). The regulation of these properties depends on not only the gelator concentration but also the H-bonding interactions with solvent molecules, which have seldom been studied in detail before. By understanding the effect of solvents, low-molecular-weight gelator-based gels can be designed, prepared, and tuned efficiently for potential applications.
Collapse
Affiliation(s)
- Chengcheng Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanyao Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bofang Shi
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Yan
- State Key Laboratory of Multiphase Flow in Power Engineering, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honghui Yang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Department of Applied Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
21
|
Tailoring co-assembly loading of doxorubicin in solvent-triggering gel. J Colloid Interface Sci 2022; 626:619-628. [PMID: 35810701 DOI: 10.1016/j.jcis.2022.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
|
22
|
Harry SA, Vemulapalli S, Dudding T, Lectka T. Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. J Org Chem 2022; 87:8413-8419. [PMID: 35658438 DOI: 10.1021/acs.joc.2c00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perhaps the most controversial and rare aspect of the halogen bonding interaction is the potential of fluorine in compounds to serve as a halogen bond donor. In this note, we provide clear and convincing examples of hypothetical molecules in which fluorine is strongly halogen bonding in a metastable state. Of particular note is a polycyclic system inspired by Selectfluor, which has been controversially proposed to engage in halogen bonding.
Collapse
Affiliation(s)
- Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Srini Vemulapalli
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Te⋯N secondary-bonding interactions in tellurium crystals: Supramolecular aggregation patterns and a comparison with their lighter congeners. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Papadopoulos I, Gutiérrez-Moreno D, Bo Y, Casillas R, Greißel PM, Clark T, Fernández-Lázaro F, Guldi DM. Altering singlet fission pathways in perylene-dimers; perylene-diimide versus perylene-monoimide. NANOSCALE 2022; 14:5194-5203. [PMID: 35315470 DOI: 10.1039/d1nr08523a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We used a systematic approach to shed light on the inherent differences in perylenes, namely monoimides versus diimides, including coplanarity and dipole moment, and their impact on singlet fission (SF) by designing, synthesizing, and probing a full fledged series of phenylene- and naphthalene-linked dimers. Next to changing the functionality of the perylene core, we probed the effect of the spacers and their varying degrees of rotational freedom, molecular electrostatic potentials, and intramolecular interactions on the SF-mechanism and -efficiencies. An arsenal of spectroscopic techniques revealed that for perylene-monoimides, a strong charge-transfer mixing with the singlet and triplet excited states restricts SF and yields low triplet quantum yields. This is accompanied by an up-conversion channel that includes geminate triplet-triplet recombination. Using perylene-diimides alters the SF-mechanism by populating a charge-separated-state intermediate, which either favors or shuts-down SF. Napthylene-spacers bring about higher triplet quantum yields and overall better SF-performance for all perylene-monoimides and perylene-diimides. The key to better SF-performance is rotational freedom because it facilitates the overall excited-state polarization and amplifies intramolecular interactions between chromophores.
Collapse
Affiliation(s)
- Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - David Gutiérrez-Moreno
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Rubén Casillas
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstr. 25, 91052 Erlangen, Germany
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203 Elche, Spain.
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
25
|
Zhang Y, Wang W. The Bifurcated σ-Hole···σ-Hole Stacking Interactions. Molecules 2022; 27:1252. [PMID: 35209040 PMCID: PMC8878812 DOI: 10.3390/molecules27041252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
The bifurcated σ-hole···σ-hole stacking interactions between organosulfur molecules, which are key components of organic optical and electronic materials, were investigated by using a combined method of the Cambridge Structural Database search and quantum chemical calculation. Due to the geometric constraints, the binding energy of one bifurcated σ-hole···σ-hole stacking interaction is in general smaller than the sum of the binding energies of two free monofurcated σ-hole···σ-hole stacking interactions. The bifurcated σ-hole···σ-hole stacking interactions are still of the dispersion-dominated noncovalent interactions. However, in contrast to the linear monofurcated σ-hole···σ-hole stacking interaction, the contribution of the electrostatic energy to the total attractive interaction energy increases significantly and the dispersion component of the total attractive interaction energy decreases significantly for the bifurcated σ-hole···σ-hole stacking interaction. Another important finding of this study is that the low-cost spin-component scaled zeroth-order symmetry-adapted perturbation theory performs perfectly in the study of the bifurcated σ-hole···σ-hole stacking interactions. This work will provide valuable information for the design and synthesis of novel organic optical and electronic materials.
Collapse
Affiliation(s)
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China;
| |
Collapse
|
26
|
Borocci S, Grandinetti F, Sanna N. Noble-gas compounds: A general procedure of bonding analysis. J Chem Phys 2022; 156:014104. [PMID: 34998326 DOI: 10.1063/5.0077119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper accounts for a general procedure of bonding analysis that is, expectedly, adequate to describe any type of interaction involving the noble-gas (Ng) atoms. Building on our recently proposed classification of the Ng-X bonds (X = binding partner) [New J. Chem. 44, 15536 (2020)], these contacts are first distinguished into three types, namely, A, B, or C, based on the topology of the electron energy density H(r) and on the shape of its plotted form. Bonds of type B or C are, then, further assigned as B-loose (Bl) or B-tight (Bt) and C-loose (Cl) or C-tight (Ct) depending on the sign that H(r) takes along the Ng-X bond path located from the topological analysis of ρ(r), particularly at around the bond critical point (BCP). Any bond of type A, Bl/Bt, or Cl/Ct is, finally, assayed in terms of contribution of covalency. This is accomplished by studying the maximum, minimum, and average value of H(r) over the volume enclosed by the low-density reduced density gradient (RDG) isosurface associated with the bond (typically, the RDG isosurface including the BCP) and the average ρ(r) over the same volume. The bond assignment is also corroborated by calculating the values of quantitative indices specifically defined for the various types of interactions (A, B, or C). The generality of our taken approach should encourage its wide application to the study of Ng compounds.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| | - Nico Sanna
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| |
Collapse
|
27
|
Krishnapriya VU, Suresh CH. The use of electrostatic potential at nuclei in the analysis of halogen bonding. NEW J CHEM 2022. [DOI: 10.1039/d2nj00256f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular electrostatic potential data at interacting nuclei provide strong evidence of bond formation in many intermolecular halogen bonded complexes.
Collapse
Affiliation(s)
- Vilakkathala U. Krishnapriya
- Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram – 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, 34, Kerala, India
| | - Cherumuttathu H. Suresh
- Chemical Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram – 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, 34, Kerala, India
| |
Collapse
|
28
|
Kathmann SM. Electric fields and potentials in condensed phases. Phys Chem Chem Phys 2021; 23:23836-23849. [PMID: 34647950 DOI: 10.1039/d1cp03571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electric fields and potentials inside and at the interface of matter are relevant to many branches of physics, chemistry, and biology. Accurate quantification of these fields and/or potentials is essential to control and exploit chemical and physical transformations. Before we understand the response of matter to external fields, it is first important to understand the intrinsic interior and interfacial fields and potentials, both classically and quantum mechanically, as well as how they are probed experimentally. Here we compare and contrast, beginning with the hydrogen atom in vacuum and ending with concentrated aqueous NaCl electrolyte, both classical and quantum mechanical electric potentials and fields. We make contact with experimental vibrational Stark, electrochemical, X-ray, and electron spectroscopic probes of these potentials and fields, outline relevant conceptual difficulties, and underscore the advantage of electron holography as a basis to better understand electrostatics in matter.
Collapse
Affiliation(s)
- Shawn M Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
29
|
Tiekink ER. Supramolecular aggregation patterns featuring Se⋯N secondary-bonding interactions in mono-nuclear selenium compounds: A comparison with their congeners. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Abstract
It follows from the Schrödinger equation that the forces operating within molecules and molecular complexes are Coulombic, which necessarily entails both electrostatics and polarization. A common and important class of molecular complexes is due to π-holes. These are molecular regions of low electronic density that are perpendicular to planar portions of the molecular frameworks. π-Holes often have positive electrostatic potentials associated with them, which result in mutually polarizing attractive forces with negative sites such as lone pairs, π electrons or anions. In many molecules, π-holes correspond to a flattening of the electronic density surface but in benzene derivatives and in polyazines the π-holes are craters above and below the rings. The interaction energies of π-hole complexes can be expressed quite well in terms of regression relationships that account for both the electrostatics and the polarization. There is a marked gradation in the interaction energies, from quite weak (about -2 kcal mol-1) to relatively strong (about -40 kcal mol-1). Gradations are also evident in the ratios of the intermolecular separations to the sums of the respective van der Waals radii and in the gradual transition of the π-hole atoms from trigonal to quasi-tetrahedral configurations. These trends are consistent with the concept that chemical interactions form a continuum, from very weak to very strong.
Collapse
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | |
Collapse
|
31
|
Borocci S, Grandinetti F, Sanna N. Concerning the Role of σ-Hole in Non-Covalent Interactions: Insights from the Study of the Complexes of ArBeO with Simple Ligands. Molecules 2021; 26:molecules26154477. [PMID: 34361629 PMCID: PMC8348141 DOI: 10.3390/molecules26154477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022] Open
Abstract
The structure, stability, and bonding character of some exemplary LAr and L-ArBeO (L = He, Ne, Ar, N2, CO, F2, Cl2, ClF, HF, HCl, NH3) were investigated by MP2 and coupled-cluster calculations, and by symmetry-adapted perturbation theory. The nature of the stabilizing interactions was also assayed by the method recently proposed by the authors to classify the chemical bonds in noble-gas compounds. The comparative analysis of the LAr and L-ArBeO unraveled geometric and bonding effects peculiarly related to the σ-hole at the Ar atom of ArBeO, including the major stabilizing/destabilizing role of the electrostatic interactionensuing from the negative/positive molecular electrostatic potential of L at the contact zone with ArBeO. The role of the inductive and dispersive components was also assayed, making it possible to discern the factors governing the transition from the (mainly) dispersive domain of the LAr, to the σ-hole domain of the L-ArBeO. Our conclusions could be valid for various types of non-covalent interactions, especially those involving σ-holes of respectable strength such as those occurring in ArBeO.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell’Università, s.n.c., 01100 Viterbo, Italy; (S.B.); (N.S.)
- Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell’Università, s.n.c., 01100 Viterbo, Italy; (S.B.); (N.S.)
- Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, Italy
- Correspondence: ; Tel.: +39-07-6135-7126
| | - Nico Sanna
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell’Università, s.n.c., 01100 Viterbo, Italy; (S.B.); (N.S.)
- Istituto per la Scienza e Tecnologia dei Plasmi del CNR (ISTP), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
32
|
van Terwingen S, Brüx D, Wang R, Englert U. Hydrogen-Bonded and Halogen-Bonded: Orthogonal Interactions for the Chloride Anion of a Pyrazolium Salt. Molecules 2021; 26:3982. [PMID: 34210096 PMCID: PMC8272125 DOI: 10.3390/molecules26133982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
In the hydrochloride of a pyrazolyl-substituted acetylacetone, the chloride anion is hydrogen-bonded to the protonated pyrazolyl moiety. Equimolar co-crystallization with tetrafluorodiiodobenzene (TFDIB) leads to a supramolecular aggregate in which TFDIB is situated on a crystallographic center of inversion. The iodine atom in the asymmetric unit acts as halogen bond donor, and the chloride acceptor approaches the σ-hole of this TFDIB iodine subtending an almost linear halogen bond, with Cl···I = 3.1653(11) Å and Cl···I-C = 179.32(6)°. This contact is roughly orthogonal to the N-H···Cl hydrogen bond. An analysis of the electron density according to Bader's Quantum Theory of Atoms in Molecules confirms bond critical points (bcps) for both short contacts, with ρbcp = 0.129 for the halogen and 0.321eÅ-3 for the hydrogen bond. Our halogen-bonded adduct represents the prototype for a future class of co-crystals with tunable electron density distribution about the σ-hole contact.
Collapse
Affiliation(s)
- Steven van Terwingen
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; (S.v.T.); (D.B.); (R.W.)
| | - Daniel Brüx
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; (S.v.T.); (D.B.); (R.W.)
| | - Ruimin Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; (S.v.T.); (D.B.); (R.W.)
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; (S.v.T.); (D.B.); (R.W.)
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
33
|
Murray JS, Politzer P. Can Counter-Intuitive Halogen Bonding Be Coulombic? Chemphyschem 2021; 22:1201-1207. [PMID: 33844430 DOI: 10.1002/cphc.202100202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 01/14/2023]
Abstract
We use the term "counter-intuitive" to describe an intermolecular interaction in which the electrostatic potentials of the interacting regions of the ground-state molecules have the same sign, both positive or both negative. In the present work, we consider counter-intuitive halogen bonding with nitrogen bases, in which both the halogen σ-hole and the nitrogen lone pair have negative potentials on their molecular surfaces. We show that these interactions can be treated as Coulombic despite the apparent repulsion between the ground-state molecules, provided that both electrostatics and polarization are explicitly taken into account. We demonstrate first that the energies of 20 counter-intuitive interactions with four nitrogen bases can be expressed very well in terms of just two molecular properties: the electrostatic potential of the halogen σ-hole and the average polarizability of the nitrogen base. Then we show that the same two properties can also represent the energies of an expanded data base that includes the 20 counter-intuitive plus an additional 20 weak and moderately-strong intuitive halogen bonding interactions (in which the σ-hole potentials are now positive).
Collapse
Affiliation(s)
- Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
34
|
Baykov SV, Semenov AV, Katlenok EA, Shetnev AA, Bokach NA. Comparative Structural Study of Three Tetrahalophthalic Anhydrides: Recognition of X···O(anhydride) Halogen Bond and πh···O(anhydride) Interaction. Molecules 2021; 26:3119. [PMID: 34071107 PMCID: PMC8197102 DOI: 10.3390/molecules26113119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Structures of three tetrahalophthalic anhydrides (TXPA: halogen = Cl (TCPA), Br (TBPA), I (TIPA)) were studied by X-ray diffraction, and several types of halogen bonds (HaB) and lone pair···π-hole (lp···πh) contacts were revealed in their structures. HaBs involving the central oxygen atom of anhydride group (further X···O(anhydride) were recognized in the structures of TCPA and TBPA. In contrast, for the O(anhydride) atom of TIPA, only interactions with the π system (π-hole) of the anhydride ring (further lp(O)···πh) were observed. Computational studies by a number of theoretical methods (molecular electrostatic potentials, the quantum theory of atoms in molecules, the independent gradient model, natural bond orbital analyses, the electron density difference, and symmetry-adapted perturbation theory) demonstrated that the X···O(anhydride) contacts in TCPA and TBPA and lp(O)···πh in TIPA are caused by the packing effect. The supramolecular architecture of isostructural TCPA and TBPA was mainly affected by X···O(acyl) and X···X HaBs, and, for TIPA, the main contribution provided I···I HaBs.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadskogo Pr, 119571 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Eugene A. Katlenok
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia;
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| |
Collapse
|
35
|
Zierkiewicz W, Grabarz A, Michalczyk M, Scheiner S. Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. Chemphyschem 2021; 22:924-934. [PMID: 33876515 DOI: 10.1002/cphc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Indexed: 01/02/2023]
Abstract
Crystal structures document the ability of a TF3 group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring. Ab initio calculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CN- anionic base can approach the T either along the extension of a T-C or T-F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, USA
| |
Collapse
|
36
|
Loy C, Holthoff JM, Weiss R, Huber SM, Rosokha SV. "Anti-electrostatic" halogen bonding in solution. Chem Sci 2021; 12:8246-8251. [PMID: 34194716 PMCID: PMC8208320 DOI: 10.1039/d1sc01863a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Halogen-bonded (XB) complexes between halide anions and a cyclopropenylium-based anionic XB donor were characterized in solution for the first time. Spontaneous formation of such complexes confirms that halogen bonding is sufficiently strong to overcome electrostatic repulsion between two anions. The formation constants of such "anti-electrostatic" associations are comparable to those formed by halides with neutral halogenated electrophiles. However, while the latter usually show charge-transfer absorption bands, the UV-Vis spectra of the anion-anion complexes examined herein are determined by the electronic excitations within the XB donor. The identification of XB anion-anion complexes substantially extends the range of the feasible XB systems, and it provides vital information for the discussion of the nature of this interaction.
Collapse
Affiliation(s)
- Cody Loy
- Department of Chemistry, Ball State University Muncie Indiana 47306 USA
| | - Jana M Holthoff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Robert Weiss
- Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Henkestr. 42 91054 Erlangen Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Sergiy V Rosokha
- Department of Chemistry, Ball State University Muncie Indiana 47306 USA
| |
Collapse
|
37
|
Borocci S, Grandinetti F, Sanna N. From LAr to L-ArBeO (L = He, Ne, Ar, HF): Switching on σ-hole effects in non-covalent interactions. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Zierkiewicz W, Michalczyk M, Scheiner S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules 2021; 26:1740. [PMID: 33804617 PMCID: PMC8003638 DOI: 10.3390/molecules26061740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA;
| |
Collapse
|
39
|
Chandra S, Suryaprasad B, Ramanathan N, Sundararajan K. Nitrogen as a pnicogen?: evidence for π-hole driven novel pnicogen bonding interactions in nitromethane-ammonia aggregates using matrix isolation infrared spectroscopy and ab initio computations. Phys Chem Chem Phys 2021; 23:6286-6297. [PMID: 33688865 DOI: 10.1039/d0cp06273a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nitrogen, the first member of the pnicogen group, as an electron donor in hypervalent non-covalent interactions has been established long ago, while observation of its electron accepting capability is still elusive experimentally, and remains quite intriguing, conceptually. In the light of minimal computational exploration of this novel class of pnicogen bonding so far, the present work provides experimental proof with unprecedented clarity, for the existence of N(acceptor)N(donor) interaction using the model nitromethane (NM) molecule with ammonia (AM) as a Lewis base in NM-AM aggregates. The NM-AM dimer, in which the nitrogen atom of NM (as a unique pnicogen) accepts electrons from AM (the traditional electron donor), was synthesized at low temperatures under isolated conditions within inert gas matrixes and was characterized using infrared spectroscopy. The experimental generation of the NM-AM dimer stabilized via NN interaction has strong corroboration from ab initio calculations. Furthermore, confirmation regarding the directional prevalence of this NN interaction over C-HN and N-HO hydrogen bonding is elucidated quantitatively by quantum theory of atoms in molecules (QTAIM), electrostatic potential mapping (ESP), natural bond orbital (NBO), non-covalent interaction (NCI) and energy decomposition (ED) analyses. The present study also allows the extension of σ-hole/π-hole driven interactions to the atoms of the second period, in spite of their low polarizability.
Collapse
Affiliation(s)
- Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - B Suryaprasad
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| |
Collapse
|
40
|
Otte F, Kleinheider J, Hiller W, Wang R, Englert U, Strohmann C. Weak yet Decisive: Molecular Halogen Bond and Competing Weak Interactions of Iodobenzene and Quinuclidine. J Am Chem Soc 2021; 143:4133-4137. [PMID: 33687197 DOI: 10.1021/jacs.1c00239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The halogen bonded adduct between the commonly used constituents quinuclidine and iodobenzene is based on a single weak nitrogen-iodine contact, and the isolation of this adduct was initially unexpected. Iodobenzene does not contain any electron-withdrawing group and therefore represents an unconventional halogen bond donor. Based on excellent diffraction data of high resolution, an electron density study was successfully accomplished and confirmed one of the longest N···I molecular halogen bonds with a distance of 2.9301(4) Å. The topological analysis identified the XB as a directional but weak σ hole interaction and revealed secondary contacts between peripheral regions of opposite charge. These additional contacts and their competition with a nitrogen-based interaction were confirmed by NOESY experiments in solution. Integration enabled us to determine the relative NOE ratios and provided insight regarding the existing interactions.
Collapse
Affiliation(s)
- Felix Otte
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| | - Johannes Kleinheider
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| | - Wolf Hiller
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany.,TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| | - Ruimin Wang
- RWTH Aachen University, Inorganic Chemistry, Landoltweg 1, D-52056, Aachen, Germany.,Shanxi University, Institute of Molecular Science, Wucheng Road 92, 030006, Taiyuan, P. R. China
| | - Ulli Englert
- RWTH Aachen University, Inorganic Chemistry, Landoltweg 1, D-52056, Aachen, Germany.,Shanxi University, Institute of Molecular Science, Wucheng Road 92, 030006, Taiyuan, P. R. China
| | - Carsten Strohmann
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| |
Collapse
|
41
|
Li Y, Wang X, Wang H, Ni Y, Wang H. Influence of halogen atom substitution and neutral HCN/anion CN - Lewis base on the triel-bonding interactions. J Mol Model 2021; 27:93. [PMID: 33624196 DOI: 10.1007/s00894-021-04713-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
Triel-bonding interactions composed of Lewis acid TrOHH2/TrOH2X/TrOHX2 (Tr = B, Al, Ga; X = F, Cl, Br) molecule and Lewis base neutral HCN or anionic CN- molecule are of research significance in bond properties, which has been investigated at MP2/aug-cc-pVTZ theory level. It is also feasible to study the halogen atom substituent effect and influence of different Lewis bases on the formation of triel bond. AIM analyses reveal that Tr (Tr = B, Al, Ga)···N bond critical point (BCP) exists in all studied triel bond. In the formation of triel bonding, compared with Lewis base HCN molecule, Lewis base anionic CN- can participate in a stronger triel bond. Specifically, the structural change, deformation energy, and charge transfer of CN- complexes are all larger than that of HCN complexes. In addition, halogen atom substitution effect is also discussed. MEP value and binding energy of HCN and CN- complexes all increase after replacing one or two hydrogen atoms by halogen atoms (F, Cl, Br) in Lewis acid. Especially, replacing two hydrogen atoms by halogen atoms in Lewis acid has more remarkable enhancement in MEP value and binding energy than that of replacing only one hydrogen atom. After replacement, binding energy can be increased by 21.77 kcal/mol. The neutral and anionic triel-bonded complexes composed by Lewis acid TrOHH2/TrOH2X/TrOHX2 (Tr = B, Al, Ga; X = F, Cl, Br) with Lewis base HCN and CN- are systematically investigated at MP2/aug-cc-pVTZ level. The neutral (HCN) triel bonding is weaker than the anionic (CN-) triel bonding due to the smaller MEP value of the neutral HCN molecule. The replacement of hydrogens (-H) in Lewis acid by electron-withdrawing groups (-F, -Cl, -Br) has a prominent enhancement effect on the MEP value of π-hole and triel-bonding strength.
Collapse
Affiliation(s)
- Yuchun Li
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 611756, People's Republic of China
| | - Xiaoting Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 611756, People's Republic of China
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 611756, People's Republic of China.
| | - Yuxiang Ni
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 611756, People's Republic of China
| | - Hongyan Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 611756, People's Republic of China
| |
Collapse
|
42
|
Jiménez‐Grávalos F, Gallegos M, Martín Pendás Á, Novikov AS. Challenging the electrostatic
σ
‐hole picture of halogen bonding using minimal models and the interacting quantum atoms approach. J Comput Chem 2021; 42:676-687. [DOI: 10.1002/jcc.26488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Miguel Gallegos
- Department of Analytical and Physical Chemistry University of Oviedo Oviedo Spain
| | - Ángel Martín Pendás
- Department of Analytical and Physical Chemistry University of Oviedo Oviedo Spain
| | | |
Collapse
|
43
|
Lata S, Vikas. Concentration-dependent adsorption of organic contaminants by graphene nanosheets: quantum-mechanical models. J Mol Model 2021; 27:48. [PMID: 33496822 DOI: 10.1007/s00894-021-04686-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Adsorption is the key process in the expression of environmentally relevant physicochemical and toxicological properties of carbon nanomaterials. However, the adsorption of organic contaminants on to nanomaterials is a highly complex phenomenon, owing to the heterogeneity of adsorption sites, for example, on graphene surface as well as due to multiple factors operative during the adsorption, particularly, at the quantum-mechanical level. For predicting the concentration-dependent adsorption coefficients of organic contaminants by carbon nanomaterials, one option has been to rely on the existing linear-solvation energy relationship (LSER) models. The present work on the adsorption of aromatic and aliphatic organic contaminants by graphene nanosheets reveals that the existing LSER models are prone to failure when tested for internal and external validation using an external prediction set of compounds unknown to the model. As an alternative to the LSERs, the present work reports pure quantum-mechanical models developed using computational only quantum-mechanical descriptors. The reliability of the quantum-mechanical models was tested using state-of-the-art validation procedures employing an external prediction set of compounds. The proposed quantum-mechanical models reveal mean polarizability, zero-point vibrational energy, and its electron-correlation contribution to be the key descriptors in the prediction of adsorption coefficients of organic contaminants by graphene nanosheets.
Collapse
Affiliation(s)
- Suman Lata
- Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Vikas
- Quantum Chemistry Group, Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
44
|
Tiekink ERT. Zero-, one-, two- and three-dimensional supramolecular architectures sustained by Se …O chalcogen bonding: A crystallographic survey. Coord Chem Rev 2021; 427:213586. [PMID: 33100367 PMCID: PMC7568495 DOI: 10.1016/j.ccr.2020.213586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
The Cambridge Structural Database was evaluated for crystals containing Se…O chalcogen bonding interactions. These secondary bonding interactions are found to operate independently of complementary intermolecular interactions in about 13% of the structures they can potentially form. This number rises significantly when more specific interactions are considered, e.g. Se…O(carbonyl) interactions occur in 50% of cases where they can potentially form. In about 55% of cases, the supramolecular assemblies sustained by Se…O(oxygen) interactions are one-dimensional architectures, with the next most prominent being zero-dimensional assemblies, at 30%.
Collapse
Affiliation(s)
- Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Science and Technology, 5 Jalan Universiti, Sunway University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
45
|
Tiekink ERT. Supramolecular architectures sustained by delocalised C–I⋯π(arene) interactions in molecular crystals and the propensity of their formation. CrystEngComm 2021. [DOI: 10.1039/d0ce01677b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A survey of delocalised C–I⋯π(chelate ring) interactions is presented.
Collapse
Affiliation(s)
- Edward R. T. Tiekink
- Research Centre for Crystalline Materials
- School of Science and Technology
- Sunway University
- Bandar Sunway
- Malaysia
| |
Collapse
|
46
|
5-Iodo-1-Arylpyrazoles as Potential Benchmarks for Investigating the Tuning of the Halogen Bonding. CRYSTALS 2020. [DOI: 10.3390/cryst10121149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5-Iodo-1-arylpyrazoles are interesting templates for investigating the halogen bond propensity in small molecules other than the already well-known halogenated molecules such as tetrafluorodiiodobenzene. Herein, we present six compounds with different substitution on the aryl ring attached at position 1 of the pyrazoles and investigate them in the solid state in order to elucidate the halogen bonding significance to the crystallographic landscape of such molecules. The substituents on the aryl ring are generally combinations of halogen atoms (Br, Cl) and various alkyl groups. Observed halogen bonding types spanned by these six 5-iodopyrazoles included a wide variety, namely, C–I⋯O, C–I⋯π, C–I⋯Br, C–I⋯N and C–Br⋯O interactions. By single crystal X-ray diffraction analysis combined with the descriptive Hirshfeld analysis, we discuss the role and influence of the halogen bonds among the intermolecular interactions.
Collapse
|
47
|
An X, Han J. Influence of alkali substituents on the strength, properties, and nature of tetrel bond between TH 3F and pyridine. J Mol Model 2020; 26:224. [PMID: 32778949 DOI: 10.1007/s00894-020-04499-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 01/31/2023]
Abstract
Ab initio calculations have been performed for the complexes of TH3F (T=C, Si, and Ge) with pyridine and its alkali derivatives to study the influence of an alkali substituent on the strength, properties, and nature of tetrel bond. The introduction of an alkali atom into the electron donor has a prominent enhancing effect on the strength of tetrel bond, which depends on the T atom as well as the alkali atom and its substitution position. The enhancing effect becomes larger in the C < Ge < Si, Li < Na < K, and para- < meta- < ortho- patterns. The interaction energy varies in a wide range from 2 to 40 kcal/mol. Both electrostatic and polarization including charge transfer are responsible for the enhancing effect of an alkali atom. The formation of a tetrel bond results in an elongation of F-T bond and a red shift of F-T stretch vibration, which is big enough to be detected with infrared spectroscopy. Electrostatic interaction is dominant in all complexes, while polarization is smaller or larger than dispersion in the complexes of CH3F or TH3F(T=Si and Ge).
Collapse
Affiliation(s)
- Xiulin An
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China.
| | - Jianqu Han
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
48
|
Holthoff JM, Engelage E, Weiss R, Huber SM. "Anti-Electrostatic" Halogen Bonding. Angew Chem Int Ed Engl 2020; 59:11150-11157. [PMID: 32227661 PMCID: PMC7317790 DOI: 10.1002/anie.202003083] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Indexed: 01/03/2023]
Abstract
Halogen bonding is often described as being driven predominantly by electrostatics, and thus adducts between anionic halogen bond (XB) donors (halogen-based Lewis acids) and anions seem counterintuitive. Such "anti-electrostatic" XBs have been predicted theoretically but for organic XB donors, there are currently no experimental examples except for a few cases of self-association. Reported herein is the synthesis of two negatively charged organoiodine derivatives that form anti-electrostatic XBs with anions. Even though the electrostatic potential is universally negative across the surface of both compounds, DFT calculations indicate kinetic stabilization of their halide complexes in the gas phase and particularly in solution. Experimentally, self-association of the anionic XB donors was observed in solid-state structures, resulting in dimers, trimers, and infinite chains. In addition, co-crystals with halides were obtained, representing the first cases of halogen bonding between an organic anionic XB donor and a different anion. The bond lengths of all observed interactions are 14-21 % shorter than the sum of the van der Waals radii.
Collapse
Affiliation(s)
- Jana M. Holthoff
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Robert Weiss
- Institut für Organische ChemieFriedrich-Alexander-Universität Erlangen-NürnbergHenkestraße 4291054ErlangenGermany
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
49
|
New Crystal Forms for Biologically Active Compounds. Part 2: Anastrozole as N-Substituted 1,2,4-Triazole in Halogen Bonding and Lp-π Interactions with 1,4-Diiodotetrafluorobenzene. CRYSTALS 2020. [DOI: 10.3390/cryst10050371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For an active pharmaceutical ingredient, it is important to stabilize its specific crystal polymorph. If the potential interconversion of various polymorphs is not carefully controlled, it may lead to deterioration of the drug’s physicochemical profile and, ultimately, its therapeutic efficacy. The desired polymorph stabilization can be achieved via co-crystallization with appropriate crystallophoric excipients. In this work, we identified an opportunity for co-crystallization of anastrozole (ASZ), a well-known aromatase inhibitor useful in second-line therapy of estrogen-dependent breast cancer, with a classical XB donor, 1,2,4,5-tetrafluoro-3,6-diiodobenzene (1,4-FIB). In the X-ray structures of ASZ·1.5 (1,4-FIB) co-crystal, different non-covalent interactions involving hydrogen and halogen atoms were detected and studied by quantum chemical calculations and QTAIM analysis at the ωB97XD/DZP-DKH level of theory.
Collapse
|
50
|
Holthoff JM, Engelage E, Weiss R, Huber SM. “Anti‐elektrostatische” Halogenbrücken. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jana M. Holthoff
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Elric Engelage
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Robert Weiss
- Institut für Organische ChemieFriedrich-Alexander-Universität Erlangen-Nürnberg Henkestraße 42 91054 Erlangen Deutschland
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|