1
|
Sugino K, Shibata M, Adachi Y, Soeda I, Ichikawa T, Inaishi T, Kanaya E, Kanda M, Hayashi M, Masuda N. Adenylate cyclase 9 expression level is associated with hormone receptor-positive breast cancer and predicts patient prognosis. NAGOYA JOURNAL OF MEDICAL SCIENCE 2024; 86:665-682. [PMID: 39780930 PMCID: PMC11704764 DOI: 10.18999/nagjms.86.4.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 01/11/2025]
Abstract
Adenylate cyclase family members have recently received attention as novel therapeutic targets. However, the significance of adenylate cyclase 9 (ADCY9) in breast cancer has not been elucidated. Here, we evaluated ADCY9 expression in breast cancer (BC) cell lines, and polymerase chain reaction array analysis was performed to determine the correlations between ADCY9 expression levels and 84 tumor-associated genes. The association of ADCY9 messenger RNA (mRNA) expression levels in clinical breast cancer specimens with patients' clinicopathological factors and prognosis was evaluated. The database of cancer cell line showed that estrogen receptor-positive and progesterone receptor-positive cells expressed higher ADCY9 mRNA levels. ADCY9 expression showed positive correlations with several oncogenes, such as TGFB1, CDKN1A, and BAX in the polymerase chain reaction array analysis. We defined the ratio of ADCY9 mRNA expression levels in breast cancer and adjacent noncancerous tissues as the "C/N ratio". Among 149 patients with BC, estrogen receptor-positive and progesterone receptor-positive patients exhibited higher C/N ratios than estrogen receptor-negative and progesterone receptor-negative patients, respectively. Patients in the lowest C/N ratio quartile experienced shorter prognosis periods. The C/N ratio of ADCY9 was found as an independent prognostic factor for disease-free survival. Thus, ADCY9 expression is high in hormone receptor-positive breast cancer, and its low expression indicates a poor prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- Kayoko Sugino
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Shibata
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Surgery, Nagoya Ekisaikai Hospital, Nagoya, Japan
| | - Yayoi Adachi
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ikumi Soeda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Ichikawa
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Inaishi
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Emi Kanaya
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norikazu Masuda
- Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Shao L, Li B. Synaptotagmin 13 Could Drive the Progression of Esophageal Squamous Cell Carcinoma Through Upregulating ACRV1. DNA Cell Biol 2024; 43:452-462. [PMID: 39046915 DOI: 10.1089/dna.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
SYT13 is one of the atypical members of the synaptotagmin (SYT) family whose function has attracted considerable attention in recent years. Although SYT13 has been studied in several types of human cancers, such as lung cancer, its role in esophageal squamous cell carcinoma (ESCC) is still unclear. It was demonstrated that SYT13 is significantly upregulated in ESCC tissues compared with normal ones and correlated with higher degree of malignancy. Knockdown of SYT13 could inhibit ESCC cell proliferation and migration, while promoting cell apoptosis. Meanwhile, ESCC cells with relatively lower SYT13 expression grew slower in vivo and finally formed smaller xenografts. Furthermore, acrosomal vesicular protein 1 was identified as a potential downstream target of SYT13, which regulates cell phenotypes of ESCC cells in cooperation with SYT13. All the in vitro and in vivo results in this study identified that SYT13 silencing could be an effective strategy to inhibit the development of ESCC, which could be considered as a promising therapeutic target in the treatment of ESCC.
Collapse
Affiliation(s)
- Longlong Shao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bin Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang YD, Zhong R, Liu JQ, Sun ZX, Wang T, Liu JT. Role of synaptotagmin 13 (SYT13) in promoting breast cancer and signaling pathways. Clin Transl Oncol 2023; 25:1629-1640. [PMID: 36630025 DOI: 10.1007/s12094-022-03058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Breast cancer is one of the leading causes of tumor death worldwide in female, and the five-year overall survival of breast cancer patients remains poor. It is an urgent need to seek novel target for its treatment. Synaptotagmin 13 (SYT13) is a synaptic vesicle transporting protein that regulates the malignant phenotypes of various cancers. However, its role in breast cancer is still unclear. The current study aimed to investigate the effects of SYT13 on the progression of breast cancer. METHODS Twenty-five pairs of breast cancer tissues and non-tumor tissues were obtained to assess the expression of SYT13. We manually modified the expression of SYT13 in MCF-7 and MDA-MB-231 cells. CCK-8 assay, EdU staining, and cell cycle analysis were carried out to measure the proliferated ability of cells. Annexin V/PI and TUNEL assays were used to detect the apoptotic ability of cells. Wound healing and transwell assays were employed to evaluate the migrated and invasive ability of breast cancer cells. RESULTS The results revealed that the mRNA and protein levels of SYT13 were higher in breast cancer tissues and cell lines. Knockdown of SYT13 inhibited the cell proliferation and induced cell cycle arrest in G1 phase of MCF-7 cells by downregulating cyclin D1 and CDK4, as well as upregulating p21. The migration and invasion of MCF-7 cells were repressed by the loss of SYT13 via the gain of E-cadherin and the loss of vimentin. Overexpression of SYT13 in MDA-MB-231 cells led to the opposite effects. Silencing of SYT13 induced the apoptosis ability of MCF-7 cells by the upregulation of bax and the downregulation of bcl-2. Moreover, we found that SYT13 depletion suppressed the FAK/AKT signaling pathway. PF573228 (a FAK inhibitor) and MK2206 (an AKT inhibitor) reversed the SYT13 overexpression-induced promotion of proliferation, migration, and invasion of MDA-MB-231 cells. CONCLUSION The results indicated that SYT13 promoted the malignant phenotypes of breast cancer cells by the activation of FAK/AKT signaling pathway.
Collapse
Affiliation(s)
- Yi-Dan Zhang
- Graduate School, Dalian Medical University, Dalian, People's Republic of China
| | - Rui Zhong
- Graduate School, Dalian Medical University, Dalian, People's Republic of China
| | - Jin-Quan Liu
- College of Educational Science and Technology, Shanxi Datong University, Datong, People's Republic of China
| | - Zhen-Xuan Sun
- Graduate School, Dalian Medical University, Dalian, People's Republic of China
| | - Teng Wang
- Graduate School, Dalian Medical University, Dalian, People's Republic of China
| | - Jin-Tao Liu
- Department of Thyroid Surgery, Dalian Municipal Central Hospital, 826 Xinan Road, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Lu J, Liu Q, Zhu L, Liu Y, Zhu X, Peng S, Chen M, Li P. Endothelial cell-specific molecule 1 drives cervical cancer progression. Cell Death Dis 2022; 13:1043. [PMID: 36522312 PMCID: PMC9755307 DOI: 10.1038/s41419-022-05501-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The expression, biological functions and underlying molecular mechanisms of endothelial cell-specific molecule 1 (ESM1) in human cervical cancer remain unclear. Bioinformatics analysis revealed that ESM1 expression was significantly elevated in human cervical cancer tissues, correlating with patients' poor prognosis. Moreover, ESM1 mRNA and protein upregulation was detected in local cervical cancer tissues and various cervical cancer cells. In established and primary cervical cancer cells, ESM1 shRNA or CRISPR/Cas9-induced ESM1 KO hindered cell proliferation, cell cycle progression, in vitro cell migration and invasion, and induced significant apoptosis. Whereas ESM1 overexpression by a lentiviral construct accelerated proliferation and migration of cervical cancer cells. Further bioinformatics studies and RNA sequencing data discovered that ESM1-assocaited differentially expressed genes (DEGs) were enriched in PI3K-Akt and epithelial-mesenchymal transition (EMT) cascades. Indeed, PI3K-Akt cascade and expression of EMT-promoting proteins were decreased after ESM1 silencing in cervical cancer cells, but increased following ESM1 overexpression. Further studies demonstrated that SYT13 (synaptotagmin 13) could be a primary target gene of ESM1. SYT13 silencing potently inhibited ESM1-overexpression-induced PI3K-Akt cascade activation and cervical cancer cell migration/invasion. In vivo, ESM1 knockout hindered SiHa cervical cancer xenograft growth in mice. In ESM1-knockout xenografts tissues, PI3K-Akt inhibition, EMT-promoting proteins downregulation and apoptosis activation were detected. In conclusion, overexpressed ESM1 is important for cervical cancer growth in vitro and in vivo, possibly by promoting PI3K-Akt activation and EMT progression. ESM1 represents as a promising diagnostic marker and potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Jingjing Lu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qin Liu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lixia Zhu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yuanyuan Liu
- grid.452273.50000 0004 4914 577XClinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Xiaoren Zhu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shiqing Peng
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ping Li
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
5
|
Suo H, Xiao N, Wang K. Potential roles of synaptotagmin family members in cancers: Recent advances and prospects. Front Med (Lausanne) 2022; 9:968081. [PMID: 36004367 PMCID: PMC9393329 DOI: 10.3389/fmed.2022.968081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
With the continuous development of bioinformatics and public database, more and more genes that play a role in cancers have been discovered. Synaptotagmins (SYTs) are abundant, evolutionarily conserved integral membrane proteins composed of a short N-terminus, a variable linker domain, a single transmembrane domain, and two C2 domains, and they constitute a family of 17 isoforms. The synaptotagmin family members are known to regulate calcium-dependent membrane fusion events. Some SYTs play roles in hormone secretion or neurotransmitter release or both, and much evidence supports SYTs as Ca2+ sensors of exocytosis. Since 5 years ago, an increasing number of studies have found that SYTs also played important roles in the occurrence and development of lung cancer, gastric cancer, colon cancer, and other cancers. Down-regulation of SYTs inhibited cell proliferation, migration, and invasion of cancer cells, but promoted cell apoptosis. Growth of peritoneal nodules is inhibited and survival is prolonged in mice administrated with siSYTs intraperitoneally. Therefore, most studies have found SYTs serve as an oncogene after overexpression and may become potential prognostic biomarkers for multiple cancers. This article provides an overview of recent studies that focus on SYT family members’ roles in cancers and highlights the advances that have been achieved.
Collapse
Affiliation(s)
- Huandan Suo
- Department of Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Nan Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kewei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Kewei Wang,
| |
Collapse
|