1
|
Hosseini-Siyanaki M, Sagdic HS, Raviprasad AG, Munjerin SE, Prodigios JC, Anthony EY, Hochhegger B, Forghani R. Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions. Acad Radiol 2025; 32:2953-2965. [PMID: 39732618 DOI: 10.1016/j.acra.2024.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/30/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA). MATERIALS AND METHODS A retrospective study was performed on 70 patients who underwent DECT-PA (15 PE present; 55 PE absent) scans. VMIs were reconstructed at different energy levels ranging from 35 to 200 keV using standard and strong levels with deep learning spectral reconstruction. Quantitative assessment was performed using region of interest (ROI) analysis of eleven different anatomical areas, measuring absolute attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). In addition, CNR of clot compared to normally opacified lumen was calculated in cases that were positive for PE. For qualitative analysis, four different keV levels (40-60-80-100) were evaluated. RESULTS The image noise was significantly lower, and the cardiovascular SNR (24.9 ± 5.85 vs. 21.98 ± 5.49) and CNR (23.72 ± 8.00 vs. 20.31 ± 6.44) were significantly higher, on strong Deep Learning Spectral reconstruction (DLSR) than standard DLSR (p < 0.0001). PE-specific CNR (8.58 ± 4.47 vs. 6.25 ± 3.19) was significantly higher on strong DLSR than standard (p < 0.0001). The subjective image quality scores were diagnostically acceptable at four different keV levels (40-60-80-100 keV) evaluated using both standard and strong DLSR, with no qualitative differences observed at those energies. CONCLUSION Strong DLSR improves image quality with an increase of the SNR and CNR in DECT-PA compared to standard DLSR.
Collapse
Affiliation(s)
- Mohammadreza Hosseini-Siyanaki
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Hakki Serdar Sagdic
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Abheek G Raviprasad
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Sefat E Munjerin
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.)
| | - Joice C Prodigios
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Evelyn Y Anthony
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Bruno Hochhegger
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.)
| | - Reza Forghani
- Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.); Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada (R.F.); Department of Radiology, AdventHealth Medical Group, Maitland, FL (R.F.).
| |
Collapse
|
2
|
Tóth A, Chamberlin JH, Puthoff G, Baruah D, O'Doherty J, Maisuria D, McGuire AM, Schoepf UJ, Munden RF, Kabakus IM. Optimizing Quantum Iterative Reconstruction for Ultra-high-resolution Photon-counting Computed Tomography of the Lung. J Thorac Imaging 2025; 40:e0802. [PMID: 39233621 DOI: 10.1097/rti.0000000000000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE The aim of this study was to find the optimal strength level of QIR for ultra-high-resolution (UHR) PCCT of the lung. MATERIALS AND METHODS This retrospective study included 24 patients who had unenhanced chest CT with the novel UHR scan protocol on the PCCT scanner between March 24, 2023 and May 18, 2023. Two sets of reconstructions were made using different slice thicknesses: standard resolution (SR, 1 mm) and ultra-high-resolution (UHR, 0.2 mm), reconstructed with all strength levels of QIR (0 to 4). Attenuation of the lung parenchyma, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed as objective criteria of image quality. Two fellowship-trained radiologists compared image quality and noise level, sharpness of the images, and the airway details using a 5-point Likert scale. Wilcoxon signed-rank test was used for statistical analysis of reader scores, and one-way repeated measures analysis of variance for comparing the objective image quality scores. RESULTS Objective image quality linearly improved with higher strength levels of QIR, reducing image noise by 66% from QIR-0 to QIR-4 ( P <0.001). Subjective image noise was best for QIR-4 ( P <0.001). Readers rated QIR-1 and QIR-2 best for SR, and QIR-2 and QIR-3 best for UHR in terms of subjective image sharpness and airway detail, without significant differences between them ( P =0.48 and 0.56, respectively). CONCLUSIONS Higher levels of QIR provided excellent objective image quality, but readers' preference was for intermediate levels. Considering all metrics, we recommend QIR-3 for ultra-high-resolution PCCT of the lung.
Collapse
Affiliation(s)
- Adrienn Tóth
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Jordan H Chamberlin
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Gregory Puthoff
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Dhiraj Baruah
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Jim O'Doherty
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
- Siemens Medical Solutions, Malvern, PA
| | - Dhruw Maisuria
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Aaron M McGuire
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Reginald F Munden
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Ismail M Kabakus
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| |
Collapse
|
3
|
Nakashima M, Kawai T, Matsumoto K, Kawaguchi T, Kitera N, Watanabe S, Itoh T, Hiwatashi A. Delineation of the brachial plexus by contrast-enhanced photon-counting detector CT and virtual monoenergetic images. Eur J Radiol 2025; 184:111964. [PMID: 39908938 DOI: 10.1016/j.ejrad.2025.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVES To improve the image quality of the brachial plexus in photon-counting detector CT (PCD-CT) using contrast media and virtual monoenergetic images (VMI). MATERIALS & METHODS We retrospectively analyzed contrast-enhanced neck PCD-CT images scanned in March-July 2023. Unenhanced and contrast-enhanced images were compared, and then 40-, 70-, and 100-keV VMIs were compared. The qualitative evaluation used a five-point Likert scale regarding overall image quality (IQ), sharpness, and noise. The quantitative evaluation used the standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Freidman's test and one-way ANOVA were performed. RESULTS Forty patients (65 years ± 17, 21 males) were included. The median scores [interquartile range, IQR] for the unenhanced and contrast-enhanced groups were IQ, 3 [2,3] and 4 [3,4] (P < 0.001); sharpness, 3 [2,3] and 4 [3,4] (P < 0.001); and noise, 3 [3,4] and 3 [3,4] (P = 0.63). Mean ± SD scores were SD, 6.7 ± 1.4 and 6.7 ± 1.0 (P = 0.95); SNR, 5.1 ± 1.2 and 5.4 ± 1.4 (P = 0.04); and CNR, 4.8 ± 1.5 and 8.1 ± 2.3 (P < 0.001). The 40-, 70-, and 100-keV groups' IQ were 2 [2,3], 4 [3,4], and 3 [3,4]; their sharpness scores were 2 [2,3], 3 [3,4], and 3 [2,3] (all, P < 0.05). Those for noise were 2 [1-3], 3 [3,4], and 4 [3,4] (all, P < 0.001 except for 70-keV vs.100-keV: P = 0.16). The SDs were 13.1 ± 2.5, 7.5 ± 1.2, and 6.0 ± 1.1. The SNRs were 4.2 ± 1.9, 5.0 ± 1.2, and 5.7 ± 1.5 (all, P < 0.001). The CNRs were 8.7 ± 4.0, 6.8 ± 2.3, and 6.5 ± 2.3 (all, P < 0.001 except for 70-keV vs.100-keV: P = 0.51). CONCLUSION Contrast-enhanced PCD-CT and VMIs provided good delineation of the brachial plexus.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takatsune Kawaguchi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Nobuo Kitera
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Seita Watanabe
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Toshihide Itoh
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
4
|
Sharifi A, O'Donnell T, Dane B. Optimizing photon counting CT enterography: determining the optimal virtual monoenergy for bowel imaging. Abdom Radiol (NY) 2025:10.1007/s00261-025-04832-z. [PMID: 39934396 DOI: 10.1007/s00261-025-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To determine the optimal virtual monoenergy for viewing the bowel at photon-counting CT enterography using quantitative assessment of mural attenuation, contrast-to-noise ratio, signal-to-noise ratio and noise. METHODS This study was institutional review board approved and Health Insurance Portability and Accountability Act compliant. Consecutive adults (≥ 18 years) who underwent photon-counting CT enterography from 5/1/2022-5/31/2022 with available Spectral Postprocessing (SPP) images for retrospective virtual monoenergy creation were identified. Nine virtual monoenergetic series (40-120 keV, 10 keV increments) were created. Two region-of-interest measurements were placed in the stomach wall, jejunum wall, ileum wall, and each psoas muscle by two radiologists on 0.6 mm images in PACS. Region-of-interests were copied to other virtual monoenergies to ensure identical placement and size. Attenuation (HU) and noise (HU standard deviation) were recorded from each region-of-interest. Signal-to-noise ratio and contrast-to-noise ratio were computed for stomach, jejunum, ileum, and all bowel combined. Pairwise comparisons for attenuation, noise, signal-to-noise ratio and contrast-to-noise ratio for each virtual monoenergy were performed with ANOVA. A p <.05 indicated statistical significance. RESULTS 50 patients (32 female; mean[SD] age: 57 years) were included. Attenuation and noise for all bowel regions were highest at 40 keV with statistically significant pairwise comparisons from 40 to 70 keV (all p <.05), but similar for 70-120 keV (all p >.05). Signal-to-noise ratio was similar from 40 to 70 keV (all p >.05) for all bowel regions. Contrast-to-noise ratio decreased with increasing keV. Contrast-to-noise ratio was similar for all bowel at 40 keV and 50 keV (p =.06), for stomach from 40 to 70 keV (all p >.05), for jejunum from 40 to 50 keV (p =.21), and for ileum from 40 to 60 keV (all p >.05). CONCLUSION 50 keV virtual monoenergetic images from photon-counting CT enterography optimizes contrast-to-noise ratio while mitigating noise and should routinely be utilized for bowel assessment at photon-counting CT enterography. As most photon-counting CT users primarily interpret virtual monoenergetic images in clinical practice, knowledge of the optimal virtual monoenergy can inform protocol development.
Collapse
Affiliation(s)
| | | | - Bari Dane
- New York University Langone Medical Center, New York, US.
| |
Collapse
|
5
|
Ruff A, Li X, Goldberg JD, Ehrhart M, Ginocchio L, Smereka P, O'Donnell T, Dane B. Optimal virtual monoenergy for the detection of pancreatic adenocarcinoma during the pancreatic parenchymal phase on photon counting CT. Abdom Radiol (NY) 2025:10.1007/s00261-024-04696-9. [PMID: 39775026 DOI: 10.1007/s00261-024-04696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE As the pancreas is a low contrast visibility organ, pancreatic ductal adenocarcinoma detection is challenging due to subtle attenuation differences between tumor and pancreatic parenchyma. Photon counting CT (PCCT) has superior iodine contrast-to-noise ratio than conventional CT and also affords the creation of low keV virtual monoenergetic images, both of which increase adenocarcinoma conspicuity. The purpose therefore was to identify the optimal virtual monoenergy for visualizing PDAC during the pancreatic parenchymal phase of enhancement at PCCT using both quantitative and qualitative analyses. METHODS Consecutive patients with pancreatic parenchymal phase PCCT source data were retrospectively identified by PACS search. For the quantitative analysis, region of interest (ROI) measurements were drawn in the pancreatic head, body, tail, pancreatic adenocarcinoma (if present), and psoas muscles on 40-120 keV virtual monoenergetic images in 10 keV increments. Based on the quantitative analysis results and vendor recommendations, four virtual monoenergies(40 keV, 55 keV, 70 keV, and 85 keV) were selected for additional qualitative analysis. Three radiologists blinded to four virtual monoenergies assessed overall image quality, image noise, pancreatic enhancement, and pancreatic mass conspicuity on 5-point Likert scales. RESULTS 54 patients (28/54 male, mean[SD] age: 62 [13] years) were included. Quantitatively, 40 keV had the highest pancreatic parenchymal CNR and attenuation difference between the adenocarcinoma and parenchyma, but also the highest noise (HUsd). Qualitatively, 70 keV had the best overall image quality (Mean [SE]: 3.7[0.1]) and lower noise than 40 and 55 keV (3.6[0.08] vs. 1.8[0.07] and 2.7[0.05], respectively, p < .001). 40 keV had the greatest pancreatic enhancement (mean[SE] 4.6[0.11]). Adenocarcinoma conspicuity ratings were greatest at 40 keV and 55 keV, and not significantly different from each other (mean[SE] 4.4[0.13] and 4.3[0.14], respectively, Tukey adj-p =.20). 55 keV had greater overall image quality and lower noise than 40 keV (mean[SE] 3.4[0.08] vs. 2.5[0.08], Tukey adj-p < .001 and 2.7[0.05] vs. 1.8[0.07], Tukey adj-p < .001 respectively). CONCLUSION 55 keV pancreatic parenchymal phase virtual monoenergetic images afford optimal pancreatic assessment at PCCT for the visualization of pancreatic adenocarcinoma. Routinely viewing 55 keV virtual monoenergetic images at PCCT may improve PDAC detection.
Collapse
|
6
|
Rippel K, Decker JA, Luitjens J, Habeeballah O, Bette S, Braun F, Kroencke TJ, Scheurig-Muenkler C. Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions. Diagnostics (Basel) 2024; 14:2843. [PMID: 39767204 PMCID: PMC11675690 DOI: 10.3390/diagnostics14242843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The aim of this study was to assess the possibility of image improvement of ECG-gated, high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta before transaortic valve replacement (TAVR) on a novel dual-source photon-counting detector CT (PCD-CT) in the setting of suboptimal low-contrast attenuation. METHODS Continuously examined patients who underwent an ECG-gated, high-pitch CTA of the aorta on a PCD-CT with a contrast decrease of at least 50% between the ascending aorta and the common femoral arteries (CFA) were included. Patient characteristics were documented. Virtual monoenergetic imaging (VMI) reconstructions with three keV settings were generated. CT values and noise were measured for five vascular segments of the aorta and the CFA. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated. Two independent board-certified radiologists rated the images with the focus on vascular attenuation, vessel sharpness, and image quality using a 5-point Likert scale. RESULTS Fifty-five patients (mean age 77.4 ± 8.5 years; 15 women) were included. The SNR was significantly higher at 40 and 45 keV VMI compared to reference 70 keV (p < 0.001 and p = 0.005, respectively). The same was shown for the CNR (p < 0.001 and p = 0.0049, respectively). Subjective image evaluation showed a significant increase in vessel attenuation in the lower keV reconstructions, while the overall image quality decreased only slightly. Furthermore, 50% (8/16) of primarily non-diagnostic scans were considered diagnostic when using low-keV reconstructions (p > 0.05). CONCLUSIONS ECG-gated CTA of the aorta in high-pitch mode on PCD-CT with suboptimal contrast enhancement at the level of the CFA can be salvaged by using low-keV VMI. This implies the possibility of radiation dose reduction by eliminating the need for repeat scans.
Collapse
Affiliation(s)
- Katharina Rippel
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Josua A. Decker
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Jan Luitjens
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Osama Habeeballah
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Thomas J. Kroencke
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
| | - Christian Scheurig-Muenkler
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| |
Collapse
|
7
|
Pannenbecker P, Heidenreich JF, Huflage H, Gruschwitz P, Patzer TS, Weng AM, Grunz JP, Kunz AS, Bley TA, Petritsch B. The Best of Both Worlds: Ultra-high-pitch Pulmonary Angiography with Free-Breathing Technique by Means of Photon-Counting Detector CT for Diagnosis of Acute Pulmonary Embolism. Acad Radiol 2024; 31:5280-5288. [PMID: 38969575 DOI: 10.1016/j.acra.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
RATIONALE AND OBJECTIVES To assess image quality and radiation dose of ultra-high-pitch CT pulmonary angiography (CTPA) with free-breathing technique for diagnosis of pulmonary embolism using a photon-counting detector (PCD) CT compared to matched energy-integrating detector (EID)-based single-energy CTPA. MATERIALS AND METHODS Fifty-one PCD-CTPAs were prospectively compared to 51 CTPAs on a third-generation dual-source EID-CT. CTPAs were acquired with an ultra-high-pitch protocol with free-breathing technique (40 mL contrast medium, pitch 3.2) at 140 kV (PCD) and 70-100 kV (EID). Iodine maps were reconstructed from spectral PCD-CTPAs. Image quality of CTPAs and iodine maps was assessed independently by three radiologists. Additionally, CT attenuation numbers within pulmonary arteries as well as signal-to-noise and contrast-to-noise ratios (SNR, CNR) were compared. Administered radiation dose was compared. RESULTS CT attenuation was higher in the PCD-group (all P < 0.05). CNR and SNR were higher in lobar pulmonary arteries in PCD-CTPAs (P < 0.05), whereas no difference was ascertained within the pulmonary trunk (P > 0.05). Image quality of PCD-CTPA was rated best by all readers (excellent/good image quality in 96.1% of PCD-CTPAs vs. 50.9% of EID-CTPAs). PCD-CT produced no non-diagnostic scans vs. three non-diagnostic (5.9%) EID-CTPAs. Radiation dose was lower with PCD-CT than with EID-CT (effective dose 1.33 ± 0.47 vs. 1.80 ± 0.82 mSv; all P < 0.05). CONCLUSION Ultra-high-pitch CTPA with free-breathing technique with PCD-CT allows for superior image quality with significantly reduced radiation dose and full spectral information. With the ultra-high pitch, only PCD-CTPA enables reconstruction of iodine maps containing additional functional information.
Collapse
Affiliation(s)
- Pauline Pannenbecker
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.).
| | - Julius F Heidenreich
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Henner Huflage
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Philipp Gruschwitz
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Theresa S Patzer
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Andreas M Weng
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Jan-Peter Grunz
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Andreas S Kunz
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Thorsten A Bley
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.)
| | - Bernhard Petritsch
- University Hospital Würzburg, Department of Diagnostic and Interventional Radiology, Würzburg, Germany (P.P., J.F.H., H.H., P.G., T.S.P., A.M.W., J.P.G., A.S.K., T.A.B., B.P.); Hospital Klagenfurt am Wörthersee, Department of Diagnostic and Interventional Radiology, Klagenfurt am Wörthersee, Austria (B.P.)
| |
Collapse
|
8
|
Nakashima M, Kawai T, Matsumoto K, Kawaguchi T, Urano M, Kitera N, Itoh T, Hiwatashi A. Ultra-high-resolution photon-counting detector CT for visualization of the brachial plexus. Eur J Radiol 2024; 181:111810. [PMID: 39504796 DOI: 10.1016/j.ejrad.2024.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVES To investigate the use of photon-counting detector CT (PCD-CT) to improve brachial plexus depiction. MATERIALS AND METHODS This retrospective study included patients who underwent neck CT from March to December 2023. To assess the optimal reconstruction condition in PCD-CT, the signal-to-noise ratios (SNRs) on images using various quantitative regular (Qr) kernels and strengths of quantum iterative reconstruction (QIR) were evaluated. Next, images obtained by ultra-high-resolution mode in PCD-CT (PCD-UHR), standard mode in PCD-CT (PCD-STD), and standard mode in energy-integrating detector CT (EID-STD) of 20 patients each were compared regarding brachial plexus depiction. A qualitative evaluation was performed using a 5-point Likert scale regarding sharpness, noise, and overall image quality. The standard deviations (SDs), SNRs, and contrast-to noise ratios (CNRs) were quantitatively evaluated. RESULTS Overall, 60 patients (mean age, 63 years ± 18; 30 males) were included. The SNRs for the Qr40 and QIR4 (means ± SDs) were 3.6 ± 1.1 and 4.1 ± 1.2, respectively, significantly higher than others (P < 0.05). The scores for overall image quality were 4 [4-5], 3 [3-4], and 2 [2-3], and those for sharpness were 4 [3-5], 3 [3-3], and 2 [1-3] for PCD-UHR, PCD-STD, and EID-STD, respectively (all, P < 0.05). Those for noise were 3 [3-4], 4 [3-4], and 2 [2-2], the SDs were 6.6 ± 1.6, 5.4 ± 0.8, and 8.8 ± 1.7, SNRs were 5.0 ± 1.4, 6,1 ± 1.2, and 3.5 ± 1.6, and CNRs were 5.6 ± 1.9, 7.9 ± 1.7, and 4.4 ± 1.8, respectively (between either of the PCD groups and EID-STD, P < 0.05). CONCLUSION PCD-CT showed superior delineation for brachial plexus to EID-CT.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takatsune Kawaguchi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Misugi Urano
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
9
|
Remy-Jardin M, Oufriche I, Guiffault L, Duhamel A, Flohr T, Schmidt B, Remy J. Diagnosis of acute pulmonary embolism: when photon-counting-detector CT replaces energy-integrating-detector CT in daily routine. Eur Radiol 2024; 34:6544-6555. [PMID: 38634875 DOI: 10.1007/s00330-024-10724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To compare the diagnostic approach of acute pulmonary embolism (PE) with photon-counting-detector CT (PCD-CT) and energy-integrating-detector CT (EID-CT). MATERIALS AND METHODS Two cohorts underwent CT angiographic examinations with EID-CT (Group 1; n = 158) and PCD-CT (Group 2; n = 172), (b) with two options in Group 1, dual energy (Group 1a) or single energy (Group 1b) and a single option in Group 2 (spectral imaging with single source). RESULTS In Group 2, all patients benefited from spectral imaging, only accessible to 105 patients (66.5%) in Group 1, with a mean acquisition time significantly shorter (0.9 ± 0.1 s vs 4.0 ± 0 .3 s; p < 0.001) and mean values of CTDIvol and DLP reduced by 46.3% and 47.7%, respectively. Comparing the quality of 70 keV (Group 2) and averaged (Group 1a) images: (a) the mean attenuation within pulmonary arteries did not differ (p = 0.13); (b) the image noise was significantly higher (p < 0.001) in Group 2 with no difference in subjective image noise (p = 0.29); and (c) 89% of examinations were devoid of artifacts in Group 2 vs 28.6% in Group 1a. The percentage of diagnostic examinations was 95.2% (100/105; Group 1a), 100% (53/53; Group 1b), and 95.3% (164/172; Group 2). There were 4.8% (5/105; Group 1a) and 4.7% (8/172; Group 2) of non-diagnostic examinations, mainly due to the suboptimal quality of vascular opacification with the restoration of a diagnostic image quality on low-energy images. CONCLUSION Compared to EID-CT, morphology and perfusion imaging were available in all patients scanned with PCD-CT, with the radiation dose reduced by 48%. CLINICAL RELEVANCE STATEMENT PCD-CT enables scanning patients with the advantages of both spectral imaging, including high-quality morphologic imaging and lung perfusion for all patients, and fast scanning-a combination that is not simultaneously accessible with EID-CT while reducing the radiation dose by almost 50%.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, Lille, France.
- IMALLIANCE-Haut-de-France, Valenciennes, France.
- Department of Thoracic Imaging, University of Lille, Lille, France.
| | - Idir Oufriche
- Department of Thoracic Imaging, University of Lille, Lille, France
| | - Lucas Guiffault
- Department of Thoracic Imaging, University of Lille, Lille, France
| | - Alain Duhamel
- ULR 2694 METRICS Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Biostatistics, University of Lille, CHU Lille, Lille, France
| | - Thomas Flohr
- Department of Computed Tomography Research & Development, Siemens Healthineers AG, Forchheim, Germany
| | - Bernhard Schmidt
- Department of Computed Tomography Research & Development, Siemens Healthineers AG, Forchheim, Germany
| | - Jacques Remy
- Department of Thoracic Imaging, University of Lille, Lille, France
- Department of Radiology, Valenciennes Regional Hospital, Valenciennes, France
| |
Collapse
|
10
|
Zhou W, Huo D, Browne LP, Zhou X, Weinman J. Universal 120-kV Dual-Source Ultra-High Pitch Protocol on the Photon-Counting CT System for Pediatric Abdomen of All Sizes: A Phantom Investigation Comparing With Energy-Integrating CT. Invest Radiol 2024; 59:719-726. [PMID: 38595181 DOI: 10.1097/rli.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVES The purpose of this study is to determine if a universal 120-kV ultra-high pitch and virtual monoenergetic images (VMIs) protocol on the photon-counting computed tomography (PCCT) system can provide sufficient image quality for pediatric abdominal imaging, regardless of size, compared with protocols using a size-dependent kV and dual-source flash mode on the energy-integrating CT (EICT) system. MATERIALS AND METHODS One solid water insert and 3 iodine (2, 5, 10 mg I/mL) inserts were attached or inserted into phantoms of variable sizes, simulating the abdomens of a newborn, 5-year-old, 10-year-old, and adult-sized pediatric patients. Each phantom setting was scanned on an EICT using clinical size-specific kV dual-source protocols with a pitch of 3.0. The scans were performed with fixed scanning parameters, and the CTDI vol values of full dose were 0.30, 0.71, 1.05, and 7.40 mGy for newborn to adult size, respectively. In addition, half dose scans were acquired on EICT. Each phantom was then scanned on a PCCT (Siemens Alpha) using a universal 120-kV protocol with the same full dose and half dose as determined above on the EICT scanner. All other parameters matched to EICT settings. Virtual monoenergetic images were generated from PCCT scans between 40 and 80 keV with a 5-keV interval. Image quality metrics were compared between PCCT VMIs and EICT, including image noise (measured as standard deviation of solid water), contrast-to-noise ratio (CNR) (measured at iodine inserts with solid water as background), and noise power spectrum (measured in uniform phantom regions). RESULTS Noise at a PCCT VMI of 70 keV (7.0 ± 0.6 HU for newborn, 14.7 ± 1.6 HU for adult) is comparable ( P > 0.05, t test) or significantly lower ( P < 0.05, t test) compared with EICT (7.8 ± 0.8 HU for newborn, 15.3 ± 1.5 HU for adult). Iodine CNR from PCCT VMI at 50 keV (50.8 ± 8.4 for newborn, 27.3 ± 2.8 for adult) is comparable ( P > 0.05, t test) or significantly higher ( P < 0.05, t test) to the corresponding EICT measurements (57.5 ± 6.7 for newborn, 13.8 ± 1.7 for adult). The noise power spectrum curve shape of PCCT VMI is similar to EICT, despite PCCT VMI exhibiting higher noise at low keV levels. CONCLUSIONS The universal PCCT 120 kV with ultra-high pitch and postprocessed VMIs demonstrated equivalent or improved performance in noise (70 keV) and iodine CNR (50 keV) for pediatric abdominal CT, compared with size-specific kV images on the EICT.
Collapse
Affiliation(s)
- Wei Zhou
- From the Department of Radiology, University of Colorado, Anschutz Medical Campus, Aurora, CO (W.Z., D.H., L.P.B., J.W.); Department of Radiology, Children's Hospital Colorado, Aurora, CO (L.P.B., J.W.); and Bioinformatics and Computational Biology, University of Minnesota, St Paul, MN (X.Z.)
| | | | | | | | | |
Collapse
|
11
|
Toia GV, Mileto A, Borhani AA, Chen GH, Ren L, Uyeda JW, Marin D. Approaches, advantages, and challenges to photon counting detector and multi-energy CT. Abdom Radiol (NY) 2024; 49:3251-3260. [PMID: 38744702 DOI: 10.1007/s00261-024-04357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
Photon counting detector CT (PCD-CT) is the newest major development in CT technology and has been commercially available since 2021. It offers major technological advantages over current standard-of-care energy integrating detector CT (EID-CT) including improved spatial resolution, improved iodine contrast to noise ratio, multi-energy imaging, and reduced noise. This article serves as a foundational basis to the technical approaches and concepts of PCD-CT technology with primary emphasis on detector technology in direct comparison to EID-CT. The article also addresses current technological challenges to PCD-CT with particular attention to cross talk and its causes (e.g., Compton scattering, fluorescence, charge sharing, K-escape) as well as pile-up.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Achille Mileto
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Amir A Borhani
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Guang-Hong Chen
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Liqiang Ren
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer W Uyeda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniele Marin
- Department of Radiology, Duke University Health System, Durham, NC, USA
| |
Collapse
|
12
|
Fletcher JG, Inoue A, Bratt A, Horst KK, Koo CW, Rajiah PS, Baffour FI, Ko JP, Remy-Jardin M, McCollough CH, Yu L. Photon-counting CT in Thoracic Imaging: Early Clinical Evidence and Incorporation Into Clinical Practice. Radiology 2024; 310:e231986. [PMID: 38501953 DOI: 10.1148/radiol.231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photon-counting CT (PCCT) is an emerging advanced CT technology that differs from conventional CT in its ability to directly convert incident x-ray photon energies into electrical signals. The detector design also permits substantial improvements in spatial resolution and radiation dose efficiency and allows for concurrent high-pitch and high-temporal-resolution multienergy imaging. This review summarizes (a) key differences in PCCT image acquisition and image reconstruction compared with conventional CT; (b) early evidence for the clinical benefit of PCCT for high-spatial-resolution diagnostic tasks in thoracic imaging, such as assessment of airway and parenchymal diseases, as well as benefits of high-pitch and multienergy scanning; (c) anticipated radiation dose reduction, depending on the diagnostic task, and increased utility for routine low-dose thoracic CT imaging; (d) adaptations for thoracic imaging in children; (e) potential for further quantitation of thoracic diseases; and (f) limitations and trade-offs. Moreover, important points for conducting and interpreting clinical studies examining the benefit of PCCT relative to conventional CT and integration of PCCT systems into multivendor, multispecialty radiology practices are discussed.
Collapse
Affiliation(s)
- Joel G Fletcher
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Akitoshi Inoue
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Alex Bratt
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Kelly K Horst
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Chi Wan Koo
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Francis I Baffour
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Jane P Ko
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Martine Remy-Jardin
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| |
Collapse
|
13
|
Rippel K, Luitjens J, Habeeballah O, Scheurig-Muenkler C, Bette S, Braun F, Kroencke TJ, Schwarz F, Decker JA. Evaluation of ECG-Gated, High-Pitch Thoracoabdominal Angiographies With Dual-Source Photon-Counting Detector Computed Tomography. J Endovasc Ther 2024:15266028241230943. [PMID: 38380529 DOI: 10.1177/15266028241230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - J Luitjens
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - O Habeeballah
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - T J Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Augsburg, Germany
| | - F Schwarz
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - J A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| |
Collapse
|
14
|
Saeed S, Niehoff JH, Boriesosdick J, Michael A, Woeltjen MM, Surov A, Moenninghoff C, Borggrefe J, Kroeger JR. Minimizing Contrast Media Dose in CT Pulmonary Angiography with Clinical Photon Counting Using High Pitch Technique. Acad Radiol 2024; 31:686-692. [PMID: 37393176 DOI: 10.1016/j.acra.2023.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/03/2023]
Abstract
RATIONALE AND OBJECTIVES To evaluate the potential to reduce the amount of iodinated contrast media (CM) for computer tomographic pulmonary angiography (CTPA) with a novel photon-counting-detector CT (PCCT). MATERIALS AND METHODS Overall, 105 patients referred for CTPA were retrospectively included in this study. CTPA was performed using bolus tracking and high-pitch dual-source scanning (FLASH mode) on a novel PCCT (Naeotom Alpha, Siemens Healthineers). CM (Accupaque 300, GE Healthcare) dose was lowered stepwise following the introduction of the new CT scanner. Thus, patients could be divided into 3 groups as follows: group 1, n = 29, 35 ml of CM; group 2, n = 62, 45 ml of CM and group 3, n = 14, 60 ml of CM. Four readers independently assessed the image quality (Likert-scale 1-5) and adequate assessment of the segmental pulmonary arteries. Additionally, the pulmonary arterial contrast opacification was measured. RESULTS The subjective image quality was rated highest in group 1 with 4.6 compared to 4.5 (group 2) and 4.1 (group 3) with a significant difference between groups 1 and 3 (p < 0.001) and between groups 2 and 3 (p = 0.003). In all groups, almost all segmental pulmonary arteries could be assessed adequately without significant differences (18.5 vs. 18.7 vs. 18.4). Mean attenuation in the pulmonary trunk did not differ significantly between groups 321 ± 92 HU versus 345 ± 93 HU versus 347 ± 88 HU (p = 0.69). CONCLUSION Significant CM dose reduction is possible without a reduction in image quality. PCCT enables diagnostic CTPA with 35 ml of CM.
Collapse
Affiliation(s)
- Saher Saeed
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Julius H Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jan Boriesosdick
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Arwed Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Matthias M Woeltjen
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Alexey Surov
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Christoph Moenninghoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Pannenbecker P, Heidenreich JF, Grunz JP, Huflage H, Gruschwitz P, Patzer TS, Feldle P, Bley TA, Petritsch B. Image Quality and Radiation Dose of CTPA With Iodine Maps: A Prospective Randomized Study of High-Pitch Mode Photon-Counting Detector CT Versus Energy-Integrating Detector CT. AJR Am J Roentgenol 2024; 222:e2330154. [PMID: 37966036 DOI: 10.2214/ajr.23.30154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
BACKGROUND. Dual-energy CT pulmonary angiography (CTPA) with energy-integrating detector (EID) technology is limited by the inability to use high-pitch technique. OBJECTIVE. The purpose of this study was to compare the image quality of anatomic images and iodine maps between high-pitch photon-counting detector (PCD) CTPA and dual-energy EID CTPA. METHODS. This prospective study included 117 patients (70 men and 47 women; median age, 65 years) who underwent CTPA to evaluate for pulmonary embolism between March 2022 and November 2022. Fifty-eight patients were randomized to undergo PCD CTPA (pitch, 2.0), and 59 were randomized to undergo EID CTPA (pitch, 0.55). For each examination, 120-kV polychromatic images, 60-keV virtual monogenetic images (VMIs), and iodine maps were reconstructed. One radiologist measured CNR and SNR. Three radiologists independently assessed subjective image quality (on a scale of 1-4, with a score of 1 denoting highest quality). Radiation dose was recorded. RESULTS. SNR and CNR were higher for PCD CTPA than for EID CTPA for polychromatic images and VMIs, for all assessed vessels other than the left upper lobe artery. For example, for PCD CTPA versus EID CTPA, the right lower lobe artery on polychromatic images had an SNR of 34.5 versus 28.0 (p = .003) and a CNR of 29.2 versus 24.4 (p = .001), and on VMIs it had an SNR of 43.2 versus 32.7 (p = .005) and a CNR of 37.4 versus 29.3 (p = .002). For both scanners for readers 1 and 2, the median image quality score for polychromatic images and VMIs was 1, although distributions indicated significantly better scores for PCD CTPA than for EID CTPA for polychromatic images for reader 1 (p = .02) and reader 2 (p = .005) and for VMIs for reader 1 (p = .001) and reader 2 (p = .006). The image quality of anatomic image sets was not different between PCD CTPA and EID CTPA for reader 3 (p > .05). The image quality of iodine maps was not different between PCD CTPA and EID CTPA for any reader (p > .05). For PCD CTPA versus EID CTPA, the CTDIvol was 3.9 versus 4.5 mGy (p = .03), and the DLP was 123.5 mGy × cm versus 157.0 mGy × cm (p < .001). CONCLUSION. High-pitch PCD CTPA provided anatomic images with better subjective and objective image quality versus dual-energy EID CTPA, with lower radiation dose. Iodine maps showed no significant difference in image quality between scanners. CLINICAL IMPACT. CTPA may benefit from the PCD CT technique.
Collapse
Affiliation(s)
- Pauline Pannenbecker
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Theresa S Patzer
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Philipp Feldle
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic Radiology and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstrasse, 6, D-97080 Würzburg, Germany
| |
Collapse
|
16
|
Chamberlin JH, Toth A, Hinen S, O’Doherty J, Baruah D, Maisuria D, McGuire A, Knight H, Schoepf UJ, Munden RF, Kabakus IM. Optimisation of virtual monoenergetic reconstructions for the diagnosis of pulmonary embolism using photon-counting detector computed tomography angiography. Pol J Radiol 2024; 89:e63-e69. [PMID: 38371894 PMCID: PMC10867981 DOI: 10.5114/pjr.2024.134905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Computed tomography (CT) pulmonary angiography is considered the gold standard for pulmonary embolism (PE) diagnosis, relying on the discrimination between contrast and embolus. Photon-counting detector CT (PCD-CT) generates monoenergetic reconstructions through energy-resolved detection. Virtual monoenergetic images (VMI) at low keV can be used to improve pulmonary artery opacification. While studies have assessed VMI for PE diagnosis on dual-energy CT (DECT), there is a lack of literature on optimal settings for PCD-CT-PE reconstructions, warranting further investigation. Material and methods Twenty-five sequential patients who underwent PCD-CT pulmonary angiography for suspicion of acute PE were retrospectively included in this study. Quantitative metrics including signal-to-noise ratio (SNR) and contrast-to-noise (CNR) ratio were calculated for 4 VMI values (40, 60, 80, and 100 keV). Qualitative measures of diagnostic quality were obtained for proximal to distal pulmonary artery branches by 2 cardiothoracic radiologists using a 5-point modified Likert scale. Results SNR and CNR were highest for the 40 keV VMI (49.3 ± 22.2 and 48.2 ± 22.1, respectively) and were inversely related to monoenergetic keV. Qualitatively, 40 and 60 keV both exhibited excellent diagnostic quality (mean main pulmonary artery: 5.0 ± 0 and 5.0 ± 0; subsegmental pulmonary arteries 4.9 ± 0.1 and 4.9 ± 0.1, respectively) while distal segments at high (80-100) keVs had worse quality. Conclusions 40 keV was the best individual VMI for the detection of pulmonary embolism by quantitative metrics. Qualitatively, 40-60 keV reconstructions may be used without a significant decrease in subjective quality. VMIs at higher keV lead to reduced opacification of the distal pulmonary arteries, resulting in decreased image quality.
Collapse
Affiliation(s)
- Jordan H. Chamberlin
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Adrienn Toth
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Shaun Hinen
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Jim O’Doherty
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
- Siemens Medical Solutions, Malvern, PA, United States
| | - Dhiraj Baruah
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Dhruw Maisuria
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Aaron McGuire
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Heather Knight
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - U. Joseph Schoepf
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Reginald F. Munden
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Ismail M. Kabakus
- Division of Cardiothoracic Imaging, Department of Radiology and Radiologic Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
17
|
Horst KK, Yu L, McCollough CH, Esquivel A, Thorne JE, Rajiah PS, Baffour F, Hull NC, Weber NM, Thacker PG, Thomas KB, Binkovitz LA, Guerin JB, Fletcher JG. Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 2023; 96:20230189. [PMID: 37750939 PMCID: PMC10646626 DOI: 10.1259/bjr.20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.
Collapse
Affiliation(s)
- Kelly K. Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | | | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, United States
| | - Nathan C. Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Paul G. Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Kristen B. Thomas
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Larry A. Binkovitz
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Julie B. Guerin
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
18
|
Wu Y, Ye Z, Chen J, Deng L, Song B. Photon Counting CT: Technical Principles, Clinical Applications, and Future Prospects. Acad Radiol 2023; 30:2362-2382. [PMID: 37369618 DOI: 10.1016/j.acra.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Photon-counting computed tomography (PCCT) is a new technique that utilizes photon-counting detectors to convert individual X-ray photons directly into an electrical signal, which can achieve higher spatial resolution, improved iodine signal, radiation dose reduction, artifact reduction, and multienergy imaging. This review introduces the technical principles of PCCT, and summarizes its first-in-human experience and current applications in clinical settings, and discusses the future prospects of PCCT.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.); Department of Radiology, Sanya People' s Hospital, Sanya, Hainan, China (B.S.).
| |
Collapse
|
19
|
Flohr T, Schmidt B. Technical Basics and Clinical Benefits of Photon-Counting CT. Invest Radiol 2023; 58:441-450. [PMID: 37185302 PMCID: PMC10259209 DOI: 10.1097/rli.0000000000000980] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
ABSTRACT Novel photon-counting detector CT (PCD-CT) has the potential to address the limitations of previous CT systems, such as insufficient spatial resolution, limited accuracy in detecting small low-contrast structures, or missing routine availability of spectral information. In this review article, we explain the basic principles and potential clinical benefits of PCD-CT, with a focus on recent literature that has grown rapidly since the commercial introduction of a clinically approved PCD-CT.
Collapse
|
20
|
Meloni A, Cademartiri F, Pistoia L, Degiorgi G, Clemente A, De Gori C, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, La Grutta L, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part III: Clinical Overview of Vascular Applications beyond Cardiac and Neuro Imaging. J Clin Med 2023; 12:jcm12113798. [PMID: 37297994 DOI: 10.3390/jcm12113798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Photon-counting computed tomography (PCCT) is an emerging technology that is expected to radically change clinical CT imaging. PCCT offers several advantages over conventional CT, which can be combined to improve and expand the diagnostic possibilities of CT angiography. After a brief description of the PCCT technology and its main advantages we will discuss the new opportunities brought about by PCCT in the field of vascular imaging, while addressing promising future clinical scenarios.
Collapse
Affiliation(s)
- Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | | | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, CA, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, CA, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|