1
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
2
|
Daszkiewicz M, Różańska D, Regulska-Ilow B. The Relationship between Chocolate Consumption and the Severity of Acne Lesions-A Crossover Study. Foods 2024; 13:1993. [PMID: 38998499 PMCID: PMC11241376 DOI: 10.3390/foods13131993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to assess the relationship between the daily consumption of 50 g of chocolate with 85% cocoa content and the severity of acne lesions. METHODS The study involved 92 participants with acne who were divided into two groups, A (n = 51) and B (n = 41). In the first week, both groups had to follow an anti-inflammatory diet (AID), then for the next 4 weeks, group A continued on with the AID, and group B followed an AID with chocolate. After this time, group B started a 4-week AID without chocolate, and group A started a 4-week AID with chocolate. The severity of acne lesions was assessed using the Investigator's Static Global Assessment scale, where zero points indicated no lesions and five points indicated severe acne. RESULTS As a result of the consumption of 50 g of chocolate, a statistically significant intensification of acne lesions was observed in both groups. After 4 weeks of following the chocolate diet, the severity of acne lesions increased from 2.5 ± 0.7 to 3.4 ± 0.8 points (p < 0.0001) in group A, and from 2.4 ± 0.7 to 3.5 ± 0.6 points (p < 0.0001) in group B. Overall, chocolate intake contributed to the exacerbation of acne lesions by one point in 65 participants, by two points in 13 participants and by three points in one participant. CONCLUSIONS The obtained results suggest that daily consumption of 50 g of chocolate with 85% cocoa content, even with an anti-inflammatory diet, may intensify acne lesions in this study group. However, it remains unclear which chocolate components may lead to the exacerbation of acne.
Collapse
Affiliation(s)
| | - Dorota Różańska
- Department of Dietetics and Bromatology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Bożena Regulska-Ilow
- Department of Dietetics and Bromatology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Macharia JM, Ngure V, Emődy B, Király B, Káposztás Z, Rozmann N, Erdélyi A, Raposa B. Pharmacotherapeutic Potential of Aloe secundiflora against Colorectal Cancer Growth and Proliferation. Pharmaceutics 2023; 15:pharmaceutics15051558. [PMID: 37242800 DOI: 10.3390/pharmaceutics15051558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Aloe species are widespread and diverse in African ecosystems, and this commonly correlates to their habitual use as reservoirs of herbal medicine. The side effects associated with chemotherapy and the development of antimicrobial resistance to empirically used antimicrobial drugs are substantial, paving the way for novel phytotherapeutic approaches. This comprehensive study aimed to evaluate and present Aloe secundiflora (A. secundiflora) as a compelling alternative with potential benefits in colorectal cancer (CRC) treatment. Important databases were systematically searched for relevant literature, and out of a large collection of 6421 titles and abstracts, only 68 full-text articles met the inclusion criteria. A. secundiflora possesses an abundant presence of bioactive phytoconstituents in the leaves and roots, including anthraquinones, naphthoquinones, phenols, alkaloids, saponins, tannins, and flavonoids, among others. These metabolites have proven diverse efficacy in inhibiting cancer growth. The presence of innumerable biomolecules in A. secundiflora signifies the beneficial effects of incorporating the plant as a potential anti-CRC agent. Nonetheless, we recommend further research to determine the optimal concentrations necessary to elicit beneficial effects in the management of CRC. Furthermore, they should be investigated as potential raw ingredients for making conventional medications.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Veronica Ngure
- School of Science and Applied Technology, Laikipia University, Nyahururu P.O. Box 1100-20300, Kenya
| | - Barnabás Emődy
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Király
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Nóra Rozmann
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Attila Erdélyi
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Raposa
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| |
Collapse
|
4
|
Analysis of the Nutritional Value of Diets and Food Choices in Polish Female Ulcerative Colitis Individuals Compared with a Pair-Matched Control Sample. Nutrients 2023; 15:nu15040857. [PMID: 36839214 PMCID: PMC9964133 DOI: 10.3390/nu15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ulcerative colitis patients often attribute their symptoms to specific dietary products. Therefore, even though there are no specific dietary recommendations, these patients commonly have dietary restrictions, often with no consultation from their physician or dietitian, as they believe that they may be beneficial for them. The aim of the study was to analyze the nutritional value of diets and food choices in Polish female ulcerative colitis individuals, in comparison with a pair-matched control sample. The study was conducted on a group of 44 Polish female ulcerative colitis individuals being in remission and 44 individuals within a pair-matched control sample, matched by their age and concurrent diseases, excluding those resulting from ulcerative colitis. The analysis of the diet was based on the self-reported data, including 3-day dietary records (to assess the intake of nutrients and food products), as well as the simple open-ended question about food products excluded from their diet. It was stated that Polish female ulcerative colitis individuals were characterized by a lower energy value of diet (p = 0.0043), accompanied by the higher proportion of total protein (p = 0.0128) than the pair-matched control sample. As a result of a lower energy value for ulcerative colitis individuals, the intake of numerous nutrients was also lower (p < 0.05); however, after recalculation per 1000 kcal, ulcerative colitis individuals were characterized by higher total protein (p = 0.0121), starch (p = 0.0009), and vitamin B6 intake (p = 0.0319), as well as lower alcohol intake (p = 0.0464). Similarly, as a result of a lower energy value for ulcerative colitis individuals, the intake of numerous foods was also lower (p < 0.05); however, after recalculation per 1000 kcal, ulcerative colitis individuals were characterized by higher meat (p = 0.0058) and potatoes intake (p = 0.0052), as well as lower legumes (p = 0.0301), chocolate sweets (p = 0.0165), and alcoholic beverages intake (p = 0.0062). For chocolate sweets (p = 0.0134) and alcoholic beverages (p = 0.0091), ulcerative colitis individuals were characterized by a higher frequency of declaration of dietary exclusion. At the same time, ulcerative colitis individuals were characterized by a lower frequency of meeting the recommended intake for magnesium (p = 0.0005), iron (p = 0.0189), vitamin E (p = 0.0389), and vitamin B1 (p = 0.0032). It was concluded that even in remission, there is a risk of inadequate consumption, not meeting the recommended intake, and nutritional deficiencies in the population of female ulcerative colitis patients.
Collapse
|
5
|
Lozano-Casabianca GA, Arango-Varela SS, Aguillón-Osma J, Llano-Ramírez MA, Maldonado-Celis ME. Inhibition of Cell Proliferation and Induction of Cell Cycle Arrest in Colon Cancer Cells by Lyophilized Mango ( Mangifera indica L.) Pulp Extract. Prev Nutr Food Sci 2022; 27:436-447. [PMID: 36721744 PMCID: PMC9843718 DOI: 10.3746/pnf.2022.27.4.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/03/2023] Open
Abstract
The present study evaluated the antiproliferative capacity and possible cell death mechanisms of lyophilized mango pulp extract (LMPE), applied to human colon cancer cells (SW480) and their metastasis-derived counterparts (SW620). The total phenolic content of LMPE was estimated by the Folin-Ciocalteu method. Three assays were employed to determine its antioxidant capacity: ferric-reducing antioxidant power, oxygen radical absorbance capacity, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the antiproliferative activity of LMPE was assessed by sulforhodamine B, clonogenic, and Ki-67 assays. Flow cytometry was employed to examine the cell cycle, production of intracellular reactive oxygen species (ROS), cell-surface phosphatidylserine, and change in mitochondrial membrane potential. LMPE exhibited a high level of total phenolic content and antioxidant activity. The mean maximal inhibitory concentration values of LMPE at 48 h of exposure were 43 and 29 mg/mL for SW480 and SW620, respectively. In the SW480 and SW620 cell lines, LMPE at 50 mg/mL and 48 h of exposure induced an increase in intracellular ROS, cell cycle arrest in the G2/M phase, and probably, apoptotic processes without mitochondrial depolarization. LMPE had an antiproliferative capacity against the human colorectal cancer cell lines SW480 and SW620. These results highlight the chemopreventive potential of LMPE in colorectal cancer treatments.
Collapse
Affiliation(s)
- Gustavo Argenor Lozano-Casabianca
- School of Nutrition and Dietetics, University of Antioquia, Medellín 050010, Colombia,
Correspondence to Gustavo Argenor Lozano-Casabianca, E-mail:
| | - Sandra Sulay Arango-Varela
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano (ITM)-Institución Universitaria, Medellín 050034, Colombia
| | - Johanny Aguillón-Osma
- Faculty of Science of Education, The University of Quindío, Armenia 630004, Colombia
| | - María Alejandra Llano-Ramírez
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano (ITM)-Institución Universitaria, Medellín 050034, Colombia
| | | |
Collapse
|
6
|
Effect of Different Coffee Brews on Tryptophan Metabolite-Induced Cytotoxicity in HT-29 Human Colon Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11122458. [PMID: 36552667 PMCID: PMC9774627 DOI: 10.3390/antiox11122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Coffee consumption positively influences colon health. Conversely, high levels of tryptophan metabolites such as skatole released from intestinal putrefactive fermentation in the presence of excessive dietary animal protein intake, and gut microbiota alterations, may have several adverse effects, including the development of colorectal cancer. Therefore, this study aimed to elucidate the potential protective effects of coffee in the presence of different skatole levels. The results showed that skatole exposure induced reduced cell viability and oxidative stress in the HT-29 human colon cancer cell line. However, co-treatment of cells with skatole and coffee samples was able to reduce ROS production (up to 45% for espresso) compared to cells not treated with coffee. Real-time PCR analysis highlighted that treating HT-29 cells with skatole increased the levels of inflammatory cytokines and chemokines TNF-α, IL-1β, IL-8, and IL12, whereas exposure to coffee extracts in cells that were pretreated with skatole showed anti-inflammatory effects with decreased levels of these cytokines. These findings demonstrate that coffee may counteract the adverse effects of putrefactive compounds by modulating oxidative stress and exerting anti-inflammatory activity in colonocytes, thus suggesting that coffee intake could improve health conditions in the presence of altered intestinal microbiota metabolism.
Collapse
|
7
|
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022; 11:foods11243966. [PMID: 36553708 PMCID: PMC9778104 DOI: 10.3390/foods11243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50-80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
Collapse
|
8
|
Mello GHD, D'Ávila CMDS, Viana AR, Krause LMF, Cadoná FC. Cocoa presents cytotoxicity against melanoma cancer cell lines (A-375 e B16-F10) and improves chemotherapy activity by increasing oxidative stress. J Food Biochem 2022; 46:e14512. [PMID: 36332189 DOI: 10.1111/jfbc.14512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Melanoma frequently presents a poor chemotherapy response. In this scenario, investigations for new therapies are essential. Thus, cocoa is highlighted in this area since it presents many biological properties. This study investigated the anticarcinogenic activity of cocoa in melanoma cell lines (A-375 and B16-F10). Melanoma and fibroblast (HFF-1) cell lines were exposed to different concentrations of cocoa seeds (30 to 2000 ug/ml) at 24 and 72 h. Cocoa was also associated with paclitaxel IC50. We conducted viability, proliferation, and oxidative stress analyses. Our findings suggested that cocoa isolated, at almost all concentrations tested, was able to reduce viability and proliferation of B16-F10 cells and proliferation of A-375 cells via oxidative stress increasing. Also, cocoa caused no damage in fibroblast cells. Moreover, cocoa increased paclitaxel activity on A-375 by reducing cell proliferation and increasing oxidative stress. Therefore, the results highlight cocoa as a potent selective adjuvant anticancer agent against melanoma. PRACTICAL APPLICATIONS: In conclusion, more studies should be performed to deeply explore this remarkable action of cocoa as a an promising adjuvant to enhance chemotherapy.
Collapse
Affiliation(s)
- Gabriela Haas de Mello
- Post-Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| | | | | | | | - Francine Carla Cadoná
- Post-Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| |
Collapse
|
9
|
Goya L, Román RS, de Pascual-Teresa S. Polyphenols effect on cerebrovascular health. Curr Med Chem 2021; 29:1029-1044. [PMID: 34844534 DOI: 10.2174/0929867328666211129123459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Polyphenols are a wide group of plant components that include a high number of individual compounds and are present in foods, dietary supplements and drugs. Many of them have shown pharmacological effects, are used in cardiovascular disease prevention, and not as many have been assayed in cancer treatment or co-treatment. In the last few years, however, the research on polyphenols implications in a healthy aging and especially in neurodegeneration and cognition improvement has increased dramatically. Most of the results found in this sense are again related with the capacity of some specific polyphenols to regulate the blood flow, but this time at the cerebral level, and to protect the endothelium at this same level. In this thorough review, we want to concentrate precisely on the effect of polyphenols on the cerebrovascular homeostasis, reviewing the mechanisms that underline this effect and the radiological methods and endogenous biomarkers that are used in human trials aimed at showing the beneficial effect of polyphenols or polyphenols rich foods on neuroprotection and cognition function.
Collapse
Affiliation(s)
- Luis Goya
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid. Spain
| | - Ricardo San Román
- Vascular and Interventional Radiology Department, Hospital 12 de Octubre, 28041 Madrid. Spain
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Jose Antonio Novais 10, 28040 Madrid. Spain
| |
Collapse
|
10
|
Role of Natural Antioxidant Products in Colorectal Cancer Disease: A Focus on a Natural Compound Derived from Prunus spinosa, Trigno Ecotype. Cells 2021; 10:cells10123326. [PMID: 34943833 PMCID: PMC8699069 DOI: 10.3390/cells10123326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is on the rise in industrialized countries, which is why it is important to find new compounds that are effective, with little or no adverse health effects. CRC arises from some cells of the epithelium which, following a series of genetic or epigenetic mutations, obtain a selective advantage. This work consists of a review on endogenous and exogenous antioxidant products that may have an efficacy in the treatment of CRC and an experimental study, in which the treatment was carried out with a natural compound with antitumor and antiproliferative activity, Prunus spinosa Trigno ecotype, patented by us, on HCT116 colorectal carcinoma cell line. The superoxide content was quantified after the treatments at different concentrations (2, 5, or 10 mg/mL) by means of the DHR123 probe; loss of the mitochondrial membrane potential with the tetramethylrodamine methyl ester (TMRM) cationic probe and reduced glutathione content (GSH) from monochlorobimane (MCB). This study revealed the importance of a careful choice of the concentration of the natural compound to be used in the CRC, due to the presence of a paradoxical effect, both antioxidant and pro-oxidant, depending on the different physiological conditions of the cell.
Collapse
|
11
|
Cinar ZÖ, Atanassova M, Tumer TB, Caruso G, Antika G, Sharma S, Sharifi-Rad J, Pezzani R. Cocoa and cocoa bean shells role in human health: An updated review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Effectiveness of theobromine on inhibition of 1,2-dimethylhydrazine-induced rat colon cancer by suppression of the Akt/GSK3β/β-catenin signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
13
|
Baranowska M, Suliborska K, Todorovic V, Kusznierewicz B, Chrzanowski W, Sobajic S, Bartoszek A. Interactions between bioactive components determine antioxidant, cytotoxic and nutrigenomic activity of cocoa powder extract. Free Radic Biol Med 2020; 154:48-61. [PMID: 32360591 DOI: 10.1016/j.freeradbiomed.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
Numerous studies have shown, rather disappointingly, that isolated bioactive phytochemicals are not as biologically effective as natural plant products. Such a discrepancy may be explained by the concept of food synergy, which was verified in this research for cocoa extract versus its major components with regard to cancer chemoprevention. The evaluation embraced the relationship between redox properties evaluated in cell-free systems with the aid of free radicals scavenging method and differential pulse voltammetry, and redox associated anticarcinogenic activities (cellular antioxidant activity, cytotoxicity, nutrigenomic activity) in human colon adenocarcinoma cell line exposed to either cocoa powder extract or artificial mixtures of cocoa bioactives at matching concentrations. In contrast to expectations, our results showed that the stepwise enrichment with antioxidants caused no gradual increase in the antioxidant activity of the model mixtures; also, these model mixtures did not reach the reducing potential of cocoa in the cell-free systems or cellular model employed. Further, the biological activities examined in colon adenocarcinoma cells did not alter in a stepwise manner that could reflect the gradual changes in composition of bioactive ingredients. In conclusion, the experiments presented here showed that the growing complexity of a mixture of phytochemicals seems to create a new redox bioactive substance rather than enrich the mixture with new activities, characteristic of the compound added. It follows that no simple, predictable relationship can be expected between the chemopreventive potential and the composition of real food items containing a complicated set of non-toxic redox active ingredients. Our observations suggest that the interactions between different bioactive compounds and food matrix components are cooperating factors determining the final bioactivity of foods.
Collapse
Affiliation(s)
- Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Klaudia Suliborska
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Vanja Todorovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Wojciech Chrzanowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
14
|
Ganesan K, Jayachandran M, Xu B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int J Mol Sci 2020; 21:E3976. [PMID: 32492917 PMCID: PMC7312951 DOI: 10.3390/ijms21113976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a fatal disease caused by the uncontrolled propagation and endurance of atypical colon cells. A person's lifestyle and eating pattern have significant impacts on the CRC in a positive and/or negative way. Diet-derived phytochemicals modulate the microbiome as well as targeting colon cancer stem cells (CSCs) that are found to offer significant protective effects against CRC, which were organized in an appropriate spot on the paper. All information on dietary phytochemicals, gut microbiome, CSCs, and their influence on CRC were accessed from the various databases and electronic search engines. The effectiveness of CRC can be reduced using various dietary phytochemicals or modulating microbiome that reduces or inverses the progression of a tumor as well as CSCs, which could be a promising and efficient way to reduce the burden of CRC. Phytochemicals with modulation of gut microbiome continue to be auspicious investigations in CRC through noticeable anti-tumorigenic effects and goals to CSCs, which provides new openings for cancer inhibition and treatment.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| |
Collapse
|
15
|
Aboulthana WM, Ibrahim NES, Osman NM, Seif MM, Hassan AK, Youssef AM, El-Feky AM, Madboli AA. Evaluation of the Biological Efficiency of Silver Nanoparticles Biosynthesized Using Croton tiglium L. Seeds Extract against Azoxymethane Induced Colon Cancer in Rats. Asian Pac J Cancer Prev 2020; 21:1369-1389. [PMID: 32458646 PMCID: PMC7541879 DOI: 10.31557/apjcp.2020.21.5.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is considered as the most common type of gastrointestinal cancers. Chemotherapy became limited due to the adverse side effects. Therefore, the most effective Croton tiglium extract was selected to be incorporated by silver nanoparticles (Ag-NPs) then evaluated against colon cancer induced by azoxymethane (AOM) in rats. METHODS Different hematological and biochemical measurements were quantified in addition to markers of oxidative stress. Specific tumor and inflammatory markers were assayed. Colonic tissues were examined histopathologically in addition to immunohistochemistry (IHC). Native proteins and isoenzymes patterns were electrophoretically assayed beside expression of Tumor Protein P53 (TP53) and Adenomatous Polyposis Coli (APC) genes in colonic tissues. RESULTS It was found that AOM caused significant (P≤0.05) elevation in the hematological and biochemical measurements. C. tiglium nano-extract restored these measurements to normalcy. Tumor and inflammatory markers elevated significantly (P≤0.05) in sera of AOM induced colon cancer group in addition to increasing peroxidation products with decline in antioxidant enzymes activities in colon tissues. Nano-extract restored these measurements to normalcy in post-treated group. Histopathological study revealed that nano-extract minimized severity of inflammatory reactions in all nano-extract treated groups and prevented anti-Keratin 20 antibody expression in post-treated group. The lowest similarity index (SI%) values were noticed with electrophoretic protein (SI=71.43%), lipid (SI=0.00%) and calcium (SI=75.00%) moieties of protein patterns, catalase (SI=85.71%), peroxidase (SI=85.71%), α-esterase (SI=50.00%) and β-esterase (SI=50.00%) isoenzymes in colon cancer group. Furthermore, AOM altered the relative quantities of total native bands. The nano-extract prevented the alterations that occurred qualitatively in nano-extract post-treated group and quantitatively in all nano-extract treated groups. Levels of TP53 and APC gene expression increased in AOM injected group and nano-extract restored their levels to normalcy in the post-treated group. CONCLUSION C. tiglium nano-extract exhibited ameliorative effect against the biochemical and molecular alterations induced by AOM in nano-extract post-treated group.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
- For Correspondence:
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | - Noha Mohamed Osman
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | - Mohamed Mahmoud Seif
- Toxicology and Food contaminants, Food Industry and Nutrition Division, National Research Center, Dokki, Giza, Egypt.
| | - Amgad Kamal Hassan
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt.
| | | | - Amal Mostafa El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - A A Madboli
- Animal Reproduction and Artificial Insemination Department, Veterinary Division, National Research Centre, Dokki, Giza, Egypt .
| |
Collapse
|
16
|
Flavonoids as Anticancer Agents. Nutrients 2020; 12:nu12020457. [PMID: 32059369 PMCID: PMC7071196 DOI: 10.3390/nu12020457] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic compounds subdivided into 6 groups: isoflavonoids, flavanones, flavanols, flavonols, flavones and anthocyanidins found in a variety of plants. Fruits, vegetables, plant-derived beverages such as green tea, wine and cocoa-based products are the main dietary sources of flavonoids. Flavonoids have been shown to possess a wide variety of anticancer effects: they modulate reactive oxygen species (ROS)-scavenging enzyme activities, participate in arresting the cell cycle, induce apoptosis, autophagy, and suppress cancer cell proliferation and invasiveness. Flavonoids have dual action regarding ROS homeostasis—they act as antioxidants under normal conditions and are potent pro-oxidants in cancer cells triggering the apoptotic pathways and downregulating pro-inflammatory signaling pathways. This article reviews the biochemical properties and bioavailability of flavonoids, their anticancer activity and its mechanisms of action.
Collapse
|
17
|
Shojaei-Zarghani S, Yari Khosroushahi A, Rafraf M, Asghari-Jafarabadi M, Azami-Aghdash S. Dietary natural methylxanthines and colorectal cancer: a systematic review and meta-analysis. Food Funct 2020; 11:10290-10305. [DOI: 10.1039/d0fo02518f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Some evidence suggests that caffeine, theophylline, and theobromine, as natural methylxanthines (MTXs), possess anti-cancer effects.
Collapse
Affiliation(s)
- Sara Shojaei-Zarghani
- Student Research Committee
- Faculty of Nutrition and Food Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
- Department of Medical Nanotechnology
| | - Maryam Rafraf
- Nutrition Research Center
- Department of Community Nutrition
- Faculty of Nutrition and Food Science
- Tabriz University of Medical Sciences
- Tabriz
| | | | - Saber Azami-Aghdash
- Faculty of Management and Medical Informatics
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
18
|
Afshari K, Haddadi NS, Haj-Mirzaian A, Farzaei MH, Rohani MM, Akramian F, Naseri R, Sureda A, Ghanaatian N, Abdolghaffari AH. Natural flavonoids for the prevention of colon cancer: A comprehensive review of preclinical and clinical studies. J Cell Physiol 2019; 234:21519-21546. [PMID: 31087338 DOI: 10.1002/jcp.28777] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids comprise a group of natural polyphenols consisting of more than 5,000 subtypes mostly existing in fruits and vegetables. Flavonoids consumption could potentially attenuate the incidence and recurrence risk of colorectal cancers through their antiperoxidative, antioxidant, and anti-inflammatory effects. In addition, these compounds regulate the mitochondrial function, balance the bacterial flora and promote the apoptosis process in cancerous cells. However, some previous data failed to show the effectiveness of flavonoids in reducing the risk of colorectal cancer. In this study, we have reviewed the efficacy of different flavonoids subtypes on the risk of colon cancer and molecular mechanisms involved in this process in both clinical and animal studies. In addition, we tried to elucidate the potential synergy between these compounds and current colorectal cancer treatments.
Collapse
Affiliation(s)
- Khashayar Afshari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mojtaba Rohani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Freshteh Akramian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rozita Naseri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition, CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Negar Ghanaatian
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
19
|
Wu Y, Zhong L, Yu Z, Qi J. Anti‐neuroinflammatory effects of tannic acid against lipopolysaccharide‐induced BV2 microglial cells via inhibition of NF‐κB activation. Drug Dev Res 2019; 80:262-268. [PMID: 30724376 DOI: 10.1002/ddr.21490] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zeran Yu
- Department of Neurosurgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Junhui Qi
- Department of Neurosurgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
20
|
Zamanian-Azodi M, Rezaei-Tavirani M. Investigation of health benefits of cocoa in human colorectal cancer cell line, HT-29 through interactome analysis. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:67-73. [PMID: 30949322 PMCID: PMC6441487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIM This bioinformatics study aims to identify the potential key genes influenced by cocoa extraction treatment on colon cancer cell line HT-29 after 24h. BACKGROUND Cocoa consumption has been claimed to have beneficial effects on human body including protection against diseases such as different types of cancers. However, the mechanisms behind this is still remained to be studied. METHODS The microarray dataset (GSE94154) from GEO, was the source for differentially expressed genes (DEGs) extraction through GEO2R analysis. The comparison was between 3 controls of colorectal cell line HT-29 and 3 ones incubated with 500 µg cocoa extraction after 24 h. Afterwards, the top significant DEGs were assigned for protein-protein interaction network construction and analysis by Cytoscape v 3.7.0. and the related applications. RESULTS The findings indicate that there are 222 up-regulated and 28 down-regulated genes among 250 top-ranked DEGs in cocoa incubated group. What is more, centrality analysis of the DEGs network identified 10 hub-bottlenecks that ISG15, MX 1, and STAT1 were among the significant differential expression genes with the contribution in type 1 interferon signaling pathway, positive regulation of erythrocyte differentiation, and negative regulation of viral genome replication. CONCLUSION In conclusion, the underlying mechanisms of cocoa treatment could be clarified by its up-regulatory and modulatory effect on prominent genes of tumor suppressor family. In other words, valuable clues for future clinical studies of cocoa health benefits are highlighted as anticancer agent in this study once validation studies are carried out.
Collapse
Affiliation(s)
- Mona Zamanian-Azodi
- Student Research Committee, Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Bera S, Das B, De A, Barua A, Das S, De B, Samanta A. Metabolite profiling and in-vitro colon cancer protective activity of Cycas revoluta cone extract. Nat Prod Res 2018; 34:599-603. [PMID: 30417669 DOI: 10.1080/14786419.2018.1491039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The methanolic extract of Cycas revoluta cone (MECR) was analyzed by GC-MS and UHPLC for metabolite profiling and was evaluated for anti-colon cancer property by using in vitro assays like Cell Viability Assay, Colony Formation Assay, ROS Determination, Flowcytometry, DAPI staining assay, Tunel assay. GC-MS and HPLC analysis confirmed the presence of different phytochemicals in the extract of Cycas revoluta cone. In-vitro studies showed MECR extract showed significant anti-colon cancer activity by reducing proliferation and inducing apoptosis in colon cancer cell (HCT-8) line, but no such activity was seen in normal colon cell (CCD-18Co) line. The investigation confirms that MECR may be a promising candidate in colon cancer protection.
Collapse
Affiliation(s)
- Samit Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Bhaskar Das
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Arnab De
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Atish Barua
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, Kolkata, India
| | - Susmita Das
- Phytochemistry and Pharmacognosy Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Amalesh Samanta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
22
|
Gothai S, Muniandy K, Gnanaraj C, Ibrahim IAA, Shahzad N, Al-Ghamdi SS, Ayoub N, Veeraraghavan VP, Kumar SS, Esa NM, Arulselvan P. Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms. Biomed Pharmacother 2018; 107:1514-1522. [DOI: 10.1016/j.biopha.2018.08.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
|
23
|
Son YS, Ullah HMA, Elfadl AK, Ghim SG, Chung MJ, Kim YD, Lee EJ, Kang KK, Jeong KS. Inhibition of Formation of Azoxymethane-induced Colonic Aberrant Crypt Foci in Rats by Edible Green Algae Capsosiphon fulvescens and Brown Algae Hizikia fusiforme. In Vivo 2018; 32:101-108. [PMID: 29275305 PMCID: PMC5892625 DOI: 10.21873/invivo.11210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Capsosiphon fulvescens (green seaweed) and Hizikia fusiforme (brown seaweed) are marine algae consumed as food supplements, especially in Japan, China and Korea, and are considered traditional medicinal tonics for certain ailments. The aim of this study was to investigate the possible inhibitory effects of dietary C. fulvescens and H. fusiforme on azoxymethane (AOM)-induced colorectal cancer (CRC) in rats. F344 male rats (5 weeks, 150 g) were divided into six groups as follows. Group 1: Injected with normal saline solution and fed control diet (untreated control). Group 2: Injected with AOM and fed control diet (treated control). Group 3: Injected with AOM and fed 1% C. fulvescens diet. Group 4: Injected with AOM and fed 2% C. fulvescens diet. Group 5: Injected with AOM and fed 2% H. fusiforme diet. Group 6: Injected with AOM and fed 6% H. fusiforme diet. Test animals received subcutaneous injections of AOM (15 mg/1 ml/kg body weight) once a week for 2 weeks to induce aberrant crypt foci (ACF) in treated control and experimental groups. We evaluated the effects of dietary C. fulvescens and H. fusiforme at two different dose levels: 1 and 2% C. fulvescens, and 2 and 6% H. fusiforme, on colonic carcinogenesis by AOM in rats. Our results suggest that body weights were not significantly different amongst groups. We found that feeding C. fulvescens and H. fusiforme with a control diet significantly (p<0.05) inhibited the development of ACF in experimental groups. C. fulvescens and H. fusiforme in food also significantly (p<0.05) reduced the proliferating cell nuclear antigen labeling index in the colonic tissues of experimental groups. These results demonstrate the chemopreventive potential of C. fulvescens and H. fusiforme against CRC in an AOM-induced rats.
Collapse
Affiliation(s)
- Young-Sook Son
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - H M Arif Ullah
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed K Elfadl
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soong-Gu Ghim
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Jin Chung
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Deuk Kim
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Ku Kang
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
García-Gutiérrez N, Maldonado-Celis ME, Rojas-López M, Loarca-Piña GF, Campos-Vega R. The fermented non-digestible fraction of spent coffee grounds induces apoptosis in human colon cancer cells (SW480). J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
25
|
Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans. Nutrients 2016; 8:212. [PMID: 27070643 PMCID: PMC4848681 DOI: 10.3390/nu8040212] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts.
Collapse
|