1
|
Jansakova K, Hill M, Celusakova H, Repiska G, Bicikova M, Macova L, Polonyiova K, Kopcikova M, Ostatnikova D. Steroidogenic pathway in girls diagnosed with autism spectrum disorders. PLoS One 2024; 19:e0312933. [PMID: 39636905 PMCID: PMC11620458 DOI: 10.1371/journal.pone.0312933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The diagnostic prevalence of autism spectrum disorders (ASD) shows boys to be more affected than girls. Due to this reason, there is a lack of research including and observing ASD girls. Present study was aimed to detect hormones of steroidogenesis pathway in prepubertal girls (n = 16) diagnosed with ASD and sex and age matched neurotypical controls (CTRL, n = 16). Collected plasma served for detection of conjugated and unconjugated steroids using gas chromatography tandem-mass spectrometry. We observed higher levels of steroids modulating ionotropic receptors, especially, GABAergic steroids and pregnenolone sulfate in ASD group. Concentration of many steroids throughout the pathway tend to be higher in ASD girls compared to CTRL. Pregnenolone and its isomers together with polar progestins and androstanes, i.e. sulfated steroids, were found to be higher in ASD group in comparison with CTRL group. Based on steroid product to precursor ratios, ASD group showed higher levels of sulfated/conjugated steroids suggesting higher sulfotransferase or lower steroid sulfatase activity and we also obtained data indicating lower activity of steroid 11β-hydroxylase compared to CTRL group despite higher corticosterone level observed in ASD. These findings need to be generalized in future studies to examine both genders and other age groups.
Collapse
Affiliation(s)
- Katarina Jansakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Martin Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Hana Celusakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Gabriela Repiska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marie Bicikova
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Ludmila Macova
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Katarína Polonyiova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Mária Kopcikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
3
|
Wang Z, Zhang B, Mu C, Qiao D, Chen H, Zhao Y, Cui H, Zhang R, Li S. Androgen levels in autism spectrum disorders: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1371148. [PMID: 38779452 PMCID: PMC11109388 DOI: 10.3389/fendo.2024.1371148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Background Accumulating evidence suggests that the autism spectrum disorder (ASD) population exhibits altered hormone levels, including androgens. However, studies on the regulation of androgens, such as testosterone and dehydroepiandrosterone (DHEA), in relation to sex differences in individuals with ASD are limited and inconsistent. We conducted the systematic review with meta-analysis to quantitatively summarise the blood, urine, or saliva androgen data between individuals with ASD and controls. Methods A systematic search was conducted for eligible studies published before 16 January 2023 in six international and two Chinese databases. We computed summary statistics with a random-effects model. Publication bias was assessed using funnel plots and heterogeneity using I2 statistics. Subgroup analysis was performed by age, sex, sample source, and measurement method to explain the heterogeneity. Results 17 case-control studies (individuals with ASD, 825; controls, 669) were assessed. Androgen levels were significantly higher in individuals with ASD than that in controls (SMD: 0.27, 95% CI: 0.06-0.48, P=0.01). Subgroup analysis showed significantly elevated levels of urinary total testosterone, urinary DHEA, and free testosterone in individuals with ASD. DHEA level was also significantly elevated in males with ASD. Conclusion Androgen levels, especially free testosterone, may be elevated in individuals with ASD and DHEA levels may be specifically elevated in males.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyu Mu
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Yan Zhao
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Rong Zhang
- Neuroscience Research Institute, Key Laboratory for Neuroscience, Ministry of Education of China, Peking University, Beijing, China
- Key Laboratory for Neuroscience, National Committee of Health, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Autism Research Center of Peking University Health Science Center, Beijing, China
| | - Sha Li
- Department of Anatomy, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
4
|
Gasser B, Escher G, Calin AE, Deppeler M, Marchon M, Kurz J, Mohaupt M. Are steroid hormones and autistic traits affected by metformin? First insights from a pilot. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100196. [PMID: 37577184 PMCID: PMC10415721 DOI: 10.1016/j.cpnec.2023.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Background Different lines of evidence imply that metformin could alter steroid hormone homeostasis and thereby improve social impairment. Here, we tried to correlate the impact of metformin treatment on alterations in steroid hormones and autism spectrum traits before versus after treatment with metformin. Material & methods Urine steroid hormones were measured using gas chromatography mass spectrometry in 12 male subjects (54.2 ± 9.1 years, 177.3 ± 4.1 cm, 80 ± 10.4 kg) and 7 female subjects (64.14 ± 18.0 years, 162.7 ± 4.1 cm, 76.1 ± 10.4 kg). Furthermore, a questionnaire on autism spectrum traits (Autism Spectrum Questionnaire]) was administered prior to and after metformin treatment. Results Overall, a decrease of steroid hormones were detected, which were most pronounced in the metabolites of corticosterone, deoxycortisol, cortisol, as well as androgens. These remained after Bonferroni correction (three classes: glucocorticoid, mineralocorticoid, androgens). No effect on autism spectrum traits (social skills, attention switching skills, attention to detail skills, communication skills, imagination skills), was identified pre versus post metformin treatment. Discussion The decreased steroid hormone levels are based on different mechanisms; one effect is likely via mitochondria, another effect via activated protein kinase prior to post treatment. The finding on autistic traits must be taxed as negative and do not directly provide an argument for using metformin in the treatment of autism.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052, Basel, Switzerland
| | - Genevieve Escher
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
| | | | - Michael Deppeler
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
| | - Miriam Marchon
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
| | - Johann Kurz
- Interscience Research Collaboration, Switzerland
| | - Markus Mohaupt
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, Lindenhofgruppe, 3006, Berne, Switzerland
- Department of Biomedical Research, University Bern, Switzerland
| |
Collapse
|
5
|
Gasser B, Escher G, Calin AE, Deppeler M, Marchon M, Mistry HD, Kurz J, Mohaupt MG. Prior to versus after Metformin Treatment-Effects on Steroid Enzymatic Activities. Life (Basel) 2023; 13:1094. [PMID: 37240739 PMCID: PMC10222342 DOI: 10.3390/life13051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Background: We recently reported that metformin administration has substantial effects on steroid hormone concentrations. In this study, we specifically explored which enzymatic activities were affected before a first treatment versus after a time of metformin treatment. Material and Methods: Twelve male subjects (54.2 ± 9.1 years, 177.3 ± 4.1 cm, 80 ± 10.4 kg) and seven female subjects (57.2 ± 18.9 years, 162.7 ± 4.1 cm, 76.1 ± 10.4 kg) were recruited based on an indication of metformin. Prior to the first intake of metformin and after 24 h, urine collections were performed. Urine steroid analysis was completed using gas chromatography-mass spectrometry. Results: The average reduction in steroid hormone concentrations after the metformin treatment was substantial and relatively equally distributed in all metabolites and the sum of all metabolites with 35.4%. An exception was dehydroepiandrosterone, with a decrease of almost three hundred percent of average concentration. In addition, the sum of all cortisol metabolites and 18-OH cortisol (indicative of oxidative stress) were lower after the metformin treatment. Furthermore, significant inhibition of 3ß-HSD activity was detectable. Discussion: Effects prior to and after the metformin treatment on inhibiting 3ß-HSD activity were detected in line with findings from others. Furthermore, the pattern of a reduction, for example, in the sum of all glucocorticoids following the metformin treatment supported an effect on oxidative stress, which was further supported by the reduction in 18-OH cortisol. Nevertheless, we do not understand all steps in the complex pattern of the enzymes that affect steroid hormone metabolism and, consequently, further studies are necessary to improve our understanding.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
| | - Genevieve Escher
- Department of Biomedical Research, University Bern, 3006 Bern, Switzerland
| | - Anca-Elena Calin
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, 3006 Berne, Switzerland
| | - Michael Deppeler
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, 3006 Berne, Switzerland
| | - Miriam Marchon
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, 3006 Berne, Switzerland
| | - Hiten D. Mistry
- Department of Women and Children’s Health, School of Life Course and Population Science, Kings College, London SE1 1UL, UK;
| | - Johann Kurz
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, 3006 Berne, Switzerland
- Interscience Research Collaboration, 8430 Leibnitz, Austria
| | - Markus G. Mohaupt
- Department of Biomedical Research, University Bern, 3006 Bern, Switzerland
- Lindenhofgruppe, Teaching Hospital of Internal Medicine, 3006 Berne, Switzerland
| |
Collapse
|
6
|
Gasser B, Calin AE, Escher G, Kurz J, Emmenegger A, Buerki S, Schmidt-Trucksäss A, Mohaupt M. Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS). Life (Basel) 2022; 12:life12111736. [PMID: 36362891 PMCID: PMC9696325 DOI: 10.3390/life12111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metformin is an effective treatment option for type 2 diabetes mellitus, and it is, to this day, the most prescribed oral antiglycaemic drug. Besides its effects mainly on mitochondrial activity, an off-label use came up as a pharmaceutical for subjects with a diagnosis of polycystic ovarian syndrome (PCOS) along with altered steroid hormone homeostasis. Besides these effects, even an influence on mood and social behavior was described, leading to the aim of this case report to elucidate the effects before versus after treatment with metformin on steroid hormones and social behavior. Methods: A female patient with diagnosed PCOS was analyzed three times for steroid hormone levels. The first analysis was performed before treatment; the second, after a period of 71 days with metformin at 2 × 500 mg; and the third, after a total of 144 days with metformin at 2 × 500 mg. Spot urine probes were taken in the morning for a combined gas chromatography−mass spectrometry (GC-MS), and the steroid levels were adjusted for creatinine excretion. A questionnaire on social behavior (Autism Spectrum Questionnaire) was administered before treatment and after 71 days. Results: A decrease in all the steroid hormones measured was detected after 71 and 144 days of treatment with metformin, being more pronounced after 144 days of treatment and highly significant (p < 0.001). Furthermore, in the untreated state, the class of corticosterone metabolites showed increased values compared to the female reference values for TH-11-DH-corticosterone, TH-corticosterone, and 5a-TH-corticosterone. In the class of estrogen metabolites, increased values compared to the reference values were detected for 17b-estradiol; in the class of 11-deoxycortisol metabolites, an increase in TH-11-deoxycortisol was detected. For the class of cortisol metabolites, increased values compared to the reference values were detected for cortisone, TH-cortisone, a-cortolone, b-cortolone, 20b-dihydrocortisone, cortisol, TH-cortisol, 5a-TH-cortisol, a-cortol, 20b-dihydrocortisol, and 6b-OH-cortisol. No increases in androgen metabolites were detected. Interestingly, weight decreased from 93.4 kg to 91.3 kg after 71 days and fell to 82.7 kg after 144 days of treatment. The skeletal muscle mass was 30.1 kg at the first visit, decreasing to 29.9 kg and to 27.5 kg. No significant difference in the social behavior score from baseline to after 71 days of treatment was detected. Discussion: Metformin improved the steroid hormone profiles from levels above the upper reference values to the middle of the reference values after 71 days and to the lower ends of the reference values after 144 days of treatment. This implies not only that metformin has an effect on steroid hormone levels, but in addition that the efficacy of the pharmaceutical seems to depend on the time interval from intake. To summarize, in this patient, steroid hormones were affected but social behavior was not. If no effect of metformin on social behavior exists, this must be supported by further cases.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
- Correspondence:
| | - Anca-Elena Calin
- Lindenhofgruppe—Teaching Hospital of Internal Medicine, Lindenhofgruppe, CH-3006 Bern, Switzerland
| | - Genevieve Escher
- Department of Biomedical Research, University of Bern, CH-3008 Bern, Switzerland
| | - Johann Kurz
- Interscience Research Collaboration, 8430 Leibnitz, Austria
| | - Aglaia Emmenegger
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Samuel Buerki
- Lindenhofgruppe—Teaching Hospital of Internal Medicine, Lindenhofgruppe, CH-3006 Bern, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Markus Mohaupt
- Lindenhofgruppe—Teaching Hospital of Internal Medicine, Lindenhofgruppe, CH-3006 Bern, Switzerland
| |
Collapse
|
7
|
Hampton S, Allison C, Aydin E, Baron-Cohen S, Holt R. Autistic mothers' perinatal well-being and parenting styles. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:1805-1820. [PMID: 35105233 PMCID: PMC9483197 DOI: 10.1177/13623613211065544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LAY ABSTRACT Autistic people can have difficulties during pregnancy and after giving birth, such as difficulty getting health care that meets their needs. Autistic people may therefore have lower well-being than non-autistic people during this time. We asked autistic and non-autistic people to fill in questionnaires measuring stress, depression, anxiety and satisfaction with life. They were asked to do this once during pregnancy, once 2 to 3 months after giving birth and once 6 months after giving birth. At 6 months after giving birth, they also filled in questionnaires about parenting. The autistic parents had higher stress, depression and anxiety scores than the non-autistic parents. For both groups, scores for anxiety went down over time. There were no differences between the groups on satisfaction with their life or how confident they were as a parent. There were no differences between the groups on most areas of parenting style, although autistic parents scored lower on parenting discipline. This study suggests that autistic people may be more stressed, depressed and anxious than non-autistic people during pregnancy and after giving birth. Autistic people therefore need good quality support during this time. This study also suggests that autistic and non-autistic parents may be just as likely to parent in positive ways such as being sensitive to their baby's needs.
Collapse
|
8
|
Groenman AP, Torenvliet C, Radhoe TA, Agelink van Rentergem JA, Geurts HM. Menstruation and menopause in autistic adults: Periods of importance? AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:1563-1572. [PMID: 34825585 PMCID: PMC9344571 DOI: 10.1177/13623613211059721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT Autism spectrum conditions were once seen as a predominantly male condition, but this has caused research to have little focus on women. Therefore, little is known about menstruation and menopause in autism spectrum conditions. Some smaller studies indicate that autistic individuals might suffer from increased difficulties surrounding these events. This study aimed to investigate whether autistic women experience more frequent premenstrual dysphoric disorder, causing extreme physical, emotional, and functional impairment. In a partly overlapping sample, we also examined whether women with autism spectrum condition experience increased complaints surrounding menopause. We did not find an increased prevalence of premenstrual dysphoric disorder in autism spectrum conditions (14.3%) compared with non-autistic women (9.5%). Those with autism spectrum conditions did experience increased menopausal complaints. These menopausal complaints were associated with higher levels of depression and autistic traits. In non-autistic women, menopausal complaints were associated with increased inattention, hyperactivity/impulsivity (i.e. attention deficit hyperactivity disorder traits), and depression. With this work, we show the important role that major reproductive milestones can have in an autistic woman's life.
Collapse
|
9
|
Metformin-Treatment Option for Social Impairment? An Open Clinical Trial to Elucidate the Effects of Metformin Treatment on Steroid Hormones and Social Behavior. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070998. [PMID: 35888087 PMCID: PMC9320776 DOI: 10.3390/life12070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Social behavior is mediated by steroid hormones, whereby various lines of evidence indicate that metformin might improve the symptoms of social withdrawal. This directly yields to the aim of the study to correlate the impact of metformin treatment on the potential alterations in steroid hormone homeostasis, which is ultimately impacting social behavior. Therefore, urinary samples of patients before and after treatment with metformin will be correlated to social behavior to elucidate potential changes in steroid hormone profiles and social behavior. MATERIAL AND METHODS An observational study in healthy adults with a new indication for metformin. Steroid hormone analysis, including the most prominent androgen, estrogen, progesterone, aldosterone, corticosterone, cortisone and cortisol metabolites analyzed with gas chromatography-mass spectrometry and a questionnaire on social behavior (Autism Spectrum Questionnaire (AQ)) will be administered prior to and after around a 12-week phase of metformin treatment. DISCUSSION It is likely that due to different pathophysiological mechanisms such as an effect on the respiratory chain in mitochondria or via AMP-activated protein kinase, a general alteration of steroid hormone levels can be detected prior to post treatment. The encompassing measurement of steroid hormones shall give hints concerning the involvement of specific cascades yielding potential pharmacological targets for future research.
Collapse
|
10
|
How Is CYP17A1 Activity Altered in Autism? A Pilot Study to Identify Potential Pharmacological Targets. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060867. [PMID: 35743898 PMCID: PMC9225657 DOI: 10.3390/life12060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Background: Increasing evidence exists that higher levels of androgens can be found in individuals with autism. Evidence yields to a susceptible role of Cytochrome P450 17A1 (CYP17A1) with its catalyzation of the two distinct types of substrate oxidation by a hydroxylase activity (17-alpha hydroxylase) and C17/20 lyase activity. However, to what extent steps are altered in affected children with autism versus healthy controls remains to be elucidated. Methods: Urine samples from 48 boys with autism (BMI 19.1 ± 0.6 kg/m2, age 14.2 ± 0.5 years) and a matched cohort of 48 healthy boys (BMI 18.6 ± 0.3 kg/m2, 14.3 ± 0.5 years) as well as 16 girls with autism (BMI 17.5 ± 0.7 kg/m2, age 13.8 ± 1.0 years) and a matched cohort of 16 healthy girls (BMI 17.2 ± 0.8 kg/m2, age 13.2 ± 0.8 years) were analyzed for steroid hormone metabolites by gas chromatography-mass spectrometry. Results: The activity of 17-alpha Hydroxylase increased by almost 50%, whereas activity of 17/20 Lyase activity increased by around 150% in affected children with autism. Furthermore, the concentration of Cortisol was higher as compared to the average increase of the three metabolites TH-Corticosterone, 5α-TH-Corticosterone and TH-11β-DH-Corticosterone, indicating, in addition, a stimulation by the CRH-ACTH system despite a higher enzymatic activity. Discussion: As it was shown that oxidative stress increases the 17/20-lyase activity via p38α, a link between higher steroid hormone levels and oxidative stress can be established. However, as glucocorticoid as well as androgen metabolites showed higher values in subjects affected with autism as compared to healthy controls, the data indicate, despite higher CYP17A1 activity, the presence of increased substrate availability in line with the Cholesterol theory of autism.
Collapse
|
11
|
Hyperandrogenism? Increased 17, 20-Lyase Activity? A Metanalysis and Systematic Review of Altered Androgens in Boys and Girls with Autism. Int J Mol Sci 2021; 22:ijms222212324. [PMID: 34830216 PMCID: PMC8620117 DOI: 10.3390/ijms222212324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction: There is increasing evidence that steroid hormone levels and, especially, androgen levels are elevated in autism. An overactivity of 17, 20-lyase with a higher production of the testosterone precursors dehydroepiandrosterone (DHEA) and androstenedione/androstenediol seems especially present in autism. Methods: An encompassing literature analysis was performed, searching for altered androgens in children with autism and using preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines. Included were all studies published before 31 March 2021 found using the following electronic databases: PubMed, Google Scholar, Cochrane Library, Scopus, and TRIP. Eight studies with boys and three studies with girls where steroid hormone measurements were performed from either plasma, urine, or saliva were found and analyzed. Analyses were performed for DHEA(-S/-C), androstenedione/androstenediol, and testosterone. Effect sizes were calculated for each parameter between mean concentrations for children with autism versus healthy controls. Results: Higher levels of androgens in autism were detected, with the majority of calculated effect sizes being larger than one. Conclusions: We found higher levels of the main testosterone precursors DHEA, androstenedione, and androstenediol, likely causing an additionally higher level of testosterone, and an increased 17, 20-lyase activity is therefore implied. Medications already used in PCOS such as metformin might be considered to treat hyperandrogenism in autism following further research.
Collapse
|
12
|
Gasser BA, Kurz J, Dick B, Mohaupt MG. A reply to 'Alteration of steroidogenesis in boys with autism spectrum disorders'. Transl Psychiatry 2021; 11:278. [PMID: 33972510 PMCID: PMC8111024 DOI: 10.1038/s41398-021-01393-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria
| | - Bernhard Dick
- grid.5734.50000 0001 0726 5157Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | | |
Collapse
|
13
|
Gasser B, Kurz J, Mohaupt M. Testosterone/Epitestosterone Ratios-Further Hints to Explain Hyperandrogenemia in Children with Autism. Diseases 2021; 9:diseases9010013. [PMID: 33535392 PMCID: PMC7931062 DOI: 10.3390/diseases9010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epitestosterone [E] has for a long time been considered as a biologically inactive androgen. However, recently a distinct antiandrogenic activity of this naturally occurring endogenous epimer of Testosterone has been demonstrated. Especially the ratios of testosterone/epitestosterone (T/E) seem to be key as inhibition of epitestosterone on androgen activity was postulated. As in autism, a higher androgen activity was implied. We, therefore, suggested higher levels of T/E ratios of children with autism versus children with typical development. METHODS Urine probes of 22 girls with autism (BMI 18.7 ± 4.3; average age 12.3 ± 3.8 years) and a sample of 51 controls (BMI 17.0 ± 2.6; average age 11.9 ± 4 years), as well as 61 boys with autism (BMI 17.04 ± 2. average age 11.9 ± 2.5 years) and 61 control boys (BMI 17.0 ± 2.6; average age 11.1 ± 3.0 years), were analyzed with gas chromatography mass spectrometry. RESULTS The average T/E ratio of all boys with autism was 2.5 ± 1.8 versus 2.4 ± 1.3 in boys with typical development, respectively. No significant difference between boys with autism versus boys with typical development could be detected (p = 0.977). In girls with autism, the average T/E ratio was 1.4 ± 0.9 versus 2.0 ± 1.4 in girls with typical development, whereby a significant difference could be detected (p = 0.0285). Further, polynomial analysis of the third degree were conducted, showing a dependence from age with reasonable coefficients of determination (0.075 < R2 < 0.22, all samples). DISCUSSION As encompassing steroid hormone analysis are expensive and work-intensive, we hoped to find an easily applicable biomarker to support diagnostics in autism. However, as a relatively small sample of only 22 girls with autism were analyzed and menstrual cycle and pubertal status were only partly controllable through the matching of BMI and age, the question arises if it was an incidental finding. Nevertheless, one suggestion might be that epitestosterone has the effect of a competitive inhibition on the androgen receptor, which would probably help to explain the higher prevalence of autism in boys as compared to girls. Presumably, as no significant difference was detected in boys, this effect might not be as relevant from a steroid hormone perspective, and other effects such as altered 17/20-hydroxylase activity as previously shown in boys and girls with autism seem to have more relevance. Analysis of larger samples, including plenty of metabolites and enzymatic cascades, as well as the role of backdoor pathway activity of androgen synthesis of girls with autism, are demanded in order to validate current findings of altered steroid hormones in autism.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department für Sport, Bewegung und Gesundheit, Universität Basel, 4052 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-207-63-18
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria;
| | - Markus Mohaupt
- Teaching Hospital Internal Medicine, Lindenhofgruppe, 3006 Berne, Switzerland;
| |
Collapse
|
14
|
Gasser BA, Kurz J, Senn W, Escher G, Mohaupt MG. Stress-induced alterations of social behavior are reversible by antagonism of steroid hormones in C57/BL6 mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:127-135. [PMID: 32894324 PMCID: PMC7778626 DOI: 10.1007/s00210-020-01970-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022]
Abstract
Various disturbances of social behavior, such as autism, depression, or posttraumatic stress disorder, have been associated with an altered steroid hormone homeostasis and a dysregulation of the hypothalamus-pituitary-adrenal axis. A link between steroid hormone antagonists and the treatment of stress-related conditions has been suggested. We evaluated the effects of stress induction on social behavior in the three chambers and its potential reversibility upon specific steroid hormone antagonism in mice. C57BL/6 mice were stressed twice daily for 8 days by chronic swim testing. Social behavior was evaluated by measuring, first, the preference for sociability and, second, the preference for social novelty in the three-chamber approach before and after the chronic swim test. The reversibility of behavior upon stress induction was analyzed after applying steroid hormone antagonists targeting glucocorticoids with etomidate, mineralocorticoids with potassium canrenoate, and androgens with cyproterone acetate and metformin. In the chronic swim test, increased floating time from 0.8 ± 0.2 min up to 4.8 ± 0.25 min was detected (p < 0.01). In the three-chamber approach, increased preference for sociability and decreased preference for social novelty was detected pre- versus post-stress induction. These alterations of social behavior were barely affected by etomidate and potassium canrenoate, whereas the two androgen antagonists metformin and cyproterone acetate restored social behavior even beyond baseline conditions. The alteration of social behavior was better reversed by the androgen as compared with the glucocorticoid and mineralocorticoid antagonists. This suggests that social behavior is primarily controlled by androgen rather than by glucocorticoid or mineralocorticoid action. The stress-induced changes in preference for sociability are incompletely explained by steroid hormone action alone. As the best response was related to metformin, an effect via glucose levels might confound the results and should be subject to future research.
Collapse
Affiliation(s)
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria
| | - Walter Senn
- Department of Physiology, University of Bern, 3012 Berne, Switzerland
| | - Genevieve Escher
- Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
- Division of Nephrology/Hypertension, University of Bern, 3010 Berne, Switzerland
| | - Markus Georg Mohaupt
- Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
- Teaching Hospital Internal Medicine, Lindenhofgruppe, 3006 Berne, Switzerland
| |
Collapse
|