1
|
Diseases Editorial Office. Expression of Concern: Gasser et al. Testosterone/Epitestosterone Ratios-Further Hints to Explain Hyperandrogenemia in Children with Autism. Diseases 2021, 9, 13. Diseases 2025; 13:65. [PMID: 40136605 PMCID: PMC11941592 DOI: 10.3390/diseases13030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
With this notice, the Diseases Editorial Office states their awareness of the concerns regarding potential scientific errors and an authorship dispute relating to this publication [...].
Collapse
|
2
|
Jansakova K, Hill M, Celusakova H, Repiska G, Bicikova M, Macova L, Polonyiova K, Kopcikova M, Ostatnikova D. Steroidogenic pathway in girls diagnosed with autism spectrum disorders. PLoS One 2024; 19:e0312933. [PMID: 39636905 PMCID: PMC11620458 DOI: 10.1371/journal.pone.0312933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The diagnostic prevalence of autism spectrum disorders (ASD) shows boys to be more affected than girls. Due to this reason, there is a lack of research including and observing ASD girls. Present study was aimed to detect hormones of steroidogenesis pathway in prepubertal girls (n = 16) diagnosed with ASD and sex and age matched neurotypical controls (CTRL, n = 16). Collected plasma served for detection of conjugated and unconjugated steroids using gas chromatography tandem-mass spectrometry. We observed higher levels of steroids modulating ionotropic receptors, especially, GABAergic steroids and pregnenolone sulfate in ASD group. Concentration of many steroids throughout the pathway tend to be higher in ASD girls compared to CTRL. Pregnenolone and its isomers together with polar progestins and androstanes, i.e. sulfated steroids, were found to be higher in ASD group in comparison with CTRL group. Based on steroid product to precursor ratios, ASD group showed higher levels of sulfated/conjugated steroids suggesting higher sulfotransferase or lower steroid sulfatase activity and we also obtained data indicating lower activity of steroid 11β-hydroxylase compared to CTRL group despite higher corticosterone level observed in ASD. These findings need to be generalized in future studies to examine both genders and other age groups.
Collapse
Affiliation(s)
- Katarina Jansakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Martin Hill
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Hana Celusakova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Gabriela Repiska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marie Bicikova
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Ludmila Macova
- Department of Steroid Hormones and Proteohormones, Institute of Endocrinology, Prague, Czech Republic
| | - Katarína Polonyiova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Mária Kopcikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Daniela Ostatnikova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Yin H, Zhang J, Chen Y, Guo J, Li Q, Dinnyes A, Sun Q, Liu X, He G, Zhu B, Liu Y, Xu P, Xu W, Xie J. Placenta-specific CYP11A1 overexpression lead to autism-like symptom in offspring with altered steroid hormone biosynthesis in the placenta-brain axis and rescued by vitamin D intervention. Brain Behav Immun 2024; 121:13-25. [PMID: 39025414 DOI: 10.1016/j.bbi.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Alterations in steroid hormone regulation have been implicated in the etiology and progression of autism spectrum disorders (ASD), with the enzyme cytochrome P450 family 11 subfamily A member 1 (CYP11A1)-a key catalyst in cholesterol side-chain cleavage, prominently expressed in the adrenal glands, ovaries, testes, and placenta-standing at the forefront of these investigations. The potential link between aberrations in placental Cyp11a1 expression and the resultant neurodevelopmental disorders, along with the mechanisms underpinning such associations, remains inadequately delineated. In this study, we employed a placental trophoblast-specific Cyp11a1 Hipp11 (H11) knock-in murine model to dissect the phenotypic manifestations within the placenta and progeny, thereby elucidating the underlying mechanistic pathways. Behavioral analyses revealed a diminution in social interaction capabilities alongside an augmented anxiety phenotype, as evidenced by open field and elevated plus maze assessments; both phenotypes were ameliorated after vitamin D3 supplementation. Electrophysiological assays underscored the augmented inhibition of paired-pulse facilitation, indicating impaired neuroplasticity in Cyp11a1 H11-modified mice. An elevation in progesterone concentrations was noted, alongside a significant upregulation of Th1-related cytokines (IL-6 and TNFα) across the plasma, placental, and frontal cortex-a pathological state mitigable through vitamin D3 intervention. Western blotting revealed a vitamin D-mediated rectification of vitamin D receptor and PGC-1α expression dysregulations. Immunofluorescence assays revealed microglial activation in the knock-in model, which was reversible upon vitamin D3 treatment. In conclusion, Cyp11a1 overexpression in the placenta recapitulated an autism-like phenotype in murine models, and vitamin D3 administration effectively ameliorated the resultant neurobehavioral and neuroinflammatory derangements. This study substantiates the application of Cyp11a1 as a biomarker in prenatal diagnostics and posits that prenatal vitamin D3 supplementation is a viable prophylactic measure against perturbations in steroid hormone metabolism associated with ASD pathogenesis.
Collapse
Affiliation(s)
- Heng Yin
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Chengdu Third People's Hospital, Chengdu 610041, China
| | - Jing Zhang
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Chengdu Third People's Hospital, Chengdu 610041, China
| | - Yajun Chen
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Juncen Guo
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Li
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Andras Dinnyes
- BioTalentum Ltd., Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xinghui Liu
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Guolin He
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Zhu
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, China
| | - Yan Liu
- Chengdu Third People's Hospital, Chengdu 610041, China
| | - Peng Xu
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, China.
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Jiang Xie
- Chengdu Third People's Hospital, Chengdu 610041, China.
| |
Collapse
|
4
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
5
|
NMR-Based Metabolomics of Rat Hippocampus, Serum, and Urine in Two Models of Autism. Mol Neurobiol 2022; 59:5452-5475. [PMID: 35715683 DOI: 10.1007/s12035-022-02912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Autism spectrum disorders (ASDs) are increasingly diagnosed as developmental disabilities of unclear etiology related to genetic, epigenetic, or environmental factors. The diagnosis of ASD in children is based on the recognition of typical behavioral symptoms, while no reliable biomarkers are available. Rats in whom ASD-like symptoms are due to maternal administration of the teratogenic drugs valproate or thalidomide on critical day 11 of pregnancy are widely used models in autism research. The present studies, aimed at detecting changes in the levels of hydrophilic and hydrophobic metabolites, were carried out on 1-month-old rats belonging to the abovementioned two ASD models and on a control group. Analysis of both hydrophilic and hydrophobic metabolite levels gives a broader view of possible mechanisms involved in the pathogenesis of autism. Hippocampal proton magnetic resonance (MRS) spectroscopy and ex vivo nuclear magnetic resonance (NMR) analysis of serum and urine samples were used. The results were analyzed using advanced statistical tests. Both the results of our present MRS studies of the hippocampus and of the NMR studies of body fluids in both ASD models, particularly from the THAL model, appeared to be consistent with previously published NMR results of hippocampal homogenates and data from the literature on autistic children. We detected symptoms of disturbances in neurotransmitter metabolism, energy deficit, and oxidative stress, as well as intestinal malfunction, which shed light on the pathogenesis of ASD and could be used for diagnostic purposes. These results confirm the usefulness of the noninvasive techniques used in ASD studies.
Collapse
|
6
|
Gasser BA, Kurz J, Dick B, Mohaupt MG. A reply to 'Alteration of steroidogenesis in boys with autism spectrum disorders'. Transl Psychiatry 2021; 11:278. [PMID: 33972510 PMCID: PMC8111024 DOI: 10.1038/s41398-021-01393-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria
| | - Bernhard Dick
- grid.5734.50000 0001 0726 5157Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | | |
Collapse
|