1
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
2
|
Wang T, Yan L, Yang X, Geng D, Xu G, Wang A. Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System. Bioengineering (Basel) 2023; 10:bioengineering10050568. [PMID: 37237638 DOI: 10.3390/bioengineering10050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Temporal interference magnetic stimulation is a novel noninvasive deep brain neuromodulation technology that can solve the problem of balance between focus area and stimulation depth. However, at present, the stimulation target of this technology is relatively single, and it is difficult to realize the coordinated stimulation of multiple brain regions, which limits its application in the modulation of multiple nodes in the brain network. This paper first proposes a multi-target temporal interference magnetic stimulation system with array coils. The array coils are composed of seven coil units with an outer radius of 25 mm, and the spacing between coil units is 2 mm. Secondly, models of human tissue fluid and the human brain sphere are established. Finally, the relationship between the movement of the focus area and the amplitude ratio of the difference frequency excitation sources under time interference is discussed. The results show that in the case of a ratio of 1:5, the peak position of the amplitude modulation intensity of the induced electric field has moved 45 mm; that is, the movement of the focus area is related to the amplitude ratio of the difference frequency excitation sources. The conclusion is that multi-target temporal interference magnetic stimulation with array coils can simultaneously stimulate multiple network nodes in the brain region; rough positioning can be performed by controlling the conduction of different coils, fine-tuning the position by changing the current ratio of the conduction coils, and realizing accurate stimulation of multiple targets in the brain area.
Collapse
Affiliation(s)
- Tingyu Wang
- School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Lele Yan
- School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Xinsheng Yang
- School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Duyan Geng
- School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Guizhi Xu
- School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Mulberry G, White KA, Crocker MA, Kim BN. A 512-Ch Dual-Mode Microchip for Simultaneous Measurements of Electrophysiological and Neurochemical Activities. BIOSENSORS 2023; 13:bios13050502. [PMID: 37232863 DOI: 10.3390/bios13050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In the study of the brain, large and high-density microelectrode arrays have been widely used to study the behavior of neurotransmission. CMOS technology has facilitated these devices by enabling the integration of high-performance amplifiers directly on-chip. Usually, these large arrays measure only the voltage spikes resulting from action potentials traveling along firing neuronal cells. However, at synapses, communication between neurons occurs by the release of neurotransmitters, which cannot be measured on typical CMOS electrophysiology devices. Development of electrochemical amplifiers has resulted in the measurement of neurotransmitter exocytosis down to the level of a single vesicle. To effectively monitor the complete picture of neurotransmission, measurement of both action potentials and neurotransmitter activity is needed. Current efforts have not resulted in a device that is capable of the simultaneous measurement of action potential and neurotransmitter release at the same spatiotemporal resolution needed for a comprehensive study of neurotransmission. In this paper, we present a true dual-mode CMOS device that fully integrates 256-ch electrophysiology amplifiers and 256-ch electrochemical amplifiers, along with an on-chip 512 electrode microelectrode array capable of simultaneous measurement from all 512 channels.
Collapse
Affiliation(s)
- Geoffrey Mulberry
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Kevin A White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Matthew A Crocker
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Khateb F, Kumngern M, Kulej T, Akbari M, Stopjakova V. 0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. SENSORS (BASEL, SWITZERLAND) 2022; 22:8619. [PMID: 36433216 PMCID: PMC9697352 DOI: 10.3390/s22228619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
This paper demonstrates the advantages of the multiple-input transconductor (MI-Gm) in filter application, in terms of topology simplification, increasing filter functions, and minimizing the count of needed active blocks and their consumed power. Further, the filter enjoys high input impedance, uses three MI-Gms and two grounded capacitors, and it offers both inverting and non-inverting versions of low-pass (LPF), high-pass (HPF), band-pass (BPF), band-stop (BS) and all-pass (AP) functions. The filter operates under a supply voltage of 0.5 V and consumes 37 nW, hence it is suitable for extremely low-voltage low-power applications like biosignals processing. The circuit was designed in a Cadence environment using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC). The post-layout simulation results, including Monte Carlo and process, voltage, temperature (PVT) corners for the proposed filter correlate well with the theoretical results that confirm attractive features of the developed filter based on MI-Gm.
Collapse
Affiliation(s)
- Fabian Khateb
- Department of Microelectronics, Brno University of Technology, Technická 10, 601 90 Brno, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 272 01 Kladno, Czech Republic
- Department of Electrical Engineering, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
| | - Montree Kumngern
- Department of Telecommunications Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tomasz Kulej
- Department of Electrical Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland
| | - Meysam Akbari
- Department of Electrical Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Viera Stopjakova
- Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 81219 Bratislava, Slovakia
| |
Collapse
|