1
|
Orjuela-Garzón IC, Rodríguez CF, Cruz JC, Briceño JC. Design, Characterization, and Evaluation of Textile Systems and Coatings for Sports Use: Applications in the Design of High-Thermal Comfort Wearables. ACS OMEGA 2024; 9:49143-49162. [PMID: 39713610 PMCID: PMC11656360 DOI: 10.1021/acsomega.4c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Exposure to high temperatures during indoor and outdoor activities increases the risk of heat-related illness such as cramps, rashes, and heatstroke (HS). Fatal cases of HS are ten times more common than serious cardiac episodes in sporting scenarios, with untreated cases leading to mortality rates as high as 80%. Enhancing thermal comfort can be achieved through heat loss in enclosed spaces and the human body, utilizing heat transfer mechanisms such as radiation, conduction, convection, and evaporation, which do not require initial energy input. Among these, two primary mechanisms are commonly employed in the textile industry to enhance passive cooling: radiation and conduction. The radiation approach encompasses two aspects: (1) reflecting solar spectrum (SS) wavelengths and (2) transmitting and emitting in the atmospheric window (AW). Conduction involves dissipating heat through materials with a high thermal conductivity. Our study focuses on the combined effect of these radiative and conductive approaches to increase thermal energy loss, an area that has not been extensively studied to date. Therefore, the main objective of this project is to develop, characterize, and evaluate a nanocomposite polymeric textile system using electrospinning, incorporating graphene oxide (GO) nanosheets and titanium dioxide nanoparticles (TiO2 NPs) within a recycled polyethylene terephthalate (r-PET) matrix to improve thermal comfort through the dissipation of thermal energy by radiation and conduction. The textile system with a 5:1 molar ratio between TiO2 NPs and GO demonstrates 89.26% reflectance in the SS and 98.40% transmittance/emittance in the AW, correlating to superior cooling performance, with temperatures 20.06 and 1.27 °C lower than skin temperatures outdoors and indoors, respectively. Additionally, the textile exhibits a high thermal conductivity index of 0.66 W/m K, contact angles greater than 120°, and cell viability exceeding 80%. These findings highlight the potential of the engineered textiles in developing high-performance sports cooling fabrics, providing significant advancements in thermal comfort and safety for athletes.
Collapse
Affiliation(s)
- Ian C. Orjuela-Garzón
- Department
of Biomedical Engineering, Universidad de
los Andes, Bogotá 111711, Colombia
| | - Cristian F. Rodríguez
- Department
of Biomedical Engineering, Universidad de
los Andes, Bogotá 111711, Colombia
- Neuroscience
Group of Antioquia, Cellular and Molecular Neurobiology Area, School
of Medicine, SIU, Universidad de Antioquia, Medellín 050010, Colombia
| | - Juan C. Cruz
- Department
of Biomedical Engineering, Universidad de
los Andes, Bogotá 111711, Colombia
- Grupo
de Diseño de Productos y Procesos (GDPP), Department of Chemical
and Food Engineering, Universidad de los
Andes, Bogotá 111711, Colombia
| | - Juan C. Briceño
- Department
of Biomedical Engineering, Universidad de
los Andes, Bogotá 111711, Colombia
- Department
of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá 110131, Colombia
| |
Collapse
|
2
|
Bandas C, Orha C, Nicolaescu M, Morariu Popescu MI, Lăzău C. 2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties. Int J Mol Sci 2024; 25:12521. [PMID: 39684234 DOI: 10.3390/ijms252312521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 12/18/2024] Open
Abstract
Due to population growth and global technological development, energy consumption has increased exponentially. The global energy crisis opens up many hotly debated topics regarding energy generation and consumption. Not only is energy production in short supply due to limited energy resources but efficient and sustainable storage has become a very important goal. Currently, there are energy storage devices such as batteries, capacitors, and super-capacitors. Supercapacitors or electrochemical capacitors can be very advantageous replacements for batteries and capacitors because they can achieve higher power density and energy density characteristics. The evolution and progress of society demand the use of innovative and composite nanostructured metal oxide materials, which fulfill the requirements of high-performance technologies. This review mainly addresses the synthesis techniques and properties of 2D and 3D metal oxide nanostructured materials, especially based on Ti, Fe, Ga, and Sn ions, electrochemical methods used for the characterization and application of 2D, and 3D nanostructured metal oxide structures in electrochemical storage systems of energy.
Collapse
Affiliation(s)
- Cornelia Bandas
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Corina Orha
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Mircea Nicolaescu
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| | - Mina-Ionela Morariu Popescu
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, 300223 Timisoara, Romania
| | - Carmen Lăzău
- Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania
| |
Collapse
|
3
|
Naghavi N, Jalaly M, Mohammadi S, Mousavi‐Khoshdel SM. An Investigation into the Influence of Graphene Content on Achieving a High-Performance TiO 2-Graphene Nanocomposite Supercapacitor. ChemistryOpen 2024; 13:e202400128. [PMID: 39086029 PMCID: PMC11564865 DOI: 10.1002/open.202400128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
This study presents the synthesis of TiO2-graphene nanocomposites with varying mass ratios of graphene (2.5, 5, 10, 20 wt. %) using a facile and cost-effective hydrothermal approach. By integrating TiO2 nanoparticles with graphene, a nanomaterial characterized by a two-dimensional structure, unique electrical conductivity and high specific surface area, the resulting hybrid material shows promise for application in supercapacitors. The nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman microscopy, field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Additionally, supercapacitive properties were investigated using a three-electrode setup by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) tests. Notably, the TiO2-20 wt. % rGO nanocomposite exhibited the highest specific capacitance of 624 F/g at 2 A/g, showcasing superior electrochemical performance. This specimen indicated a high rate capability and cyclic stability (93 % retention after 2000 cycles). Its remarkable energy density and power density of this sample designate it as a strong contender for practical supercapacitor applications.
Collapse
Affiliation(s)
- Negar Naghavi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science & Technology (IUST), NarmakTehran16846-13114Iran
| | - Maisam Jalaly
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science & Technology (IUST), NarmakTehran16846-13114Iran
| | - Samira Mohammadi
- School of ChemistryIran University of Science & Technology (IUST), NarmakTehran16846-13114Iran
| | | |
Collapse
|
4
|
Brandão ATSC, Rosoiu-State S, Costa R, Enache LB, Mihai GV, Potorac P, Invêncio I, Vázquez JA, Valcarcel J, Silva AF, Anicai L, Pereira CM, Enachescu M. Boosting Supercapacitor Efficiency with Amorphous Biomass-Derived C@TiO 2 Composites. CHEMSUSCHEM 2024; 17:e202301671. [PMID: 38728171 DOI: 10.1002/cssc.202301671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
Carbon materials are readily available and are essential in energy storage. One of the routes used to enhance their surface area and activity is the decoration of carbons with semiconductors, such as amorphous TiO2, for application in energy storage devices.
Collapse
Affiliation(s)
- Ana T S C Brandão
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Sabrina Rosoiu-State
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu Street, 011061, Bucharest, Romania
| | - Renata Costa
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Laura-Bianca Enache
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
| | - Geanina Valentina Mihai
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
| | - Pavel Potorac
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
| | - Inês Invêncio
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - José A Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), 36208, Vigo, Spain
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), 36208, Vigo, Spain
| | - A Fernando Silva
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Liana Anicai
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
- OLV Development SRL, Brasoveni 3, 023613, Bucharest, Romania
| | - Carlos M Pereira
- Instituto de Ciências Moleculares IMS-CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei, 313, 060042, Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania
| |
Collapse
|
5
|
Jadoon JK, Pham PV. Hybrid TiO 2-RGO nanocomposite as high specific capacitance electrode for supercapacitor. NANOTECHNOLOGY 2024; 35:435706. [PMID: 39133056 DOI: 10.1088/1361-6528/ad6a6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
This study describes the fabrication of composite electrodes comprising TiO2and reduced graphene oxide layers using a moderate-temperature hydrothermal method. The morphology, crystalline structure, chemical composition, and optical features of the prepared composites were analyzed by FE-SEM, x-ray diffraction, FTIR, and UV-visible spectroscopy. The cyclic voltammetry (CV) and Nyquist plots were used to assess the electrochemical and impedance responses of the composite electrodes, respectively. The analysis revealed that the incorporation of RGO reduced the TiO2bandgap to 3.87 eV 3.02 eV and improved the specific capacitance, enhancing the TiO2-RGO electrode's supercapacitive performance. CV studies highlight that the TiO2-RGO composite has a high specific capacitance of 152 F g-1at a substantially faster scan rate of 25 mV s-1in a 1.0 M-KOH dilute electrolyte. These findings confirmed the applicability of the fabricated electrodes as prospective supercapacitor electrodes.
Collapse
Affiliation(s)
- Jamil K Jadoon
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
Hermadianti SA, Handayani M, Anggoro MA, Ristiana DD, Anshori I, Esmawan A, Rahmayanti YD, Suhandi A, Timuda GE, Sunnardianto GK, Widagdo BW, Ermawati FU. Flower like-novel nanocomposite of Mg(Ti 0.99Sn 0.01)O 3decorated on reduced graphene oxide (rGO) with high capacitive behavior as supercapacitor electrodes. NANOTECHNOLOGY 2024; 35:255702. [PMID: 38295407 DOI: 10.1088/1361-6528/ad2480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
In this study, ceramic materials of Mg(Ti0.99Sn0.01)O3were synthesized and decorated on reduced graphene oxide, forming a nanocomposite of rGO/Mg(Ti0.99Sn0.01)O3(rGO/MTS001). The successful synthesis results were confirmed by XRD, UV-vis analysis, FT-IR, and SEM-EDS. The MTS001 has a flower-like morphology from scanning electron microscopy (SEM) analysis, and the nanocomposites of rGO/MTS001 showed MTS001 particles decorated on the rGO's surface. The electrochemical performance of rGO/MTS001 and MTS001 was investigated by determining the specific capacitance obtained in 1 M H2SO4solution by cyclic voltammetry, followed by galvanostatic charge-discharge analysis using a three-electrode setup. The rGO/MTS001 achieved a specific capacitance of 361.97 F g‒1, compared to MTS001 (194.90 F g‒1). The capacitance retention of rGO/MTS001 nanocomposite also depicted excellent cyclic stability of 95.72% after 5000 cycles at a current density of 0.1 A g‒1. The result showed that the nanocomposite of ceramics with graphene materials has a potential for high-performance supercapacitor electrodes.
Collapse
Affiliation(s)
- Syadza Aisyah Hermadianti
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Murni Handayani
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Department of Chemical Engineering, Pamulang University (UNPAM), Pamulang, Tangerang Selatan, Banten 15417, Indonesia
| | - Muhammad Aulia Anggoro
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Desinta Dwi Ristiana
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Agung Esmawan
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Yosephin Dewiani Rahmayanti
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Andi Suhandi
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Gerald Ensang Timuda
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
| | - Gagus Ketut Sunnardianto
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), Tangerang Selatan, 15314, Indonesia
- Research Collaboration Center for Quantum Technology 2.0, Bandung 40132, Indonesia
| | - Bambang Wisnu Widagdo
- Department of Informatic Engineering, Pamulang University, Tangerang Selatan, 15310, Indonesia
| | - Frida Ulfah Ermawati
- Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, 60213, Indonesia
| |
Collapse
|
7
|
Sahoo B, Sahoo PK, Rao Bhaviripudi V, Sahu KC, Tripathi A, Sahoo NK, Aepuru R, Gaikwad VM, Sahoo S, Satpati AK, Lee CP. Multifunctional Dy 2NiMnO 6/Reduced Graphene Oxide Nanocomposites and Their Catalytic, Electromagnetic Shielding, and Electrochemical Properties. ACS OMEGA 2024; 9:4600-4612. [PMID: 38313538 PMCID: PMC10832015 DOI: 10.1021/acsomega.3c07759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Multifunctional nanocomposites have shown great interest in clean energy systems and environmental applications in recent years. Herein, we first reported the synthesis of Dy2NiMnO6 (DNMO)/reduced graphene oxide (rGO) nanocomposites utilizing a hybrid approach involving sol-gel and solvothermal processes. Subsequently, we investigated these nanocomposites for their applications in catalysis, electromagnetic interference shielding, and supercapacitors. A morphological study suggests spherical-shaped DNMO nanoparticles of an average size of 382 nm that are uniformly distributed throughout the surface without any agglomeration. The as-prepared nanocomposites were used as catalysts to investigate the catalytic reduction of 4-nitrophenol in the presence of NaBH4. DNMO/rGO nanocomposites demonstrate superior catalytic activity when compared with bare DNMO, with the rate of reduction being influenced by the composition of the DNMO/rGO nanocomposites. In addition, novel multifunctional DNMO/rGO was incorporated into polyvinylidene difluoride (PVDF) to develop a flexible nanocomposite for electromagnetic shielding applications and exhibited a shielding effectiveness of 6 dB with 75% attenuation at a frequency of 8.5 GHz compared to bare PVDF and PVDF-DNMO nanocomposite. Furthermore, the electrochemical performance of DNMO/rGO nanocomposites was investigated as an electrode material for supercapacitors, exhibiting the highest specific capacitance of 260 F/g at 1 A/g. These findings provide valuable insights into the design of DNMO/rGO nanocomposites with remarkable performance in sustainable energy and environmental applications.
Collapse
Affiliation(s)
- Bibhuti
Bhusan Sahoo
- Department
of Mechanical Engineering, Siksha “O”
Anusandhan, Deemed to Be University, Bhubaneswar, Odisha 751030, India
| | - Prasanta Kumar Sahoo
- Department
of Mechanical Engineering, Siksha “O”
Anusandhan, Deemed to Be University, Bhubaneswar, Odisha 751030, India
- Environmental
Hydrology Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee 247667, India
| | - Vijayabhaskara Rao Bhaviripudi
- Department
of Physics, Defence Institute of Advanced
Technology, Girinagar, Pune, Maharashtra 411025, India
- Departamento
de Ingeniería Química, Biotecnología y Materiales,
FCFM, Universidad de Chile, Santiago 8370415, Chile
| | - Krushna Chandra Sahu
- Department
of Chemistry, Siksha ‘O’ Anusandhan,
Deemed to be University, Bhubaneswar, Odisha 751030, India
| | - Abhishek Tripathi
- Department
of Metallurgical and Materials Engineering, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Naresh Kumar Sahoo
- Department
of Chemistry, Siksha ‘O’ Anusandhan,
Deemed to be University, Bhubaneswar, Odisha 751030, India
| | - Radhamanohar Aepuru
- Departamento
de Mecanica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago 7800002, Chile
| | - Vishwajit M. Gaikwad
- Department
of Physics, Amolakchand Mahavidyalaya, Yavatmal, Maharashtra 445001, India
| | - Srikant Sahoo
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Trombay, Mumbai 400085, India
| | - Ashis Kumar Satpati
- Analytical
Chemistry Division, Bhabha Atomic Research
Centre, Trombay, Mumbai 400085, India
| | - Chuan-Pei Lee
- Department
of Applied Physics and Chemistry, University
of Taipei, Taipei 10048, Taiwan
| |
Collapse
|
8
|
Miao B, Zhang Y, Chen Q, Zhang Y, Cao Y, Bai Z, Chen L. Highly Enhanced Photocatalytic Hydrogen Production Performance of Heterostructured Ti 3C 2/TiO 2/rGO Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15579-15591. [PMID: 36473723 DOI: 10.1021/acs.langmuir.2c02227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There has been a dire need for the exploration of renewable clean hydrogen energy recourses in recent years. In this work, we investigated the photocatalytic hydrogen production of heterostructured Ti3C2/TiO2/rGO composites. Ti3C2/TiO2/rGO heterojunction nanocomposites were synthesized using two-step calcination and hydrothermal methods, and the optimum in situ growth ratio of TiO2 of 71.8% (nTi-O/nTi) and rGO mass ratio (mRGO/mTiO2/mTi3C2) of 12% were obtained. The target photocatalyst presented an outperforming photocatalytic hydrogen production performance of 1671.85 μmol·g-1 hydrogen production capacity in 4 h, with the maximum hydrogen production rate of 808.11 μmol·g-1·h-1 in the first hour being 3.08 times the maximum hydrogen production rate of bare TiO2 (262.66 μmol·g-1·h-1). The excellent hydrogen production performance was due to the formed rutile TiO2 and the constructed heterojunction of Ti3C2/TiO2/rGO, where rGO provided different electron transport channels, and made charge transfer easier, and restrained the recombination efficiency of electrons and holes.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Qiuling Chen
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - YiFan Zhang
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Yange Cao
- Henan International Joint Laboratory of Nano-photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou, Henan450001, China
| | - Zhiming Bai
- Hefei Innovation Research Institute of Beihang University, Beijing, Anhui230012, China
| | - Lei Chen
- Hefei Innovation Research Institute of Beihang University, Beijing, Anhui230012, China
| |
Collapse
|
9
|
Mahmoud AED, El-Maghrabi N, Hosny M, Fawzy M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ's thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89772-89787. [PMID: 35859234 PMCID: PMC9671977 DOI: 10.1007/s11356-022-21871-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 05/26/2023]
Abstract
In the current work, various concentrations of the aqueous extract of Ziziphus spina-christi were employed for the phytoreduction of graphene oxide (GO). The green synthesized reduced graphene oxide (rGO) was characterized through UV-Vis spectrometry, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDX). Gas chromatography-mass spectrometry (GC-MS) denoted the presence of numerous phytoconstituents including ketones, terpenoids, fatty acids, esters, and flavonoids, which acted as reducing and capping agents. The obtained results indicated the increase in rGO yield and shape with increasing the extract concentration. The optimized rGO was instantaneously ~100% removed methylene blue (MB) from the water at 5 mg L-1. However, the removal efficiency was slightly declined to reach 73.55 and 65.1% at 10 and 15 mg L-1, respectively. A powerful antibacterial activity for rGO particularly against gram-negative bacteria with a high concentration of 2 × 108 CFU mL-1 was confirmed. Furthermore, rGO demonstrated promising and comparable antioxidant efficiency with vitamin C against DPPH free radical scavenging. While vitamin C recorded 13.45 and 48.4%, the optimized rGO attained 13.30 and 45.20% at 12 and 50 μg mL-1, respectively.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mohamed Hosny
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|