1
|
Lee SY, Tan YH, Lau SY, Mubarak NM, Tan YY, Tan IS, Lee YH, Ibrahim ML, Karri RR, Khalid M, Chan YS, Adeoye JB. A state-of-the-art review of metal oxide nanoflowers for wastewater treatment: Dye removal. ENVIRONMENTAL RESEARCH 2024; 259:119448. [PMID: 38942255 DOI: 10.1016/j.envres.2024.119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.
Collapse
Affiliation(s)
- Sing Ying Lee
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam; Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yeong Huei Lee
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Mohd Lokman Ibrahim
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia; Centre of Nanomaterials Research, Institute of Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University, Punjab, 140401, India
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
3
|
Hengge E, Ihrenberger J, Steyskal EM, Buzolin R, Luckabauer M, Sommitsch C, Würschum R. Porosity evolution and oxide formation in bulk nanoporous copper dealloyed from a copper-manganese alloy studied by in situ resistometry. NANOSCALE ADVANCES 2023; 5:393-404. [PMID: 36756274 PMCID: PMC9846480 DOI: 10.1039/d2na00618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
The synthesis of bulk nanoporous copper (npCu) from a copper-manganese alloy by electrochemical dealloying and free corrosion as well as the electrochemical behaviour of the dealloyed structures is investigated by in situ resistometry. In comparison to the well-established nanoporous gold (npAu) system, npCu shows strongly suppressed reordering processes in the porous structure (behind the etch front), which can be attributed to pronounced manganese oxide formation. Characteristic variations with the electrolyte concentration and potential applied for dealloying could be observed. Cyclic voltammetry was used to clarify the electrochemical behaviour of npCu. Oxide formation is further investigated by SEM and EDX revealing a hybrid composite of copper and manganese oxide on the surface of a metallic copper skeleton. Platelet-like structures embedded in the porous structure are identified which are rich in manganese oxide after prolonged dealloying. As an outlook, this unique heterogeneous structure with a large surface area and the inherent properties of manganese and copper oxides may offer application potential for the development of electrodes for energy storage and catalysis.
Collapse
Affiliation(s)
- Elisabeth Hengge
- Institute of Materials Physics, Graz University of Technology Petersgasse 16 A-8010 Graz Austria +43 316 873-8481
| | - Jakob Ihrenberger
- Institute of Materials Physics, Graz University of Technology Petersgasse 16 A-8010 Graz Austria +43 316 873-8481
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology Petersgasse 16 A-8010 Graz Austria +43 316 873-8481
| | - Ricardo Buzolin
- Institute of Materials Science, Joining and Forming, Graz University of Technology Kopernikusgasse 24 A-8010 Graz Austria
- Christian Doppler Laboratory for Design of High-Performance Alloys by Thermomechanical Processing Kopernikusgasse 24 8010 Graz Austria
| | - Martin Luckabauer
- Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente Drienerlolaan 5 7522NB Enschede The Netherlands
| | - Christof Sommitsch
- Institute of Materials Science, Joining and Forming, Graz University of Technology Kopernikusgasse 24 A-8010 Graz Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology Petersgasse 16 A-8010 Graz Austria +43 316 873-8481
| |
Collapse
|
4
|
de Lima SLS, Pereira FS, de Lima RB, de Freitas IC, Spadotto J, Connolly BJ, Barreto J, Stavale F, Vitorino HA, Fajardo HV, Tanaka AA, Garcia MAS, da Silva AGM. MnO 2-Ir Nanowires: Combining Ultrasmall Nanoparticle Sizes, O-Vacancies, and Low Noble-Metal Loading with Improved Activities towards the Oxygen Reduction Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173039. [PMID: 36080076 PMCID: PMC9457901 DOI: 10.3390/nano12173039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/02/2023]
Abstract
Although clean energy generation utilizing the Oxygen Reduction Reaction (ORR) can be considered a promising strategy, this approach remains challenging by the dependence on high loadings of noble metals, mainly Platinum (Pt). Therefore, efforts have been directed to develop new and efficient electrocatalysts that could decrease the Pt content (e.g., by nanotechnology tools or alloying) or replace them completely in these systems. The present investigation shows that high catalytic activity can be reached towards the ORR by employing 1.8 ± 0.7 nm Ir nanoparticles (NPs) deposited onto MnO2 nanowires surface under low Ir loadings (1.2 wt.%). Interestingly, we observed that the MnO2-Ir nanohybrid presented high catalytic activity for the ORR close to commercial Pt/C (20.0 wt.% of Pt), indicating that it could obtain efficient performance using a simple synthetic procedure. The MnO2-Ir electrocatalyst also showed improved stability relative to commercial Pt/C, in which only a slight activity loss was observed after 50 reaction cycles. Considering our findings, the superior performance delivered by the MnO2-Ir nanohybrid may be related to (i) the significant concentration of reduced Mn3+ species, leading to increased concentration of oxygen vacancies at its surface; (ii) the presence of strong metal-support interactions (SMSI), in which the electronic effect between MnOx and Ir may enhance the ORR process; and (iii) the unique structure comprised by Ir ultrasmall sizes at the nanowire surface that enable the exposure of high energy surface/facets, high surface-to-volume ratios, and their uniform dispersion.
Collapse
Affiliation(s)
- Scarllett L. S. de Lima
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 Gávea, Rio de Janeiro 22453-900, RJ, Brazil
| | - Fellipe S. Pereira
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Roberto B. de Lima
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Isabel C. de Freitas
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Julio Spadotto
- Department of Materials, Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Brian J. Connolly
- Department of Materials, Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - Jade Barreto
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Fernando Stavale
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ, Brazil
| | - Hector A. Vitorino
- South American Center for Education and Research in Public Health, Universidad Norbert Wiener, Lima 15108, Peru
| | - Humberto V. Fajardo
- Departamento de Química, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Auro A. Tanaka
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Marco A. S. Garcia
- Departamento de Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão (UFMA), Av. dos Portugueses, 1966 Vila Bacanga, São Luís 65080-805, MA, Brazil
| | - Anderson G. M. da Silva
- Departamento de Engenharia Química e de Materiais-DEQM, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225 Gávea, Rio de Janeiro 22453-900, RJ, Brazil
| |
Collapse
|
5
|
Rademacher L, Beglau THY, Heinen T, Barthel J, Janiak C. Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction. Front Chem 2022; 10:945261. [PMID: 35958237 PMCID: PMC9360555 DOI: 10.3389/fchem.2022.945261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Iridium oxide (IrOx-NP) and palladium nanoparticles (Pd-NP) were supported on a 2,6-dicyanopyridine-based covalent-triazine framework (DCP-CTF) by energy-saving and sustainable microwave-assisted thermal decomposition reactions in propylene carbonate and in the ionic liquid [BMIm][NTf2]. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) confirm well-distributed NPs with sizes from 2 to 13 nm stabilized on the CTF particles. Metal contents between 10 and 41 wt% were determined by flame atomic absorption spectroscopy (AAS). Nitrogen sorption measurements of the metal-loaded CTFs revealed Brunauer–Emmett–Teller (BET) surface areas between 904 and 1353 m2 g−1. The composites show superior performance toward the hydrogen evolution reaction (HER) with low overpotentials from 47 to 325 mV and toward the oxygen reduction reaction (ORR) with high half-wave potentials between 810 and 872 mV. IrOx samples in particular show high performances toward HER while the Pd samples show better performance toward ORR. In both reactions, electrocatalysts can compete with the high performance of Pt/C. Exemplary cyclic voltammetry durability tests with 1000 cycles and subsequent TEM analyses show good long-term stability of the materials. The results demonstrate the promising synergistic effects of NP-decorated CTF materials, resulting in a high electrocatalytic activity and stability.
Collapse
Affiliation(s)
- Lars Rademacher
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tobias Heinen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Juri Barthel
- Ernst Ruska-Zentrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- *Correspondence: Christoph Janiak,
| |
Collapse
|