1
|
Krutovsky KV, Popova AA, Yakovlev IA, Yanbaev YA, Matveev SM. Response of Pedunculate Oak ( Quercus robur L.) to Adverse Environmental Conditions in Genetic and Dendrochronological Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:109. [PMID: 39795368 PMCID: PMC11723010 DOI: 10.3390/plants14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Pedunculate oak (Quercus robur L.) is widely distributed across Europe and serves critical ecological, economic, and recreational functions. Investigating its responses to stressors such as drought, extreme temperatures, pests, and pathogens provides valuable insights into its capacity to adapt to climate change. Genetic and dendrochronological studies offer complementary perspectives on this adaptability. Tree-ring analysis (dendrochronology) reveals how Q. robur has historically responded to environmental stressors, linking growth patterns to specific conditions such as drought or temperature extremes. By examining tree-ring width, density, and dynamics, researchers can identify periods of growth suppression or enhancement and predict forest responses to future climatic events. Genetic studies further complement this by uncovering adaptive genetic diversity and inheritance patterns. Identifying genetic markers associated with stress tolerance enables forest managers to prioritize the conservation of populations with higher adaptive potential. These insights can guide reforestation efforts and support the development of climate-resilient oak populations. By integrating genetic and dendrochronological data, researchers gain a holistic understanding of Q. robur's mechanisms of resilience. This knowledge is vital for adaptive forest management and sustainable planning in the face of environmental challenges, ultimately helping to ensure the long-term viability of oak populations and their ecosystems. The topics covered in this review are very broad. We tried to include the most relevant, important, and significant studies, but focused mainly on the relatively recent Eastern European studies because they include the most of the species' area. However, although more than 270 published works have been cited in this review, we have, of course, missed some published studies. We apologize in advance to authors of those relevant works that have not been cited.
Collapse
Affiliation(s)
- Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia
| | - Anna A. Popova
- Department of Forest Genetics, Biotechnology and Plant Physiology, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| | - Igor A. Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway;
| | - Yulai A. Yanbaev
- Department of Forestry and Landscape Design, Bashkir State Agrarian University, 450001 Ufa, Russia;
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia
| | - Sergey M. Matveev
- Department of Silviculture, Forest Inventory and Forest Management, G.F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russia;
| |
Collapse
|
2
|
Cui J, Li X, Lu Z, Jin B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. TREE PHYSIOLOGY 2024; 44:tpae002. [PMID: 38196002 DOI: 10.1093/treephys/tpae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Ancient trees are natural wonders because of their longevity, having lived for hundreds or thousands of years, and their ability to withstand changing environments and a variety of stresses. These long-lived trees have sophisticated defense mechanisms, such as the production of specialized plant metabolites (SPMs). In this review, we provide an overview of the major biotic and abiotic stresses that long-lived trees often face, as well as an analysis of renowned ancient tree species and their unique protective SPMs against environmental stressors. We also discuss the synthesis and accumulation of defensive SPMs induced by environmental factors and endophytes in these trees. Furthermore, we conducted a comparative genomic analysis of 17 long-lived tree species and discovered significant expansions of SPM biosynthesis gene families in these species. Our comprehensive review reveals the crucial role of SPMs in high resistance in long-lived trees, providing a novel natural resource for plant defense, crop improvement and even the pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiang Li
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou, China
| |
Collapse
|
3
|
Jorrin-Novo JV, Aroca R, Rey MD, Truniger V, Martínez-Gómez P. State-of-the-Art Molecular Plant Biology Research in Spain. Int J Mol Sci 2023; 24:16557. [PMID: 38068878 PMCID: PMC10706402 DOI: 10.3390/ijms242316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Molecular plant biology is the study of the molecular basis of plant life [...].
Collapse
Affiliation(s)
- Jesús V. Jorrin-Novo
- Department of Biochemistry and Molecular Biology, University of Cordoba (UCO), Campus de Excelencia Internacional A3 (CeiA3), E-14014 Cordoba, Spain; (J.V.J.-N.); (M.-D.R.)
| | - Ricardo Aroca
- Department of Soil and Plant Microbiology and Symbiotic Systems, EEZ-CSIC (Estación Experimental del Zaidin-Consejo Superior de Investigaciones Científicas), E-18100 Granada, Spain;
| | - María-Dolores Rey
- Department of Biochemistry and Molecular Biology, University of Cordoba (UCO), Campus de Excelencia Internacional A3 (CeiA3), E-14014 Cordoba, Spain; (J.V.J.-N.); (M.-D.R.)
| | - Verónica Truniger
- Department of Stress Biology and Pathology, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain;
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
4
|
Wang WB, He XF, Yan XM, Ma B, Lu CF, Wu J, Zheng Y, Wang WH, Xue WB, Tian XC, Guo JF, El-Kassaby YA, Porth I, Leng PS, Hu ZH, Mao JF. Chromosome-scale genome assembly and insights into the metabolome and gene regulation of leaf color transition in an important oak species, Quercus dentata. THE NEW PHYTOLOGIST 2023; 238:2016-2032. [PMID: 36792969 DOI: 10.1111/nph.18814] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/07/2023] [Indexed: 05/04/2023]
Abstract
Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.
Collapse
Affiliation(s)
- Wen-Bo Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiang-Feng He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Mei Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Cun-Fu Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wen-He Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Wen-Bo Xue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xue-Chan Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing-Fang Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Ping-Sheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Zeng-Hui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, College of Landscape Architecture, Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 90187, Sweden
| |
Collapse
|
5
|
Liu S, Xu G, Chen H, Zhang M, Cao X, Chen M, Chen J, Feng Q, Shi Z. Contrasting responses of soil microbial biomass and extracellular enzyme activity along an elevation gradient on the eastern Qinghai-Tibetan Plateau. Front Microbiol 2023; 14:974316. [PMID: 36744094 PMCID: PMC9889656 DOI: 10.3389/fmicb.2023.974316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Soil microbial community composition and extracellular enzyme activity are two main drivers of biogeochemical cycling. Knowledge about their elevational patterns is of great importance for predicting ecosystem functioning in response to climate change. Nevertheless, there is no consensus on how soil microbial community composition and extracellular enzyme activity vary with elevation, and little is known about their elevational variations on the eastern Qinghai-Tibetan Plateau, a region sensitive to global change. We therefore investigated the soil microbial community composition using phospholipid fatty acids (PLFAs) analysis, and enzyme activities at 2,820 m (coniferous and broadleaved mixed forest), 3,160 m (dark coniferous forest), 3,420 m (alpine dwarf forest), and 4,280 m (alpine shrubland) above sea level. Our results showed that soil microbial community composition and extracellular enzyme activities changed significantly along the elevational gradient. Biomass of total microbes, bacteria, and arbuscular mycorrhizal fungi at the highest elevation were the significantly lowest among the four elevations. In contrast, extracellular enzyme activities involved in carbon (C)-, nitrogen (N)-, and phosphorus (P)- acquiring exhibited the maximum values at the highest elevation. Total nutrients and available nutrients, especially P availability jointly explained the elevational pattern of soil microbial community, while the elevational variation of extracellular enzyme activities was dependent on total nutrients. Microbial metabolism was mainly C- and P-limited with an increasing C limitation but a decreasing P limitation along the elevational gradient, which was related significantly to mean annual temperature and total P. These results indicated a vital role of soil P in driving the elevational patterns of soil microbial community and metabolism. Overall, the study highlighted the contrasting responses of soil microbial biomass and extracellular enzyme activities to elevation, possibly suggesting the differences in adaption strategy between population growth and resource acquisition responding to elevation. The results provide essential information for understanding and predicting the response of belowground community and function to climate change on the eastern Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Huanhuan Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
| | - Qiuhong Feng
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Sichuan Wolong Forest Ecosystem Research Station, Sichuan Academy of Forestry, Chengdu, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turino, Italy
| |
Collapse
|
6
|
Castillejo MA, Pascual J, Jorrín-Novo JV, Balbuena TS. Proteomics research in forest trees: A 2012-2022 update. FRONTIERS IN PLANT SCIENCE 2023; 14:1130665. [PMID: 37089649 PMCID: PMC10114611 DOI: 10.3389/fpls.2023.1130665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
This review is a compilation of proteomic studies on forest tree species published in the last decade (2012-2022), mostly focused on the most investigated species, including Eucalyptus, Pinus, and Quercus. Improvements in equipment, platforms, and methods in addition to the increasing availability of genomic data have favored the biological knowledge of these species at the molecular, organismal, and community levels. Integration of proteomics with physiological, biochemical and other large-scale omics in the direction of the Systems Biology, will provide a comprehensive understanding of different biological processes, from growth and development to responses to biotic and abiotic stresses. As main issue we envisage that proteomics in long-living plants will thrive light on the plant responses and resilience to global climate change, contributing to climate mitigation strategies and molecular breeding programs. Proteomics not only will provide a molecular knowledge of the mechanisms of resilience to either biotic or abiotic stresses, but also will allow the identification on key gene products and its interaction. Proteomics research has also a translational character being applied to the characterization of the variability and biodiversity, as well as to wood and non-wood derived products, traceability, allergen and bioactive peptides identification, among others. Even thought, the full potential of proteomics is far from being fully exploited in forest tree research, with PTMs and interactomics being reserved to plant model systems. The most outstanding achievements in forest tree proteomics in the last decade as well as prospects are discussed.
Collapse
Affiliation(s)
- María Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
- *Correspondence: María Angeles Castillejo,
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agriculture and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
7
|
Guerrero-Sánchez VM, López-Hidalgo C, Rey MD, Castillejo MÁ, Jorrín-Novo JV, Escandón M. Multiomic Data Integration in the Analysis of Drought-Responsive Mechanisms in Quercus ilex Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3067. [PMID: 36432796 PMCID: PMC9696786 DOI: 10.3390/plants11223067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The integrated analysis of different omic layers can provide new knowledge not provided by their individual analysis. This approach is also necessary to validate data and reveal post-transcriptional and post-translational mechanisms of gene expression regulation. In this work, we validated the possibility of applying this approach to non-model species such as Quercus ilex. Transcriptomics, proteomics, and metabolomics from Q. ilex seedlings subjected to drought-like conditions under the typical summer conditions in southern Spain were integrated using a non-targeted approach. Two integrative approaches, PCA and DIABLO, were used and compared. Both approaches seek to reduce dimensionality, preserving the maximum information. DIABLO also allows one to infer interconnections between the different omic layers. For easy visualization and analysis, these interconnections were analyzed using functional and statistical networks. We were able to validate results obtained by analyzing the omic layers separately. We identified the importance of protein homeostasis with numerous protease and chaperones in the networks. We also discovered new key processes, such as transcriptional control, and identified the key function of transcription factors, such as DREB2A, WRKY65, and CONSTANS, in the early response to drought.
Collapse
|
8
|
Untargeted MS-Based Metabolomics Analysis of the Responses to Drought Stress in Quercus ilex L. Leaf Seedlings and the Identification of Putative Compounds Related to Tolerance. FORESTS 2022. [DOI: 10.3390/f13040551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect and responses to drought stress were analyzed in Quercus ilex L. seedlings using a nontargeted metabolomic approach, implementing the approaches of previous studies in which other -omics platforms, transcriptomics, and proteomics were employed. This work aimed to characterize the Q. ilex leaf metabolome, determining possible mechanisms and molecular markers of drought tolerance and identifying putative bioactive compounds. Six-month-old seedling leaves subjected to drought stress imposed by water withholding under high-temperature and irradiance conditions were collected when leaf fluorescence decreased by 20% (day 17) and 45% (day 24) relative to irrigated seedlings. A total of 3934 compounds were resolved, with 616 being variable and 342 identified, which belonged to five chemical families. Out of the identified compounds, 33 were variable, mostly corresponding to amino acids, carboxylic acids, benzenoids, flavonoids and isoprenoids. Epigallocatechin, ellagic acid, pulegone, indole-3-acrylic acid and dihydrozeatin-O-glucoside were up-accumulated under drought conditions at both sampling times. An integrated multi-omics analysis of phenolic compounds and related enzymes was performed, revealing that some enzymes involved in the flavonoid pathways (chalcone synthase, anthocyanidin synthase and anthocyanidin reductase) were up-accumulated at day 24 in non-irrigated seedlings. Some putative markers of tolerance to drought in Q. ilex are proposed for assisting breeding programs based on the selection of elite genotypes.
Collapse
|
9
|
Escandón M, Bigatton ED, Guerrero-Sánchez VM, Hernández-Lao T, Rey MD, Jorrín-Novo JV, Castillejo MA. Identification of Proteases and Protease Inhibitors in Seeds of the Recalcitrant Forest Tree Species Quercus ilex. FRONTIERS IN PLANT SCIENCE 2022; 13:907042. [PMID: 35832232 PMCID: PMC9271950 DOI: 10.3389/fpls.2022.907042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 05/09/2023]
Abstract
Proteases and protease inhibitors have been identified in the recalcitrant species Quercus ilex using in silico and wet methods, with focus on those present in seeds during germination. In silico analyses showed that the Q. ilex transcriptome database contained 2,240 and 97 transcripts annotated as proteases and protease inhibitors, respectively. They belonged to the different families according to MEROPS, being the serine and metallo ones the most represented. The data were compared with those previously reported for other Quercus species, including Q. suber, Q. lobata, and Q. robur. Changes in proteases and protease inhibitors alongside seed germination in cotyledon and embryo axis tissues were assessed using proteomics and in vitro and in gel activity assays. Shotgun (LC-MSMS) analysis of embryo axes and cotyledons in nonviable (NV), mature (T1) and germinated (T3) seeds allowed the identification of 177 proteases and 12 protease inhibitors, mostly represented by serine and metallo types. Total protease activity, as determined by in vitro assays using azocasein as substrate, was higher in cotyledons than in embryo axes. There were not differences in activity among cotyledon samples, while embryo axis peaked at germinated T4 stage. Gel assays revealed the presence of protease activities in at least 10 resolved bands, in the Mr range of 60-260 kDa, being some of them common to cotyledons and embryo axes in either nonviable, mature, and germinated seeds. Bands showing quantitative or qualitative changes upon germination were observed in embryo axes but not in cotyledons at Mr values of 60-140 kDa. Proteomics shotgun analysis of the 10 bands with protease activity supported the results obtained in the overall proteome analysis, with 227 proteases and 3 protease inhibitors identified mostly represented by the serine, cysteine, and metallo families. The combined use of shotgun proteomics and protease activity measurements allowed the identification of tissue-specific (e.g., cysteine protease inhibitors in embryo axes of mature acorns) and stage-specific proteins (e.g., those associated with mobilization of storage proteins accumulated in T3 stage). Those proteins showing differences between nonviable and viable seeds could be related to viability, and those variables between mature and germinated could be associated with the germination process. These differences are observed mostly in embryo axes but not in cotyledons. Among them, those implicated in mobilization of reserve proteins, such as the cathepsin H cysteine protease and Clp proteases, and also the large number of subunits of the CNS and 26S proteasome complex differentially identified in embryos of the several stages suggests that protein degradation via CNS/26S plays a major role early in germination. Conversely, aspartic proteases such as nepenthesins were exclusively identified in NV seeds, so their presence could be used as indicator of nonviability.
Collapse
Affiliation(s)
- Monica Escandón
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Ezequiel D. Bigatton
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Agricultural Microbiology, Faculty of Agricultural Science, National University of Córdoba, CONICET, Córdoba, Argentina
| | - Victor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Maria-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Jesus V. Jorrín-Novo,
| | - Maria Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- *Correspondence: Maria Angeles Castillejo,
| |
Collapse
|
10
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
11
|
Micropropagation, Characterization, and Conservation of Phytophthora cinnamomi-Tolerant Holm Oak Mature Trees. FORESTS 2021. [DOI: 10.3390/f12121634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Holm oak populations have deteriorated drastically due to oak decline syndrome. The first objective of the present study was to investigate the use of axillary budding and somatic embryogenesis (SE) to propagate asymptomatic holm oak genotypes identified in disease hotspots in Spain. Axillary budding was achieved in two out of six tolerant genotypes from the south-western region and in two out of four genotypes from the Mediterranean region. Rooting of shoots cultured on medium supplemented with 3 mg L−1 of indole-3-acetic acid plus 0.1 mg L−1 α-naphthalene acetic acid was achieved, with rates ranging from 8 to 36%. Shoot cultures remained viable after cold storage for 9–12 months; this procedure is therefore suitable for medium-term conservation of holm oak germplasm. SE was induced in two out of the three genotypes tested, by using nodes and shoot tips cultured in medium without plant growth regulators. In vitro cloned progenies of the tolerant genotypes PL-T2 and VA5 inhibited growth of Phytophthora cinnamomi mycelia when exposed to the oomycete in vitro. Significant differences in total phenol contents and in the expression profiles of genes regulating phenylpropanoid biosynthesis were observed between in vitro cultured shoots derived from tolerant trees and cultures established from control genotypes.
Collapse
|
12
|
Guerrero-Sánchez VM, Castillejo MÁ, López-Hidalgo C, Alconada AMM, Jorrín-Novo JV, Rey MD. Changes in the transcript and protein profiles of Quercus ilex seedlings in response to drought stress. J Proteomics 2021; 243:104263. [PMID: 34000457 DOI: 10.1016/j.jprot.2021.104263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Quercus ilex is the dominant tree species in natural forest ecosystems across the Mediterranean Basin and in the agrosilvopastoral system dehesa, which has a high ecological and economical significance. As in other forestry species, survival in Q. ilex is threatened by long periods of drought. This paper reports the transcriptome and proteome profiles of 6-month-old seedlings subjected to severe drought conditions. Drought was imposed by water withholding in seedlings grown in perlite for 28 days. Seedling leaves were collected when leaf fluorescence had decreased by 20% and 45% relative to well-watered seedlings. The transcriptome and proteome were analyzed by using Illumina and shotgun platforms. The quality and confidence of the mRNA and protein identifications and quantifications were assessed, obtaining 25,169 transcripts and 3312 proteins. Variable transcripts and proteins were analyzed by Venn diagram, Pearson's correlation, GO enrichment, KEGG pathways, multivariate analysis and interaction networks. Despite the poor correlation between mRNA and protein, both platforms gave a complementary view of the changes in the abundance of several gene products under drought conditions and indicated that gene expression regulation and translation to phenotype is quite complex and gene-specific. As a general tendency, while transcripts and proteins of the metabolism were down-accumulated, those of stress related were up-accumulated. Out of the variable dataset, four gene products (viz., FtSH6, CLPB1, CLPB3, and HSP22) were up-accumulated at both omics levels at the two surveyed times, being the first work where they are described in drought response in forest species. These chaperones and proteases could be considered as potential drought tolerance markers to be used in the selection of elite, resilient genotypes, and in breeding programs.
Collapse
Affiliation(s)
- Víctor Manuel Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Ana María Maldonado Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Jesús Valentín Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain.
| |
Collapse
|