1
|
Salleh NAM, Afifi AM, Zuki FM, SalehHudin HS. Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:286-307. [PMID: 40041430 PMCID: PMC11878129 DOI: 10.3762/bjnano.16.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
This review examines strategies to enhance the mechanical properties of chitosan/polyvinyl alcohol (PVA) electrospun nanofibers, recognized for their biomedical and industrial applications. It begins by outlining the fundamental properties of chitosan and PVA, highlighting their compatibility and mechanical characteristics. The electrospinning process is discussed, focusing on how various parameters and post-treatment methods influence fiber formation and performance. Key strategies for improvement are analyzed, including material modifications through blending and structural modifications like fiber orientation and multilayer constructions, and surface modifications such as coating and functionalization. The review also covers advanced characterization methods to evaluate mechanical properties and provides a comparative analysis of different enhancement approaches. Applications in biomedical and industrial contexts are explored, showcasing the versatility and innovation potential of these nanofibers. Finally, current challenges are addressed, and future research directions are proposed to overcome these obstacles and further enhance the mechanical properties of chitosan/PVA electrospun nanofibers, guiding their development for practical applications.
Collapse
Affiliation(s)
- Nur Areisman Mohd Salleh
- Forest Products Department, Forest Research Institute Malaysia, 52109, Kepong, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amalina Muhammad Afifi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hanna Sofia SalehHudin
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Pálos V, Nagy KS, Pázmány R, Juriga-Tóth K, Budavári B, Domokos J, Szabó D, Zsembery Á, Jedlovszky-Hajdu A. Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:781-796. [PMID: 38979523 PMCID: PMC11228618 DOI: 10.3762/bjnano.15.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.
Collapse
Affiliation(s)
- Veronika Pálos
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Rita Pázmány
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina Juriga-Tóth
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Bálint Budavári
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| |
Collapse
|
3
|
Taghe S, Mirzaeei S, Hosseinkhani T. Design and development of dual drug-loaded nanofibrous inserts for ophthalmic sustained delivery of AMK and VAN: Pharmacokinetic study in rabbit's eye. Int J Pharm 2024; 656:124056. [PMID: 38548072 DOI: 10.1016/j.ijpharm.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Tanin Hosseinkhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Rolińska K, Bakhshi H, Balk M, Blocki A, Panwar A, Puchalski M, Wojasiński M, Mazurek-Budzyńska M. Electrospun Poly(carbonate-urea-urethane)s Nonwovens with Shape-Memory Properties as a Potential Biomaterial. ACS Biomater Sci Eng 2023; 9:6683-6697. [PMID: 38032398 PMCID: PMC10716822 DOI: 10.1021/acsbiomaterials.3c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Poly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.28 ± 0.07 to 0.82 ± 0.12 μm were obtained with an average surface porosity of around 50-60%. Depending on the collector type and solution concentration, a broad range of tensile strengths (in the range of 0.3-9.6 MPa), elongation at break (90-290%), and Young's modulus (5.7-26.7 MPa) at room temperature of the nonwovens could be obtained. Furthermore, samples collected on the plate collector showed a shape-memory effect with a shape-recovery ratio (Rr) of around 99% and a shape-fixity ratio (Rf) of around 96%. Biological evaluation validated the inertness, stability, and lack of cytotoxicity of PCUU nonwovens obtained on the plate collector. The ability of mesenchymal stem cells (MSCs) and endothelial cells (HUVECs) to attach, elongate, and grow on the surface of the nonwovens suggests that the manufactured nonwovens are suitable scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Karolina Rolińska
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Hadi Bakhshi
- Department
of Life Science and Bioprocesses, Fraunhofer
Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Maria Balk
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Anna Blocki
- Institute
for Tissue Engineering and Regenerative Medicine, The Chinese University
of Hong Kong, Shatin, New Territories 999077, Hong Kong
- School of
Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
- Center
for Neuromusculoskeletal Restorative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
| | - Amit Panwar
- Institute
for Tissue Engineering and Regenerative Medicine, The Chinese University
of Hong Kong, Shatin, New Territories 999077, Hong Kong
- School of
Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
- Center
for Neuromusculoskeletal Restorative Medicine, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong
| | - Michał Puchalski
- Institute
of Material Science of Textiles and Polymer Composites, Faculty of
Material Technologies and Textile Design, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland
| | - Michał Wojasiński
- Faculty
of Chemical and Process Engineering, Department of Biotechnology and
Bioprocess Engineering, Laboratory of Biomedical Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | | |
Collapse
|
5
|
Bahrami S, Mirzadeh H, Solouk A, Duprez D. Bioinspired scaffolds based on aligned polyurethane nanofibers mimic tendon and ligament fascicles. Biotechnol J 2023; 18:e2300117. [PMID: 37440460 DOI: 10.1002/biot.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Topographical factors of scaffolds play an important role in regulating cell functions. Although the effects of alignment topography and three-dimensional (3D) configuration of nanofibers as well as surface stiffness on cell behavior have been investigated, there are relatively few reports that attempt to understand the relationship between synergistic effects of these parameters and cell responses. Herein, the influence of biophysical and biomechanical cues of electrospun polyurethane (PU) scaffolds on mesenchymal stem cells (MSCs) activities was evaluated. To this aim, multiscale bundles were developed by rolling up the aligned electrospun mats mimicking the fascicles of tendons/ligaments and other similar tissues. Compared to mats, the 3D bundles not only maintained the desirable topographical features (i.e., fiber diameter, fiber orientation, and pore size), but also boosted tensile strength (∼40 MPa), tensile strain (∼260%), and surface stiffness (∼1.75 MPa). Alignment topography of nanofibers noticeably dictated cell elongation and a uniaxial orientation, resulting in tenogenic commitment of MSCs. MSCs seeded on the bundles expressed higher levels of tenogenic markers compared to mats. Moreover, the biomimetic bundle scaffolds improved synthesis of extracellular matrix components compared to mats. These results suggest that biophysical and biomechanical cues modulate cell-scaffold interactions, providing new insights into hierarchical scaffold design for further studies.
Collapse
Affiliation(s)
- Saeid Bahrami
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Institut Biologie Paris Seine-Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique (CNRS) UMR 7622, Institut National de la Santé Et de la Recherche Médicale (Inserm) U1156, Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Hamid Mirzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Delphine Duprez
- Institut Biologie Paris Seine-Laboratoire de Biologie du Développement, Centre National de la Recherche Scientifique (CNRS) UMR 7622, Institut National de la Santé Et de la Recherche Médicale (Inserm) U1156, Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Shaker A, Khedewy AT, Hassan MA, El-Baky MAA. Thermo-mechanical characterization of electrospun polyurethane/carbon-nanotubes nanofibers: a comparative study. Sci Rep 2023; 13:17368. [PMID: 37833445 PMCID: PMC10575888 DOI: 10.1038/s41598-023-44020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Creating ultrathin, mountable fibers from a wide range of polymeric functional materials has made electrospinning an adequate approach to producing highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between unidirectional and randomly aligned TPU and TPU/MWCNTs nanofibrous structures. The incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.9 to 7.5 MPa. On the other hand, for unidirectionally spun fibers, Young's modulus increased from 17.1 to 18.4 MPa upon the addition of MWCNTs. However, dynamic mechanical analysis revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 to 614 MPa for TPU and TPU/MWCNTs mats, respectively, and a slight increase from 119 to 143 MPa for unidirectional TPU and TPU/MWCNTs mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 to 58.9 MPa and from 6.4 to 12 MPa for the random and aligned fibers, respectively. The glass transition values for all the mats fell in the temperature range of - 60 to - 20 °C. The thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU's polymer structure and that the TPU/MWCNTs nanocomposite exhibited stable thermal degradation properties.
Collapse
Affiliation(s)
- A Shaker
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira T Khedewy
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Hassan
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Abd El-Baky
- Mechanical Design and Production Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Sanchaniya JV, Lasenko I, Kanukuntla SP, Mannodi A, Viluma-Gudmona A, Gobins V. Preparation and Characterization of Non-Crimping Laminated Textile Composites Reinforced with Electrospun Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1949. [PMID: 37446465 DOI: 10.3390/nano13131949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
This research investigated the use of electrospun nanofibers as reinforcing laminates in textiles to enhance their mechanical properties for use as smart and technical textile applications. Crimping plays a crucial role in textiles. Because of crimp, fabrics have extensibility, compressibility, and improved quality. Although crimping is inevitable for fabrics used in smart textiles, it is also a disadvantage as it could weaken the fibers and reduce their strength and efficiency. The study focused on preparing laminated textile composites by electrospinning a polyacrylonitrile (PAN) polymer onto textile fabric. The research examined the effect of electrospun nanofibers on the fabric by using a tensile testing machine and scanning electron microscopy. The results revealed that the prepared laminated textile was crimp-free because of the orientation of the nanofibers directly electrospun on the fabric, which exhibited perfect bonding between the laminates. Additionally, the nanofiber-reinforced composite fabrics demonstrated a 75.5% increase in the elastic moduli and a 20% increase in elongation at breaking. The study concluded that the use of electrospun nanofibers as laminates in textile composites could enhance the elastic properties, and prepared laminated composites will have the advantages of nanofibers, such as crimp-free elastic regions. Furthermore, the mechanical properties of the laminated textile composite were compared with those of the micromechanical models, providing a deeper understanding of the behavior of these laminated composites.
Collapse
Affiliation(s)
- Jaymin Vrajlal Sanchaniya
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Inga Lasenko
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
| | - Sai Pavan Kanukuntla
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Anunand Mannodi
- Department of Theoretical Mechanics and Strength of Materials, Institute of Mechanics and Mechanical Engineering, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Arta Viluma-Gudmona
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia
| | - Valters Gobins
- Laboratory of Environmental Genetics, Institute of Biology, Faculty of Biology, Latvian University, Jelgavas Street 1, LV-1004 Riga, Latvia
| |
Collapse
|
8
|
Shaker A, Khedewy A, Hassan M, El-baky MA. Thermo-Mechanical Characterization of Electrospun Polyurethane /Carbon- Nanotubes Nanofibers: A Comparative Study.. [DOI: 10.21203/rs.3.rs-2939166/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Creating ultrathin mountable fibers from a wide range of polymeric functional materials have made electrospinning an adequate approach to produce highly flexible and elastic materials. In this paper, electrospinning was utilized to produce thermoplastic polyurethane (TPU) nanofibrous membranes for the purpose of studying their thermal and mechanical properties. Towards a study of the effects of fiber orientation and multi-walled carbon nanotubes (MWCNTs) as a filler on both mechanical and thermal characteristics of electrospun TPU mats, an experimental comparison was held between a unidirectional and randomly aligned TPU and TPU/CNT nanofibrous structures. Incorporation of MWCNTs into randomly oriented TPU nanofibers resulted in a significant increase in Young's modulus (E), from 3.66 MPa to 5.68 MPa. Conversely, for unidirectionally spun fibers, Young's modulus decreased from 16.68 MPa to 11.63 MPa upon addition of MWCNTs. However, dynamic mechanical analysis (DMA) revealed a different behavior. The randomly oriented specimens exhibited a storage modulus with a significant increase from 180 MPa to 614 MPa for TPU and TPU/CNT mats, respectively, and a slight decrease from 157 MPa to 143 MPa for unidirectional TPU and TPU/CNT mats, respectively. Meanwhile, the loss modulus increased with the addition of MWCNTs from 15.7 MPa to 58.9 MPa and from 6.4 MPa to 12 MPa for the random and aligned fibers, respectively. Thermal degradation of the membranes was not significantly affected by the addition of MWCNTs, indicating that the mixing of the two constituents did not change the TPU’s polymer structure, and the TPU/CNT nanocomposite exhibited stable thermal degradation properties.
Collapse
|
9
|
Improving the Physical Properties of Nanofibers Prepared by Electrospinning from Polyvinyl Chloride and Polyacrylonitrile at Low Concentrations. ADVANCES IN POLYMER TECHNOLOGY 2023. [DOI: 10.1155/2023/1811577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
In this study, both polyvinyl chloride (PVC) and polyacrylonitrile (PAN) were dissolved in dimethyl formaldehyde (DMF) with 8 wt. % concentrations at 25 : 75, 50 : 50, and 75 : 25 of PVC: PAN blending. For the investigation of the homogeneity and compatibility of mixture polymer solutions, it is examined by rheological properties such as viscosity, shear stress, shear rate, and calculation of the flow behavior index, while the investigation of the stability and high density of nanofibers without beads used field-emission scanning electron microscopy (FE-SEM), Fourier transform near-infrared spectroscopy (FT-NIR), X-ray diffraction (XRD), and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The results show that blending of PAN with PVC leads to improving of the electro spun ability of PVC with more stability, and the mean nanofiber diameter was
at 25 : 75 PVC: PAN. Moreover, mechanical properties are ultimate tensile strength and modulus of elasticity decreasing with decreasing the blending ration from pure PVC to 75 : 25 PVC: PAN nanofibers by 71% and 83%, respectively, while the elongation at break increases by 79%, and decomposition temperatures decreased from 451.96 to 345.38°C when changing the PVC content from pure PVC to 25 : 75 PVC: PAN. On the other hand, changing of the nanofiber behavior from hydrophobicity to hydrophilic increased the PAN content in PVC: PAN blends. Furthermore, the low interaction between the chains of polymers and the crystallinity (%) and crystalline size (nm) of blend nanofibers slightly decreased compared to the pure polymers. According to all tests, the 25: 75 PVC: PAN was the best blending ratio, which gave a more stable nanofiber produced at low concentrations and more compatible between the PVC and PAN.
Collapse
|
10
|
In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability. Nat Commun 2023; 14:1182. [PMID: 36864024 PMCID: PMC9981754 DOI: 10.1038/s41467-023-36709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Polymeric nanofibers are attractive nanomaterials owing to their high surface-area-to-volume ratio and superior flexibility. However, a difficult choice between durability and recyclability continues to hamper efforts to design new polymeric nanofibers. Herein, we integrate the concept of covalent adaptable networks (CANs) to produce a class of nanofibers ⎯ referred to dynamic covalently crosslinked nanofibers (DCCNFs) via electrospinning systems with viscosity modulation and in-situ crosslinking. The developed DCCNFs possess homogeneous morphology, flexibility, mechanical robustness, and creep resistance, as well as good thermal and solvent stability. Moreover, to solve the inevitable issues of performance degradation and crack of nanofibrous membranes, DCCNF membranes can be one-pot closed-loop recycled or welded through thermal-reversible Diels-Alder reaction. This study may unlock strategies to fabricate the next generation nanofibers with recyclable features and consistently high performance via dynamic covalent chemistry for intelligent and sustainable applications.
Collapse
|
11
|
The Mechanical Properties of Nanocomposites Reinforced with PA6 Electrospun Nanofibers. Polymers (Basel) 2023; 15:polym15030673. [PMID: 36771974 PMCID: PMC9919334 DOI: 10.3390/polym15030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Electrospun nanofibers are very popular in polymer nanocomposites because they have a high aspect ratio, a large surface area, and good mechanical properties, which gives them a broad range of uses. The application of nonwoven structures of electrospun nanofiber mats has historically been limited to enhancing the interlaminar responses of fiber-reinforced composites. However, the potential of oriented nanofibers to improve the characteristics of bulk matrices cannot be overstated. In this research, a multilayered laminate composite was created by introducing polyamide (PA6)-oriented nanofibers into an epoxy matrix in order to examine the effect of the nanofibers on the tensile and thermal characteristics of the nanocomposite. The specimens' fracture surfaces were examined using scanning electron microscopy (SEM). Using differential scanning calorimetry (DSC) analysis, the thermal characteristics of the nanofiber-layered composites were investigated. The results demonstrated a 10.58% peak in the nanocomposites' elastic modulus, which was compared to the numerical simulation and the analytical model. This work proposes a technique for the development of lightweight high-performance nanocomposites.
Collapse
|
12
|
Salimbeigi G, Cahill PA, McGuinness GB. Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models. J Mech Behav Biomed Mater 2022; 136:105493. [PMID: 36252423 DOI: 10.1016/j.jmbbm.2022.105493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Mechanical properties are among the key considerations for the design and fabrication of complex tissue models and implants. In addition to the choice of material and the processing technique, the solvent system can significantly influence the mechanical properties of scaffolds. Poly(ε-caprolactone) (PCL) has been abundantly used to develop constructs, fibrous in particular, for pharmaceutical and biomedical research due to the flexibility offered by PCL-based fibrous matrices. The effect of solvent type on the morphological features of electrospun fibres has been extensively studied. Nevertheless, comprehensive studies on the impact of the solvent system on the mechanical properties of electrospun PCL fibres are lacking. This study elucidates the relationship between topographical, physical and mechanical properties of electrospun PCL fibrous meshes upon using various solvent systems. The results of the mechanical investigation highlight the significance of inter-fibre bonds on the mechanical properties of the bulk membranes and that the option of altering the solvent system composition could be considered for tuning the mechanical properties of the PCL scaffolds to serve specific biomedical application requirements. The applicability of the developed membranes as artificial ECM (Extracellular matrix) in the lung will then be investigated and compared to the commercial Polycarbonate (PC) membranes that are often used for in vitro lung models.
Collapse
Affiliation(s)
- G Salimbeigi
- Centre for Medical Engineering Research, School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - P A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - G B McGuinness
- Centre for Medical Engineering Research, School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
13
|
A review on designing nanofibers with high porous and rough surface via electrospinning technology for rapid detection of food quality and safety attributes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Ozdemir S, Yalcin-Enis I, Yalcinkaya B, Yalcinkaya F. An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. MEMBRANES 2022; 12:929. [PMID: 36295688 PMCID: PMC9607146 DOI: 10.3390/membranes12100929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease is anticipated to remain the leading cause of death globally. Due to the current problems connected with using autologous arteries for bypass surgery, researchers are developing tissue-engineered vascular grafts (TEVGs). The major goal of vascular tissue engineering is to construct prostheses that closely resemble native blood vessels in terms of morphological, mechanical, and biological features so that these scaffolds can satisfy the functional requirements of the native tissue. In this setting, morphology and cellular investigation are usually prioritized, while mechanical qualities are generally addressed superficially. However, producing grafts with good mechanical properties similar to native vessels is crucial for enhancing the clinical performance of vascular grafts, exposing physiological forces, and preventing graft failure caused by intimal hyperplasia, thrombosis, aneurysm, blood leakage, and occlusion. The scaffold's design and composition play a significant role in determining its mechanical characteristics, including suturability, compliance, tensile strength, burst pressure, and blood permeability. Electrospun prostheses offer various models that can be customized to resemble the extracellular matrix. This review aims to provide a comprehensive and comparative review of recent studies on the mechanical properties of fibrous vascular grafts, emphasizing the influence of structural parameters on mechanical behavior. Additionally, this review provides an overview of permeability and cell growth in electrospun membranes for vascular grafts. This work intends to shed light on the design parameters required to maintain the mechanical stability of vascular grafts placed in the body to produce a temporary backbone and to be biodegraded when necessary, allowing an autologous vessel to take its place.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Textile Technologies and Design Faculty, Istanbul Technical University, Beyoglu, 34467 Istanbul, Turkey
| | - Baturalp Yalcinkaya
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic
| | - Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
15
|
Design of a nanofibrous guided tissue regeneration carrier as a potential drug delivery system for tetracycline hydrochloride in the management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Chen J, Ghosh T, Tang T, Ayranci C. Optimization of high‐quality carbon fiber production from electrospun aligned lignin fibers. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiawei Chen
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Tanushree Ghosh
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
- Center for Earth Sciences Indian Institute of Science Bengaluru Karnataka India
| | - Tian Tang
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| | - Cagri Ayranci
- Department of Mechanical Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|
17
|
Guner B, Bulbul YE, Dilsiz N. Recycling of polyvinyl butyral from waste automotive windshield and fabrication of their electrospun fibrous materials. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Nadaf A, Gupta A, Hasan N, Fauziya, Ahmad S, Kesharwani P, Ahmad FJ. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv 2022; 12:23808-23828. [PMID: 36093244 PMCID: PMC9396637 DOI: 10.1039/d2ra02864f] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made in techniques for creating electro-spun and non-electro-spun nanofibers. Nanofibers were the center of attention for industries and researchers due to their simplicity in manufacture and setup. The review discusses a thorough overview of both electrospinning and non-electrospinning processes, including their setup, fabrication process, components, and applications. The review starts with an overview of the field of nanotechnology, the background of electrospinning, the surge in demand for nanofiber production, the materials needed to make nanofibers, and the critical process variables that determine the characteristics of nanofibers. Additionally, the diverse applications of electrospun nanofibers, such as smart mats, catalytic supports, filtration membranes, energy storage/heritage components, electrical devices (batteries), and biomedical scaffolds, are then covered. Further, the review concentrates on the most recent and pertinent developments in nanofibers that are connected to the use of nanofibers, focusing on the most illustrative cases. Finally, challenges and their possible solutions, marketing, and the future prospects of nanofiber development are discussed. Electrospinning is a versatile and viable technique for generating ultrathin fibers.![]()
Collapse
Affiliation(s)
- Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Fauziya
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Farhan J. Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
19
|
Mehrandish S, Mohammadi G, Mirzaeei S. Preparation and functional evaluation of electrospun polymeric nanofibers as a new system for sustained topical ocular delivery of itraconazole. Pharm Dev Technol 2021; 27:25-39. [PMID: 34895024 DOI: 10.1080/10837450.2021.2018609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the rapid clearance of external agents from the surface of the cornea, conventional ocular formulations usually require frequent and long duration of administration to achieve a therapeutic level of the drug on the cornea which can be conquered using prolonged-release nanofibrous inserts. In the present study, for the first time, polymeric nanofibers of itraconazole (ITZ), a potent triazole antifungal agent, were prepared as ocular inserts to enhance the topical ocular delivery of the drug. Three different nanofibers were prepared by electrospinning using polyvinyl alcohol-cellulose acetate and polycaprolactone-polyethylene glycol 12 000 polymeric blends. Nanofibers indicated uniform structures with the mean diameter ranging between 137 and 180 nm. Differential scanning calorimetry and Fourier-transform infrared spectroscopy confirmed the amorphous state of the drug in the formulations and the no drug-polymer interaction. Appropriate stability, suitable flexibility, and 2.2-3.9 MPa tensile strength were observed. Formulations indicated antifungal efficacy against Candida albicans and Aspergillus fumigatus and cell viability >70% at different concentrations. Results of bioassay against Candida albicans exhibited prolonged in vitro release of 50-70% of ITZ for almost 55 days. The results suggested that the nanofibers could be considered suitable for prolonged delivery of the ITZ as an antifungal requiring frequent and long duration of administration.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Effects of Montmorillonite and Gentamicin Addition on the Properties of Electrospun Polycaprolactone Fibers. MATERIALS 2021; 14:ma14226905. [PMID: 34832307 PMCID: PMC8618055 DOI: 10.3390/ma14226905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.5 µm (for MMT) to 0.8 µm (for MMTG), an increase in the interplanar distance d001 from 12.3 Å (for MMT) to 13.9 Å (for MMTG) and altered clay grain morphology. In the second part of the experiment, the electrospinning process was carried out in which the polymer nonwovens with and without the modifier were prepared directly from dichloromethane (DCM) and N,N-dimethylformamide (DMF). The nanocomposite fibrous membranes containing montmorillonite were prepared from the same polymer solution but after homogenization with the modifier (13 wt.%). The degree of dispersion of the modifier was evaluated by average microarray analysis from observed area (EDS), which was also used to determine the intercalation of montmorillonite with gentamicin sulfate. An increase in the size of the fibers was found for the materials with the presence of the modifier, with the largest diameters measured for PCL_MMT (625 nm), and the smaller ones for PCL_MMTG (578 nm) and PCL_G (512 nm). The dispersion of MMT and MMTG in the PCL fibers was also confirmed by indirect studies such as change in mechanical properties of the nonwovens membrane, where the neat PCL nonwoven was used as a reference material. The addition of the modifier reduced the contact angle of PCL nonwovens (from 120° for PCL to 96° for PCL_G and 98° for PCL_MMTG). An approximately 10% increase in tensile strength of the nonwoven fabric with the addition of MMT compared to the neat PCL nonwoven fabric was also observed. The results of microbiological tests showed antibacterial activity of all obtained materials; however, the inhibition zones were the highest for the materials containing gentamicin sulphate, and the release time of the active substance was significantly extended for the materials with the addition of montmorillonite containing the antibiotic. The results clearly show that the electrospinning technique can be effectively used to obtain nanobiocomposite fibers with the addition of nonintercalated and intercalated montmorillonite with improved strength and increased stiffness compared to materials made only of the polymer fibers, provided that a high filler dispersion in the spinning solution is obtained.
Collapse
|
21
|
Le Quoc P, Solovieva AY, Uspenskaya MV, Olekhnovich RO, Sitnikova VE, Strelnikova IE, Kunakova AM. High-Porosity Polymer Composite for Removing Oil Spills in Cold Regions. ACS OMEGA 2021; 6:20512-20521. [PMID: 34395997 PMCID: PMC8359129 DOI: 10.1021/acsomega.1c02517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 05/28/2023]
Abstract
In this work, polyvinyl chloride (PVC)/clay nanofiber composites with various contents were fabricated by the electrospinning process. The morphology, porosity, density, and mechanical properties of the nanofiber mats were investigated. In addition, PVC/clay nanofiber mats were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Moreover, the influence of the clay content in the nanofiber mats and its effect on oil sorption capacity were also evaluated. The results show that the clay particle diameter affects the fabrication, morphology, porosity, density, mechanical properties, and sorption capacity of the nanofiber mats. Adding clay in nanofiber composite materials leads to higher porosity and a higher oil sorption capacity. PVC/clay nanofiber mats have a high oil sorption capacity at low temperatures. They exhibit a high potential to be used as materials to eliminate oil spills under arctic conditions.
Collapse
Affiliation(s)
- Pham Le Quoc
- Institute
BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, St. Petersburg 197101, Russia
| | - Alexandra Y. Solovieva
- Institute
BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, St. Petersburg 197101, Russia
| | - Mayya V. Uspenskaya
- Institute
BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, St. Petersburg 197101, Russia
| | - Roman O. Olekhnovich
- Institute
BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, St. Petersburg 197101, Russia
| | - Vera E. Sitnikova
- Institute
BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, St. Petersburg 197101, Russia
| | - Inna E. Strelnikova
- Institute
BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, St. Petersburg 197101, Russia
| | - Anisa M. Kunakova
- Gazprom
Neft STC LLC, 75-79 liter
D Moika River emb., St. Petersburg 190000, Russia
| |
Collapse
|
22
|
A Review on Electrospun PVC Nanofibers: Fabrication, Properties, and Application. FIBERS 2021. [DOI: 10.3390/fib9020012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyvinyl chloride (PVC) is a widely used polymer, not only in industry, but also in our daily life. PVC is a material that can be applied in many different fields, such as building and construction, health care, and electronics. In recent decades, the success of electrospinning technology to fabricate nanofibers has expanded the applicability of polymers. PVC nanofibers have been successfully manufactured by electrospinning. By changing the initial electrospinning parameters, it is possible to obtain PVC nanofibers with diameters ranging from a few hundreds of nanometers to several micrometers. PVC nanofibers have many advantages, such as high porosity, high mechanical strength, large surface area, waterproof, and no toxicity. PVC nanofibers have been found to be very useful in many fields with a wide variety of applications such as air filtration systems, water treatment, oil spill treatment, batteries technology, protective clothing, corrosion resistance, and many others. This paper reviews the fabricating method, properties, applications, and prospects of PVC nanofibers.
Collapse
|