1
|
Schiebel CS, Bueno LR, Pargas RB, de Mello Braga LLV, da Silva KS, Fernandes ACVU, Dos Santos Maia MH, de Oliveira NMT, Bach C, Maria-Ferreira D. Exploring the biological activities and potential therapeutic applications of agro-industrial waste products through non-clinical studies: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175317. [PMID: 39111448 DOI: 10.1016/j.scitotenv.2024.175317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The latent potential of active ingredients derived from agro-industrial waste remains largely untapped and offers a wealth of unexplored resources. While these types of materials have applications in various fields, their ability to benefit human health needs to be further explored and investigated. This systematic review was conducted to systematically evaluate non-clinical studies that have investigated the biological effects of fractions, extracts and bioactive compounds from agro-industrial wastes and their potential therapeutic applications. Articles were selected via PubMed, Embase and Medline using the descriptors (by-products[title/abstract]) AND (agro-industrial[title/abstract]). The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42024491021. After a detailed analysis based on inclusion and exclusion criteria, a total of 38 articles were used for data extraction and discussion of the results. Information was found from in vitro and in vivo experiments investigating a variety of residues from the agro-industry. The studies investigated peels, pomace/bagasse, pulp, seeds, aerial parts, cereals/grains and other types of waste. The most studied activities include mainly antioxidant and anti-inflammatory effects, but other activities such as antimicrobial, cytotoxic, antiproliferative, antinociceptive, hypoglycemic, antihyperglycemic and anticoagulant effects have also been described. Finally, the studies included in this review demonstrate the potential of agro-industrial waste and can drive future research with a focus on clinical application.
Collapse
Affiliation(s)
- Carolina Silva Schiebel
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Romulo Barreiro Pargas
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Karien Sauruk da Silva
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Ana Carolina Vieira Ulysséa Fernandes
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Mateus Henrique Dos Santos Maia
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Camila Bach
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Daniele Maria-Ferreira
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil.
| |
Collapse
|
2
|
Rondini T, Branciari R, Franceschini E, Acito M, Fatigoni C, Roila R, Ranucci D, Villarini M, Galarini R, Moretti M. Olive Mill Wastewater Extract: In Vitro Genotoxicity/Antigenotoxicity Assessment on HepaRG Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1050. [PMID: 39200660 PMCID: PMC11354589 DOI: 10.3390/ijerph21081050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024]
Abstract
Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW's biological effects, with an aim to developing a food supplement, we performed a chemical characterisation of the extract using the Liquid Chromatography-Quadrupole Time-of-flight spectrometry (LC-QTOF) and an in vitro genotoxicity/antigenotoxicity assessment on HepaRG ™ cells. Chemical analysis revealed that the most abundant phenolic compound was hydroxytyrosol. Biological tests showed that the extract was not cytotoxic at the lowest tested concentrations (from 0.25 to 2.5 mg/mL), unlike the highest concentrations (from 5 to 20 mg/mL). Regarding genotoxic activity, when tested at non-cytotoxic concentrations, the extract did not display any effect. Additionally, the lowest tested OMWW concentrations showed antigenotoxic activity (J-shaped dose-response effect) against a known mutagenic substance, reducing the extent of DNA damage in the co-exposure treatment. The antigenotoxic effect was also obtained in the post-exposure procedure, although only at the extract concentrations of 0.015625 and 0.03125 mg/mL. This behaviour was not confirmed in the pre-exposure protocol. In conclusion, the present study established a maximum non-toxic OMWW extract dose for the HepaRG cell model, smoothing the path for future research.
Collapse
Affiliation(s)
- Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - Edoardo Franceschini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (R.R.); (D.R.)
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via G. Salvemini 1, 06126 Perugia, Italy;
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (T.R.); (E.F.); (M.A.); (C.F.); (M.V.)
| |
Collapse
|
3
|
Wang X, Wang M, Wu B, Yu S, Liu Z, Qin X, Xu H, Li W, Luo S, Wang L, Ma C, Liu S. Magnetic molecularly imprinted polymers using ternary deep eutectic solvent as novel functional monomer for hydroxytyrosol separation. Heliyon 2024; 10:e28257. [PMID: 38655314 PMCID: PMC11035953 DOI: 10.1016/j.heliyon.2024.e28257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
In this work, magnetic molecularly imprinted polymers (MIPs) for specific recognition of Hydroxytyrosol (HT) were designed by vinyl-modified magnetic particles (Fe3O4@SiO2@VTEOs) as carrier, ternary deep eutectic solvent (DES) as functional monomer, while ethylene glycol dimethacrylate (EGDMA) as crosslinker. The optimum amount of DES was obtained by adsorption experiments (molar ratio, caffeic acid: choline chloride: formic acid = 1:6:3) which were 140 μL in total. Under the optimized amount of DES, the maximum adsorption capacity of the MIPs particles was 42.43 mg g-1, which was superior to non-imprinted polymer (4.64 mg g-1) and the imprinting factor (IF) is 9.10. Syringin and Oleuropicrin were used as two reference molecules to test the selectivity of the DES-MIPs particles. The adsorption capacity of HT was 40.11 mg g-1. Three repeated experiments show that the polymer has high stability and repeatability (RSD = 5.50).
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Mengru Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Bailin Wu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shengyuan Yu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Zaizhi Liu
- College of Life Sciences, Jiangxi Normal University, 330022, Nanchang, China
| | - Xuyang Qin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Huijuan Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Lijuan Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, 150040, Harbin, China
| |
Collapse
|
4
|
Marrone G, Urciuoli S, Candi E, Bernini R, Vanni G, Masci C, Guerriero C, Mancini M, De Lorenzo A, Vignolini P, Noce A. Biological Activities of Molecules Derived from Olea europaea L. Tested In Vitro. Life (Basel) 2023; 14:49. [PMID: 38255664 PMCID: PMC10820526 DOI: 10.3390/life14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Extra virgin olive oil is a typical food of the Mediterranean area, obtained by pressing Olea europaea L. fruits. Its polyphenols have been studied for their antioxidant function and protective action against cancer and chronic kidney disease. In this in vitro study, we tested titrated extracts from Olea europaea L. on a human embryonic kidney 293 (HEK-293E) cell line, regarding their pro-apoptotic and antiproliferative capacities, using " IncuCyte® S3 Live-Cell Analysis System". MATERIALS AND METHODS We selected Olea europaea L. active compounds like hydroxytyrosol (HT) and oleuropein (OLE). These extracts were tested at different concentrations and characterized by HPLC-DAD-MS for the content in secondary active metabolites. The real-time observation of cell behavior was performed by IncuCyte, which can quantitatively analyze the cell proliferation and death. RESULTS This study showed that all the tested extracts can significantly inhibit cellular growth at 50 µM but the reduced proliferation is not related to an increase in cellular apoptosis. Instead, the same analysis performed by using extracts at 100 µM reveals that they can inhibit cellular growth, further inducing cellular apoptosis. CONCLUSIONS The results on the HEK-293E cells confirmed the antiproliferative and proapoptotic actions of active compounds from an Olea europaea L. matrix in this cell line.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)—DiSIA, University of Florence, 50019 Florence, Italy; (S.U.)
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Istituto Dermatopatico Dell’Immacolata—IDI, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS, Via Monti di Creta 104, 00166 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Gianluca Vanni
- Breast Unit, Department of Surgical Science, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cristina Guerriero
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mara Mancini
- Istituto Dermatopatico Dell’Immacolata—IDI, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS, Via Monti di Creta 104, 00166 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pamela Vignolini
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)—DiSIA, University of Florence, 50019 Florence, Italy; (S.U.)
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
5
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
6
|
Spagnuolo C, Moccia S, Tedesco I, Crescente G, Volpe MG, Russo M, Russo GL. Phenolic Extract from Extra Virgin Olive Oil Induces Different Anti-Proliferative Pathways in Human Bladder Cancer Cell Lines. Nutrients 2022; 15:nu15010182. [PMID: 36615840 PMCID: PMC9823665 DOI: 10.3390/nu15010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Regular consumption of olive oil is associated with protection against chronic-degenerative diseases, such as cancer. Epidemiological evidence indicates an inverse association between olive oil intake and bladder cancer risk. Bladder cancer is among the most common forms of cancer; in particular, the transitional cell carcinoma histotype shows aggressive behavior. We investigated the anti-proliferative effects of a phenolic extract prepared from an extra virgin olive oil (EVOOE) on two human bladder cancer cell lines, namely RT112 and J82, representing the progression from low-grade to high-grade tumors, respectively. In RT112, the EVOOE reduced cell viability (IC50 = 240 μg/mL at 24 h), triggering a non-protective form of autophagy, evidenced by the autophagosome formation and the increase in LC-3 lipidation. In J82, EVOOE induced a strong decrease in cell viability after 24 h of treatment (IC50 = 65.8 μg/mL) through rapid and massive apoptosis, assessed by Annexin V positivity and caspase-3 and -9 activation. Moreover, in both bladder cancer cell lines, EVOOE reduced intracellular reactive oxygen species, but this antioxidant effect was not correlated with its anti-proliferative outcomes. Data obtained suggest that the mixture of phenolic compounds in extra virgin olive oil activates different anti-proliferative pathways.
Collapse
|
7
|
An Overview of the Potential of Medicinal Plants Used in the Development of Nutraceuticals for the Management of Diabetes Mellitus: Proposed Biological Mechanisms. Processes (Basel) 2022. [DOI: 10.3390/pr10102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder in which the pancreas does not produce enough insulin or the body cannot effectively use it. The prevalence of diabetes is increasing steadily, making it a global public health problem. Several serious complications are associated with this disease. There are a number of different classes of antidiabetic medications. Interestingly, traditional medicine can also be used for the development of novel classes of hypoglycemic therapeutics. This article summarizes an update of the potential of various important medicinal plants used in the development of nutraceuticals for the management of diabetes mellitus, and a proposal of their biological mechanisms.
Collapse
|
8
|
Centrone M, D’Agostino M, Ranieri M, Mola MG, Faviana P, Lippolis PV, Silvestris DA, Venneri M, Di Mise A, Valenti G, Tamma G. dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells. Front Cell Dev Biol 2022; 10:919438. [PMID: 35874817 PMCID: PMC9304624 DOI: 10.3389/fcell.2022.919438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D’Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, Pisa, Italy
| | | | | | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Grazia Tamma,
| |
Collapse
|
9
|
The Antioxidant Effect of Natural Antimicrobials in Shrimp Primary Intestinal Cells Infected with Nematopsis messor. Antioxidants (Basel) 2022; 11:antiox11050974. [PMID: 35624838 PMCID: PMC9137680 DOI: 10.3390/antiox11050974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nematopsis messor infections severely impact on shrimp’s health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp’s intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity.
Collapse
|
10
|
Jiménez-Sánchez A, Martínez-Ortega AJ, Remón-Ruiz PJ, Piñar-Gutiérrez A, Pereira-Cunill JL, García-Luna PP. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14071440. [PMID: 35406067 PMCID: PMC9003415 DOI: 10.3390/nu14071440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet (MedD). In this narrative review, we synthesize and illustrate the various characteristics and clinical applications of EVOO and its components—such as oleic acid, hydroxytyrosol, and oleuropein—in the field of clinical nutrition and dietetics. The evidence is split into diet therapy, oleic acid-based enteral nutrition formulations and oral supplementation formulations, oleic acid-based parenteral nutrition, and nutraceutical supplementation of minor components of EVOO. EVOO has diverse beneficial health properties, and current evidence supports the use of whole EVOO in diet therapy and the supplementation of its minor components to improve cardiovascular health, lipoprotein metabolism, and diabetes mellitus in clinical nutrition. Nevertheless, more intervention studies in humans are needed to chisel specific recommendations for its therapeutic use through different formulations in other specific diseases and clinical populations.
Collapse
Affiliation(s)
- Andrés Jiménez-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| | - Antonio Jesús Martínez-Ortega
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Torrecárdenas, C. Hermandad de Donantes de Sangre, s/n, 04009 Almería, Spain
| | - Pablo Jesús Remón-Ruiz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Ana Piñar-Gutiérrez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - José Luis Pereira-Cunill
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Pedro Pablo García-Luna
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (P.J.R.-R.); (A.P.-G.); (J.L.P.-C.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Correspondence: (A.J.-S.); (P.P.G.-L.)
| |
Collapse
|
11
|
Michalak I, Püsküllüoğlub M. Look into my onco-forest - review of plant natural products with anticancer activity. Curr Top Med Chem 2022; 22:922-938. [PMID: 35240958 DOI: 10.2174/1568026622666220303112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a multistage process that can be treated by numerous modalities including systemic treatment. About half of the molecules that have been approved in the last few decades count for plant derivatives. This review presents the application of tree/shrub-derived biologically active compounds as anticancer agents. Different parts of trees/shrubs - wood, bark, branches, roots, leaves, needles, fruits, flowers etc. - contain a wide variety of primary and secondary metabolites, which demonstrate anticancer properties. Special attention was paid to phenolics (phenolic acids and polyphenols, including flavonoids and non-flavonoids (tannins, lignans, stilbenes)), essential oils and their main constituents such as terpenes/terpenoids, phytosterols, alkaloids and many others. Anticancer properties of these compounds are mainly attributed to their strong antioxidant properties. In vitro experiments on various cancer cell lines revealed a cytotoxic effect of tree-derived extracts. Mechanisms of anticancer action of the extracts are also listed. Examples of drugs that successfully underwent clinical trials with well-established position in the guidelines created by oncological societies are provided. The review also focuses on directions for the future in the development of anticancer agents derived from trees/shrubs. Applying biologically active compounds derived from trees and shrubs as anticancer agents continuously seems a promising strategy in cancer systemic treatment.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosława Püsküllüoğlub
- Labcorp (Polska) Sp. z o.o., Warsaw, Poland; c Department of Clinical Oncology, Maria Sklodowska Curie National Research Institute of Oncology, Cracow Branch, Kraków, Poland
| |
Collapse
|
12
|
Morsy MK, Sami R, Algarni E, Al-Mushhin AAM, Benajiba N, A. A, Almasoudi AG, Mekawi E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants (Basel) 2022; 11:antiox11020338. [PMID: 35204220 PMCID: PMC8868781 DOI: 10.3390/antiox11020338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023] Open
Abstract
The by-product of sesame seed coats from the tahini industry was used for the extraction of bioactive compounds as novel antioxidants. This study was designed to evaluate the effect of a natural antioxidant on the quality of refined olive oil (ROO) stored at 60 ± 1 °C for up to 48 days. The lyophilized sesame seed coats extract (LSSCE) was placed into fresh ROO at three levels, i.e., 200, 400, and 600 mg kg−1, and compared with 200 mg kg−1 BHT (reference) and without antioxidant (control). LSSCE exhibited high phenolic (105.9 mg GAE g−1) and lignin (6.3 mg g−1) contents as well as antioxidant activity based on HPLC/DAD. In ROO samples, Including LSSCE, the values of peroxide, p-anisidine, K232, and K270 were remarkably lower than control during storage. The kinetic rate constant (k) of oxidation indicators was the lowest in ROO samples containing BHT and LSSCE 600 mg kg−1compared with other treatments. LSSCE improved the organoleptic acceptability of ROO samples up to 48 days of storage. Moreover, the shelf life (assuming a Q10 value of 2.0 for lipid oxidation) of ROO treated with LSSCE was increased. The findings revealed that LSSCE is a promising natural antioxidant in delaying oxidation, enhancing oil stability, and prolonging the shelf life (~475 days at ambient temperature).
Collapse
Affiliation(s)
- Mohamed K. Morsy
- Department of Food Technology, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt
- Correspondence: (M.K.M.); (R.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: (M.K.M.); (R.S.)
| | - Eman Algarni
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Almasoudi A.
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box. 42734, Jeddah 21551, Saudi Arabia;
| | - Abeer G. Almasoudi
- Food Science Department, College of Science, Branch of the College at Turbah, Taif University, Taif 21944, Saudi Arabia;
| | - Enas Mekawi
- Department of Agricultural Biochemistry, Faculty of Agriculture, Benha University, Benha 13736, Qaluobia, Egypt;
| |
Collapse
|
13
|
Difonzo G, Totaro MP, Caponio F, Pasqualone A, Summo C. Olive Leaf Extract (OLE) Addition as Tool to Reduce Nitrate and Nitrite in Ripened Sausages. Foods 2022; 11:foods11030451. [PMID: 35159601 PMCID: PMC8834353 DOI: 10.3390/foods11030451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Olive leaf extract (OLE) is known to be a source of phenolic compounds with antioxidant and antimicrobial activities. This study investigated the effects of the OLE addition to reduce nitrate/nitrite (NO) content on the physico-chemical features of ripened pork sausages. Seven formulations of pork sausages were set up: CTRL (0 mg/kg OLE; 300 mg/kg NO), Tr1 (200 mg/kg OLE; 150 mg/kg NO), Tr2 (400 mg/kg OLE; 150 mg/kg NO), Tr3 (800 mg/kg OLE; 150 mg/kg NO), Tr4 (200 mg/kg OLE; 0 mg/kg NO), Tr5 (400 mg/kg OLE; 0 mg/kg NO), and Tr6 (800 mg/kg OLE; 0 mg/kg NO). At the end of the ripening period, all the samples were within hygienic limits and the substitution of the additives with OLE allowed the reduction of NO residual contents. Both OLE and NO influenced the colour parameters. At the highest dose of OLE, both alone and in combination with reduced dose of NO, no significant differences in terms of moisture, pH, and aw were found compared to CTRL. In absence of NO, a significant reduction of weight loss was observed. Moreover, in the samples without NO a reduction of the hardness was detected. Finally, the oxidative stability test showed that the increase of the OLE amount prolonged the induction time.
Collapse
|
14
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
15
|
Alamprese C, Caponio F, Chiavaro E. Sustainability of the Olive Oil System. Foods 2021; 10:foods10081730. [PMID: 34441508 PMCID: PMC8393221 DOI: 10.3390/foods10081730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Sustainability is a widely accepted goal across many sectors of our society and, according to new concepts, it includes resilience and adaptive capacity [...].
Collapse
Affiliation(s)
- Cristina Alamprese
- Department of Food, Environmental, Nutritional Sciences (DeFENS), Università degli Studi di Milano, via G. Celoria 2, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-0250319187
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), Università degli Studi di Bari Aldo Moro, via Amendola, 165/A, 70126 Bari, Italy;
| | - Emma Chiavaro
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| |
Collapse
|
16
|
Posadino AM, Cossu A, Giordo R, Piscopo A, Abdel-Rahman WM, Piga A, Pintus G. Antioxidant Properties of Olive Mill Wastewater Polyphenolic Extracts on Human Endothelial and Vascular Smooth Muscle Cells. Foods 2021; 10:800. [PMID: 33917908 PMCID: PMC8068214 DOI: 10.3390/foods10040800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
This work aims to analyze the chemical and biological evaluation of two extracts obtained by olive mill wastewater (OMW), an olive oil processing byproduct. The exploitation of OMW is becoming an important aspect of development of the sustainable olive oil industry. Here we chemically and biologically evaluated one liquid (L) and one solid (S) extract obtained by liquid-liquid extraction followed by acidic hydrolysis (LLAC). Chemical characterization of the two extracts indicated that S has higher phenol content than L. Hydroxytyrosol and tyrosol were the more abundant phenols in both OMW extracts, with hydroxytyrosol significantly higher in S as compared to L. Both extracts failed to induce cell death when challenged with endothelial cells and vascular smooth muscle cells in cell viability experiments. On the contrary, the higher extract dosages employed significantly affected cell metabolic activity, as indicated by the MTT tests. Their ability to counteract H2O2-induced oxidative stress and cell death was assessed to investigate potential antioxidant activities of the extracts. Fluorescence measurements obtained with the reactive oxygen species (ROS) probe H2DCF-DA indicated strong antioxidant activity of the two OMW extracts in both cell models, as indicated by the inhibition of H2O2-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate LLAC-obtained OMW extracts as a safe and useful source of valuable compounds harboring antioxidant activity.
Collapse
Affiliation(s)
- Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.)
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, Institute for Medical Research, College of Health Sciences and Sharjah, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.G.); (W.M.A.-R.)
| | - Amalia Piscopo
- Department of AGRARIA, Mediterranean University of Reggio Calabria, 89124 Vito Reggio Calabria, Italy;
| | - Wael M. Abdel-Rahman
- Department of Medical Laboratory Sciences, Institute for Medical Research, College of Health Sciences and Sharjah, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.G.); (W.M.A.-R.)
| | - Antonio Piga
- Department of Agricultural Environmental Sciences and Food Biotechnology, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.)
- Department of Medical Laboratory Sciences, Institute for Medical Research, College of Health Sciences and Sharjah, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (R.G.); (W.M.A.-R.)
| |
Collapse
|