1
|
Tian B, Dhami M, Moukarzel R, Zhang J, On S, Wimalasiri P, Araujo LD, Maxwell D. Extending the Influence of Terroir through the Spontaneous Fermentation of Pinot Noir in the Vineyard: A Case Study of Greystone Vineyard Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8531-8542. [PMID: 40096644 DOI: 10.1021/acs.jafc.4c11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study investigates the influence of vintage and fermentation environment on the microbial diversity, chemical composition, and volatile profiles of Pinot Noir wines, with a focus on comparing vineyard (outdoor) and winery (indoor) fermentations across two consecutive vintages, 2019 and 2020. Grapes were hand-harvested from a single vineyard and subjected to spontaneous fermentations in three tanks for each fermentation environment. Nonmetric multidimensional scaling (NMDS) and PERMANOVA analyses revealed significant differences in fungal community composition between fermentation environments and vintages. Vineyard fermentations consistently exhibited higher levels of non-Saccharomyces yeasts during fermentation, which contributed to increased production of microbial-derived esters, such as hexyl acetate and isobutyl acetate. Winery fermentations, in contrast, showed higher concentrations of anthocyanins, contributing to enhanced color intensity and stability. Vintage effects were more evident than fermentation environment, with the 2019 vintage favoring higher concentrations of phenolics, anthocyanins, higher alcohols (e.g. isoamyl alcohol), and volatile phenols (e.g. guaiacol and eugenol), while the 2020 vintage enhanced the retention of esters and floral terpenes (e.g. linalool). These findings highlight the distinct wine styles achievable through vineyard and winery fermentations, as well as the interplay between climatic conditions and fermentation environment. This work provides novel insights into the potential of vineyard fermentations for expressing microbial terroir and offers practical strategies for optimizing wine production under varying climatic and site-specific conditions.
Collapse
Affiliation(s)
- Bin Tian
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua-Landcare Research, Lincoln 7647, New Zealand
| | - Romy Moukarzel
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Junwen Zhang
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephen On
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Pradeep Wimalasiri
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Leandro Dias Araujo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | | |
Collapse
|
2
|
Wang C, Fu X, Wang J, Yu J, Shi Y, Feng X, Liu C, Yang Z, Li B, Cao W, Du F, Shen Z, Hou H. Comprehensive characterization of Chinese beers based on chemical composition, antioxidant activity and volatile metabolomics. Sci Rep 2025; 15:10204. [PMID: 40133541 PMCID: PMC11937525 DOI: 10.1038/s41598-025-94771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Four different commercial beers in the Chinese market were compared and analyzed systematically, in order to provide more guidance for consumers. In this experimental study, various physicochemical parameters such as alcohol content, color, bitterness, total acidity, and carbohydrates were evaluated. The total phenolics content was determined using the Folin-ciocalteu method, while the total flavone and melanoidins were measured using colorimetric and spectrophotometric methods, respectively. The antioxidant capacity was determined by ORAC, DPPH and ABTS assays. Non-targeted metabolomics was used to analyze the composition and differences of volatile compounds in different beers. The results indicated significant physicochemical variations among the four different commercial beers. The higher the chroma of beer, the greater the content of active substances, and the corresponding antioxidant capacity in vitro was also stronger. The alcohol content of the four beers ranged from 4.23 to 7.54% (ABV), the color values of the four beers ranged from 4.8 to 141.5 EBC, and the bitterness ranged from 11.2 to 36.6 IBU. The total phenolics content varied between 159.10 mg/ L and 269.13 mg/ L, the total flavone content was in the range of 39.94 -144.59 mg/L, and the melanoidins content was in the range of 271.07-296.68 mg/L. The antioxidant activity ranged from 0.570 mmol TE/L to 0.873 mmol TE/L (ABTS), from 3.700 mmol TE/L to 26.73 mmol TE/L (ORAC), and from 26.12 to 86.72% (DPPH clearance rate). A total of 453 volatile compounds were detected in the four beers, primarily comprising terpenoids (21.24%), esters (19.47%), heterocyclic compound (14.16%), alcohol (9.96%) and hydrocarbons (9.96%), etc. Compared to Premium lager beer, the other three kinds of beers had unique and common metabolites, with only 9 common metabolites. The flavors of the differential metabolites were mainly green, floral, sweet, fruity, etc.
Collapse
Affiliation(s)
- Changwei Wang
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Xueyuan Fu
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Jianfeng Wang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Yaqi Shi
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China
| | - Xiaomei Feng
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Chuyi Liu
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Zhaoxia Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, 266199, China.
| | - Bafang Li
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Wanxiu Cao
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Fen Du
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Zhaopeng Shen
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| | - Hu Hou
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China
| |
Collapse
|
3
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Liu Y, Zhang P, Li H, Yang C, Li M, Huang R, Han S, Hou J, Pan C. Microbial origin of fermented grains in different fermentation stages of Taorong-type Baijiu. Food Res Int 2025; 203:115863. [PMID: 40022388 DOI: 10.1016/j.foodres.2025.115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/01/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
s: To investigate the origin of microbial sources of fermented grains in multiple stages of Taorong-type Baijiu and the role of multiple production environments in contributing to the microbiota of fermented grains. In this study, we used single-molecule real-time sequencing to investigate the microbial community structure of grains, Jiuqu, and brewing environments (air, tools, etc.) in a multi-stage fermentation, as well as microbial traceability of the fermented grains.The results showed that, at the species level, the microbiota species of fermented grains did not change significantly before and after stacking, and community succession occurred only in terms of species richness. The composition and abundance of microorganisms of fermented grains changed significantly after 7 days of fermentation in the cellar. A traceability analysis revealed that the microbial communities of fermented grains before and after stacking were primarily derived from Fuqu, medium-temperature Daqu, and production tools. After 7 days of fermentation in the cellar, pit mud, the production floor, and tools became the primary contributors to the microbiota of the fermented grains. Furthermore, the spearman correlation network found that the interaction between microorganisms from jiuqu and the environment drives the succession of microbial community structure in fermented grains. This study provides new insights into the origin and structure formation of fermented grains microbial communities at different periods, as well as provides an efficacious reference for quality control and standardized production of Baijiu and other traditional fermented foods.
Collapse
Affiliation(s)
- Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046 China; Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China
| | - Pengpeng Zhang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; College of Biological Engineering, Henan University of Technology, Zhengzhou 450001 China
| | - Haideng Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; College of Biological Engineering, Henan University of Technology, Zhengzhou 450001 China
| | - Chong Yang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046 China; Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China
| | - Manfei Li
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046 China; Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China
| | - Runna Huang
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400 China
| | - Suna Han
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400 China
| | - Jianguang Hou
- Henan Yangshao Distillery Co., Ltd., Mianchi 472400 China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China; Henan Province Brewing Special Grain Development and Application Engineering Research Center, Zhengzhou 450046 China; Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046 China.
| |
Collapse
|
5
|
Liu Q, Hao N, Mi L, Peng S, Marie-Colette AK, Zhao X, Wang J. From microbial communities to aroma profiles: A comparative study of spontaneous fermentation in merlot and cabernet sauvignon wines. Food Chem X 2025; 26:102317. [PMID: 40115500 PMCID: PMC11923755 DOI: 10.1016/j.fochx.2025.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/23/2025] Open
Abstract
This study aimed to compare the microbial community composition and aroma characteristics during the fermentation of different grape cultivars, Merlot and Cabernet Sauvignon. Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Odor Activity Value (OAV) screening identified 15 distinct active compounds. The sensory evaluation indicated that Merlot wine exhibited a more intense fruity aroma and received higher overall scores than Cabernet Sauvignon wine. High-throughput sequencing (HTS) results revealed that the microbial diversity in Merlot was higher than in Cabernet Sauvignon wine. Lachancea, Acremonium, Fructobacillus, and Lactiplantibacillus were unique to the Merlot wine, whereas Penicillium, Wickerhamomyces, Gluconobacter, and Klebsiella were exclusive to Cabernet Sauvignon wine. Saccharomyces and Tatumella were identified as the dominant microorganisms during the fermentation of both Merlot and Cabernet Sauvignon wines. Correlation analysis demonstrated a significant positive association among the dominant microbial communities, which played a crucial role in determining the formation of volatile compounds.
Collapse
Affiliation(s)
- Qinqin Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Nan Hao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lan Mi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | | | - Xuefang Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Núñez E, Vidal J, Chávez M, Bordeu E, Osorio F, Vargas S, Hormazábal E, Brossard N. Effect of Mannoprotein-Producing Yeast on Viscosity and Mouthfeel of Red Wine. Foods 2025; 14:462. [PMID: 39942055 PMCID: PMC11817296 DOI: 10.3390/foods14030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/22/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Mannoproteins enhance wine stability and sensory properties, but their specific role in modulating viscosity and mouthfeel across wine quality levels remains underexplored. This study explores the nuanced impact of various mannoprotein-producing yeast strains on specific mouthfeel sensations, particularly emphasizing viscosity, across Standard and Premium quality tiers of Cabernet Sauvignon commercial wines. The aim was to understand the intricate relationship between yeast-derived mannoproteins and the broader sensory landscape of red wines. The methodology encompasses a comprehensive mannose extraction method, rheological measurements, and sensory Rate-All-That-Apply evaluations, all of which are integrated into a Principal Component Analysis. The results showed slight color variations due to the wine spending one month on lees. A positive correlation was found between mannose content and viscosity in only Standard-quality wines. The correlation with sensory data indicated a strong relationship between volume, viscosity, and mannose content in Premium-quality wines, which was less pronounced in Standard-quality wines. Furthermore, parameters related to mouthfeel quality, such as roundness and smoothness, were also associated with these findings. Prospects involve further exploration of correlations between mouthfeel sensations, sensory descriptors, and the structural characteristics of mannoproteins, aiming for a more comprehensive understanding of the intricate interplay in wine composition.
Collapse
Affiliation(s)
- Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural Science and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 7820436, Chile; (E.N.); (J.V.); (M.C.); (E.B.)
| | - Josefina Vidal
- Department of Fruit Production and Enology, School of Agricultural Science and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 7820436, Chile; (E.N.); (J.V.); (M.C.); (E.B.)
| | - Matías Chávez
- Department of Fruit Production and Enology, School of Agricultural Science and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 7820436, Chile; (E.N.); (J.V.); (M.C.); (E.B.)
| | - Edmundo Bordeu
- Department of Fruit Production and Enology, School of Agricultural Science and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 7820436, Chile; (E.N.); (J.V.); (M.C.); (E.B.)
| | - Fernando Osorio
- Department of Food Science and Technology, Technological Faculty, Universidad de Santiago de Chile, Av. El Belloto 3735, Estación Central, Santiago 9170125, Chile;
| | - Sebastián Vargas
- Center for Research & Innovation, Viña Concha y Toro, Pencahue 3550000, Chile;
| | - Elba Hormazábal
- Almaviva Vineyard, Viña Concha y Toro, Pencahue 8166174, Chile;
| | - Natalia Brossard
- Department of Fruit Production and Enology, School of Agricultural Science and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 7820436, Chile; (E.N.); (J.V.); (M.C.); (E.B.)
| |
Collapse
|
7
|
Liu Q, Zhao X, Jiang Z, Han X, Peng S, Wang J. Co-evolutionary dynamics of microbial communities and flavor profiles during natural fermentation of Cabernet Sauvignon and Merlot: A comparative study within a single vineyard. Food Res Int 2025; 200:115517. [PMID: 39779148 DOI: 10.1016/j.foodres.2024.115517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard. The physicochemical results revealed that during fermentation of Merlot and Cabernet Sauvignon wines, ethanol content significantly increased, while residual sugar, pH, malic acid, citric acid, and yeast assimilable nitrogen notably decreased. High-throughput sequencing (HTS) results showed that fungal diversity and richness in Merlot were significantly higher than in Cabernet Sauvignon, whereas bacterial diversity exhibited the opposite trend. The predominant fungal genera in Merlot were Hanseniaspora, followed by Lachancea, whereas the opposite was observed in Cabernet Sauvignon. Erysiphe and Pantoea were exclusively present in Merlot, whereas Erwinia was detected only in Cabernet Sauvignon. A total of 106 flavor compounds were quantified using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS), identifying 22 core volatile compounds in Merlot and 19 in Cabernet Sauvignon. Moreover, at the end of fermentation, the total ester content in Cabernet Sauvignon was significantly higher than in Merlot, imparting a more pronounced fruity and floral aroma, which was further confirmed using sensory analysis. Correlation analysis indicated that Saccharomyces was positively correlated with alcohol content, total acidity, and 16 core volatile compounds, while Hanseniaspora and Lachancea showed opposite correlations. These insights provide a data reference for producing high-quality wines with regional characteristics.
Collapse
Affiliation(s)
- Qinqin Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefang Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingquan Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
8
|
Vicente J, Wang L, Brezina S, Fritsch S, Navascués E, Santos A, Calderón F, Tesfaye W, Marquina D, Rauhut D, Benito S. Enhancing wine fermentation through concurrent utilization of Lachancea thermotolerans and lactic acid bacteria ( Oenococcus oeni and Lactiplantibacillus plantarum) or Schizosaccharomyces pombe. Food Chem X 2024; 24:102054. [PMID: 39717400 PMCID: PMC11665412 DOI: 10.1016/j.fochx.2024.102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Most commercially available red wines undergo alcoholic fermentation by Saccharomyces yeasts, followed by a second fermentation with the lactic acid bacteria Oenococcus oeni once the initial process is complete. However, this traditional approach can encounter complications in specific scenarios. These situations pose risks such as stalled alcoholic fermentation or the growth of undesirable bacteria while the process remains incomplete, leaving residual sugars in the wine. To address these challenges and the issue of low acidity prevalent in warmer viticultural regions, several novel alternatives are available. The alternatives involve the combined use of Lachancea thermotolerans to increase the acidity of the musts, lactic acid bacteria (Oenococcus oeni and Lactiplantibacillus plantarum) to ensure malic acid stability during early alcoholic fermentation stages, and Saccharomyces cerevisiae to properly complete alcoholic fermentation. The study showed variations in the final chemical parameters of wines based on the microorganisms used.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Li Wang
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Silvia Brezina
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Stefanie Fritsch
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Eva Navascués
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Antonio Santos
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Fernando Calderón
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Wendu Tesfaye
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Domingo Marquina
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University (HGU), Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain
| |
Collapse
|
9
|
Wang YW, Huang YF, Guo YQ, Sun L, Jiang ZL, Zhu YT, Zeng RQ, Li Q, Xiao C, Zuo Y. Dissecting Interactions of Saccharomyces cerevisiae and Pichia kudriavzevii to Shape Kiwifruit Wine Flavor. Foods 2024; 13:4077. [PMID: 39767018 PMCID: PMC11675217 DOI: 10.3390/foods13244077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Mixed fermentation with Saccharomyces cerevisiae and Pichia kudriavzevii has been shown to enhance wine aroma, yet the underlying mechanisms remain unclear. Monoculture of S. cerevisiae, monoculture of P. kudriavzevii, and mixed culture of S. cerevisiae and P. kudriavzevii were conducted, and the study analyzed and compared the biomass, flavor profile, and transcriptome responses of the three groups. Both yeast species exhibited growth inhibition in mixed culture, especially P. kudriavzevii. Significant differences were observed in three organic acids and the foremost 20 volatile compounds. Mixed fermentation enhanced esters (e.g., ethyl butyrate, isoamyl acetate) and volatile acids (e.g., hexanoic acid), but decreased isobutanol, phenylethyl alcohol, and quinic acid. Transcriptomic analysis revealed 294 and 332 differentially expressed genes (DEGs) in S. cerevisiae and P. kudriavzevii, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation results indicated that DEGs in mixed fermentation were concentrated in carbohydrate metabolism and amino acid metabolism. Our integrated analysis suggested that genes such as TDH2, TDH3, and ENO2 were pivotal for ester biosynthesis. Moreover, ADH1, ADH2, HPA3, ALD6, and ARO8 were associated with quinic acid synthesis. Furthermore, ILV2, ILV5, ALD6, and others were central to the production of isobutanol and phenylethyl alcohol.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yi-Fen Huang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Ya-Qi Guo
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Li Sun
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Zhi-Lin Jiang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Rui-Qi Zeng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Qi Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Chen Xiao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| | - Yong Zuo
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610101, China; (Y.-W.W.); (Z.-L.J.)
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Y.-F.H.); (Y.-Q.G.); (L.S.); (Y.-T.Z.); (R.-Q.Z.); (Q.L.)
| |
Collapse
|
10
|
Thivijan S, Pavalakumar D, Gunathunga CJ, Undugoda LJS, Manage PM, Nugara RN, Bandara PC, Thambugala KM, Al-Asmari F, Promputtha I. Influence of indigenous non- Saccharomyces yeast strains on the physicochemical and sensory properties of wine fermentation: a promising approach to enhancing wine quality. Front Cell Infect Microbiol 2024; 14:1495177. [PMID: 39711785 PMCID: PMC11659219 DOI: 10.3389/fcimb.2024.1495177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
This study explores the potential of indigenous non-Saccharomyces yeasts isolated from Vitis vinifera L. grape skins to improve the quality of regional wines by enhancing their physicochemical and sensory characteristics. Five promising yeast strains were identified at different stages of fermentation: Hanseniaspora opuntiae (J1Y-T1), H. guilliermondii (Y5P-T5), H. uvarum (JF3-T1N), Pichia kudriavzevii (Y8P-T8), and Starmerella bacillaris (WMP4-T4). Among these, H. uvarum and S. bacillaris were particularly noteworthy due to their superior alcohol production, achieving levels of 8.16 ± 0.05% and 8.04 ± 0.04% (v/v), respectively, and demonstrating higher alcohol tolerance even in later fermentation stages. Hanseniaspora uvarum also showed exceptional resilience, with a half-life of 3.34 ± 0.03 days and a Km value of 1.0200 ± 0.0100 mol L⁻¹, achieving the highest biomass even in the later stages of fermentation. High-Performance Liquid Chromatography analysis revealed that while tartaric acid levels remained constant, malic acid content decreased, and acetic acid was produced by all strains. Solid-Phase Microextraction-Gas Chromatography Mass Spectrometry identified ethyl acetate as the dominant volatile compound, with H. uvarum producing the highest concentration (43.411 ± 1.602%), contributing to a fruitier aroma and flavor. The combined attributes of H. uvarum higher alcohol content, enhanced fruity notes, improved clarity, lower acetic acid (0.52 ± 0.03 g L⁻¹), and significant residual sugar (162.37 ± 2.48 g L⁻¹) make it a promising candidate for improving the overall quality of regional wines. Incorporating H. uvarum into mixed starter cultures with specific Saccharomyces strains could further optimize the wine fermentation process.
Collapse
Affiliation(s)
- Sathivel Thivijan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dayani Pavalakumar
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chathuri J. Gunathunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
- Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Lanka J. S. Undugoda
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
| | - Pathmalal M. Manage
- Centre for Water Quality and Algae Research, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Ruwani N. Nugara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
| | - Pasan C. Bandara
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
| | - Kasun M. Thambugala
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Center for Biotechnology, Department of Zoology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Center for Plant Materials and Herbal Products Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | | |
Collapse
|
11
|
Vicente J, Kiene F, Fracassetti D, De Noni I, Shemehen R, Tarasov A, Dobrydnev AV, Marquina D, Santos A, Rauhut D, Belda I, Ruiz J. Precursors consumption preferences and thiol release capacity of the wine yeasts Saccharomyces cerevisiae, Torulaspora delbrueckii, and Lachancea thermotolerans. Int J Food Microbiol 2024; 425:110858. [PMID: 39163814 DOI: 10.1016/j.ijfoodmicro.2024.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
The aromatic profile of wine determines its overall final quality, and among the volatile molecules that define it, varietal thiols are responsible for shaping the distinctive character of certain wine varieties. In grape must, these thiols are conjugated to amino acids or small peptides in a non-volatile form. During wine fermentation, yeasts play a principal role in expressing these aromatic compounds as they internalise and cleavage these precursors, releasing the corresponding free and aroma-impacting fraction. Here, we investigate the impact of three wine yeasts (Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans) on thiol releasing in synthetic grape must fermentations supplemented with different cysteinylated (Cys-4MSP and Cys-3SH) and glutathionylated (GSH-4MSP and GSH-3SH) precursors. We demonstrate higher consumption levels of cysteinylated precursors, and consequently, higher amounts of thiols are released from them compared to glutathionylated ones. We also report a significant impact of yeast inoculated on the final thiols released. Meanwhile T. delkbrueckii exhibits a great 3SHA releasing capacity, L. thermotolerans stands out because of its high 3SH release. We also highlight the synergic effect of the co-inoculation strategy, especially relevant in the case of S. cerevisiae and L. thermotolerans mixed fermentation, that has an outstanding release of 4MSP thiol. Although our results stem from a specific experimental approach that differs from real winemaking situations, these findings reveal the potential of unravelling the specific role of different yeast species, thiol precursors and their interaction, to improve wine production processes in the context of wine aroma enhancement.
Collapse
Affiliation(s)
- J Vicente
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - F Kiene
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - D Fracassetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - I De Noni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - R Shemehen
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - A Tarasov
- Department of Enology, Hochschule Geisenheim University, Geisenheim, Germany
| | - A V Dobrydnev
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - D Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - A Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - D Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - I Belda
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - J Ruiz
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Yuan YH, Mu DD, Guo L, Wu XF, Chen XS, Li XJ. From flavor to function: A review of fermented fruit drinks, their microbial profiles and health benefits. Food Res Int 2024; 196:115095. [PMID: 39614507 DOI: 10.1016/j.foodres.2024.115095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Fermented fruit drinks (FFDs) are gaining popularity among consumers for their unique flavors and potential health benefits. This review provides a systematic assessment of the flavor components in FFDs and explores the metabolic pathways for their formation. We examine the interactions between the structure of microbial communities and the development of these flavor components, highlighting the role of microorganisms in shaping the unique taste of FFDs. Additionally, we discuss the potential health benefits associated with FFDs, focusing on their relationship with microbial communities as supported by existing literature. The review also addresses future prospects and challenges in the field. Our findings indicate key fermenting microorganisms, such as lactic acid bacteria, yeast and acetic acid bacteria, are responsible for producing the distinctive flavor components in FFDs, including alcohols, ketones, aldehydes, esters, and fatty acids. These microorganisms also generate organic acids, amino acids, and carbohydrates, contributing to the drink's complex taste. Furthermore, this fermentation process enhances the bioactivity of FFDs, offering potential health benefits like antioxidant, anti-obesity, anti-diabetic, and anti-cancer properties. These insights are crucial for advancing fermentation technology and developing guidelines for producing nutrient-rich, flavorful FFDs.
Collapse
Affiliation(s)
- Yu-Han Yuan
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Dong-Dong Mu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
| | - Xue-Feng Wu
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China
| | - Xiang-Song Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xing-Jiang Li
- Anhui Fermented Food Engineering Research Center, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, China.
| |
Collapse
|
13
|
Xu Q, Huang W, Li Y, Cai J, Gao X, Bai X, Liu W, Zhang L, Zhu L. Isolation and identification of epiphytic Pichia kudriavzevii from loquat peels and investigation of its fermentation characteristics for liquor production. Arch Microbiol 2024; 206:440. [PMID: 39425794 DOI: 10.1007/s00203-024-04162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
During the process of fruit wine production, yeast plays a crucial role in influencing the taste, flavor, and overall quality of the wine. This study aims to enhance the flavor and quality of loquat wine by isolating strains of Pichia kudriavzevii (P. kudriavzevii) with desirable winemaking characteristics from loquat fruit fermentation broth. A total of 12 strains of P. kudriavzevii were isolated and subjected to morphological and molecular biological identification. Their fermentation performance, ethanol production, ester production, hydrogen sulfide production, killer activity, and tolerance were evaluated. The results revealed that strains Q-2, Q-9, Q-10, Q-12, Q-20, and Q-42 exhibited robust growth and strong tolerance under conditions of 40 °C temperature, 12% ethanol concentration, 350 g/L glucose concentration, and pH 2.8. Strain Q-42 demonstrated the strongest gas production capacity, killer activity, and good ester and ethanol production. As a highly active fermentation strain with excellent wine making characteristics, P. kudriavzevii Q-42 provides a valuable yeast resource for the industrial production of loquat wine and offers technical support for improving the overall quality of loquat wine.
Collapse
Affiliation(s)
- Qingfang Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Wei Huang
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Yanqin Li
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xu Bai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Weiliang Liu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Lifang Zhang
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China.
| |
Collapse
|
14
|
Sun Q, Cui R, Zhao Y. Regional aroma characteristics of spontaneously fermented Cabernet Sauvignon wines produced from seven sub-regions in Shangri-La of China. Sci Rep 2024; 14:24566. [PMID: 39427107 PMCID: PMC11490552 DOI: 10.1038/s41598-024-76353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Shangri-La is a promising wine region in China, which has great potential for producing high-quality wines with distinctive regional characteristics. In this work, the aroma properties of spontaneously fermented Cabernet Sauvignon wines produced from seven sub-regions of Shangri-La (Adong, Liutongjiang, Sinong, Xidang, and Nitong from Lancang River basin; Benzilan and Dari from Jinsha River Basin) were comprehensively analyzed using the headspace micro-extraction with gas chromatography-mass spectrometry, odor activity values, and olfactory evaluation. Results showed that a total of 59 volatiles belonging to seven groups were identified and quantified in all regional wines, with alcohols constituting the most abundant group, followed by esters and volatile fatty acids. Based on their odor activity values, six alcohols, seven esters, two terpenes, one C13-norisoprenoids, and three volatile fatty acids were identified as key volatiles which significantly contribute to the aroma of these wines. Principal component analysis showed the distinct compositions of these 19 key volatiles among the seven regional wines. Olfactory evaluation revealed certain differences in aroma profiles, particularly "Tropical fruit", "Dried fruit", "Vegetal", and "Sweet" among them. This study enhances our understanding on the unique terroir flavors of Shangri-La wines and is helpful for further producing high-quality wines with regional characteristics.
Collapse
Affiliation(s)
- Qingyang Sun
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China
- Hebei Fruit Processing Technology Innovation Center, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China
| | - Ruiguo Cui
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China
| | - Yue Zhao
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao, 066600, China.
| |
Collapse
|
15
|
Khiaosa-Ard R, Pacífico C, Mahmood M, Mickdam E, Meixner J, Traintinger LS, Zebeli Q. Changes in the solid-associated bacterial and fungal communities following ruminal in vitro fermentation of winery by-products: aspects of the bioactive compounds and feed safety. Anaerobe 2024; 89:102893. [PMID: 39122139 DOI: 10.1016/j.anaerobe.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.
Collapse
Affiliation(s)
- Ratchaneewan Khiaosa-Ard
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Cátia Pacífico
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Mubarik Mahmood
- Animal Nutrition Section, Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 Km Chiniot Road, 35200 Jhang, Pakistan
| | - Elsayed Mickdam
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Julia Meixner
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Laura-Sophie Traintinger
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Qendrim Zebeli
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
16
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
17
|
Zhang J, Li P, Zhang P, Wang T, Sun J, Wang L, Bai Z, Yuan J, Zhao L, Gu S. Effects of Different Non- Saccharomyces Strains in Simultaneous and Sequential Co-Fermentations with Saccharomyces cerevisiae on the Quality Characteristics of Kiwi Wine. Foods 2024; 13:2599. [PMID: 39200526 PMCID: PMC11353757 DOI: 10.3390/foods13162599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
With the increasing awareness of health, more people have shown a preference for low-alcohol beverages. Seeking various methods to improve the quality of kiwi wine is now a major research interest in the wine industry. In this study, kiwi wine was fermented by Saccharomyces cerevisiae and different non-Saccharomyces strains (Torulaspora delbrueckii, Kluyveromyces thermotolerans, Pichia fermentans) in three methods (pure fermentation, simultaneous, and sequential co-fermentation). The physicochemical characteristics, color parameters, phenolic profiles, total phenolic content (TPC), antioxidant activities, organic acids, and taste sense of the different wines were evaluated to determine the effects of different yeasts and fermentation methods on the quality of the kiwi wine. Results indicated that co-fermentation reduced the contents of alcohol while enhancing the lightness of the kiwi wine. The TPC of sequential co-fermentation with K. thermotolerans/S. cerevisiae was significantly higher than that of their simultaneous co-fermentation. Compared to K. thermotolerans/S. cerevisiae, the antioxidant activities were increased by co-fermentation of T. delbrueckii/S. cerevisiae and P. fermentans/S. cerevisiae. Principal component analysis showed that kiwi wines fermented by different yeasts and inoculation methods could be separated and grouped. Correlation analysis presented positive correlations of phenolic composition, antioxidant activities, and color intensity. This study provided theoretical guidance for co-fermentation of non-Saccharomyces/S. cerevisiae and accelerated the industrialization process of kiwi wine.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Pengyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Peiyao Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Tieru Wang
- College of Food Science and Engineering, Northwest A & F University, Xianyang 712100, China;
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Zhouya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Jiangfeng Yuan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (P.L.); (P.Z.); (J.S.); (L.W.); (Z.B.); (J.Y.); (L.Z.); (S.G.)
| |
Collapse
|
18
|
Bianchi F, Avesani M, Lorenzini M, Zapparoli G, Simonato B. Fermentation Performances and Aroma Contributions of Selected Non- Saccharomyces Yeasts for Cherry Wine Production. Foods 2024; 13:2455. [PMID: 39123646 PMCID: PMC11312165 DOI: 10.3390/foods13152455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
This study evaluates the fermentation performances of non-Saccharomyces strains in fermenting cherry must from Italian cherries unsuitable for selling and not intended to be consumed fresh, and their effects on the chemical composition of the resulting wine. Fermentation trials in 100 and 500 mL of must were carried out to select 21 strains belonging to 11 non-Saccharomyces species. Cherry wines obtained by six select strains were chemically analyzed for fixed and volatile compounds. Quantitative data were statistically analyzed by agglomerative hierarchical clustering, partial least squared discriminant analysis, and principal component analysis. Wines revealed significant differences in their composition. Lactic acid and phenylethyl acetate levels were very high in wines produced by Lachancea and Hanseniaspora, respectively. Compared to S. cerevisiae wine, non-Saccharomyces wines had a lower content of fatty acid ethyl esters 4-vinyl guaiacol and 4-vinyl phenol. The multivariate analysis discriminated between wines, demonstrating the different contributions of each strain to aroma components. Specifically, all wines from non-Saccharomyces strains were kept strictly separate from the control wine. This study provided comprehensive characterization traits for non-conventional strains that enhance the aroma complexity of cherry-based wine. The use of these yeasts in cherry wine production appears promising. Further investigation is required to ascertain their suitability for larger-scale fermentation.
Collapse
Affiliation(s)
- Federico Bianchi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | - Michele Avesani
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | | | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| |
Collapse
|
19
|
Cao K, Wu J, Wan X, Hou Y, Zhang C, Wang Y, Zhang L, Yang W, He Y, Wu R. Impact of non-Saccharomyces yeasts derived from traditional fermented foods on beer aroma: Analysis based on HS-SPME-GC/MS combined with chemometrics. Food Res Int 2024; 187:114366. [PMID: 38763646 DOI: 10.1016/j.foodres.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.
Collapse
Affiliation(s)
- Kaixin Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Xiujuan Wan
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yuchen Hou
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China
| | - Yusheng Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Liang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenxin Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 467500, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China.
| |
Collapse
|
20
|
Choi KT, Lee SH, Kim YJ, Choi JS, Lee SB. Improvement of volatile aromatic compound levels and sensory quality of distilled soju derived from Saccharomyces cerevisiae and Wickerhamomyces anomalus co-fermentation. Food Chem X 2024; 22:101368. [PMID: 38645938 PMCID: PMC11031794 DOI: 10.1016/j.fochx.2024.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Distilled soju, a Korean traditional alcoholic beverage, is produced by fermenting rice with a variety of microorganisms including molds, yeasts, and lactic acid-producing bacteria, followed by distillation. Our study sought to improve the quality of distilled soju through co-fermentation with Saccharomyces cerevisiae and Wickerhamomyces anomalus, known for producing volatile aromatic compounds during the early stages of fermentation. Analysis of volatile aromatic compounds in co-fermented distilled soju revealed a substantial increase in compounds with boiling points below 200 °C. Among them, ethyl hexanoate, isobutanol, and isoamyl alcohol were identified as the major volatile aromatic compounds based on Log2 fold change analyses of the volatile aromatic compound pattern. In sensory evaluation, co-fermented distilled soju received higher scores in terms of odor and overall preference. Therefore, incorporating W. anomalus may improve the quality of distilled soju.
Collapse
Affiliation(s)
- Kyu-Taek Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Su-Hyun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Yeong-Jun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Jun-Su Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
- Institute of Fermentation Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
21
|
Ying BB, Cai J, Gao X, Zhang LF, Xu QF, Xu QH, Liu WL, Huang XM, Wang YC, Zhu L. Isolation, identification, and tolerance analysis of yeast during the natural fermentation process of Sidamo coffee beans. Arch Microbiol 2024; 206:279. [PMID: 38805051 DOI: 10.1007/s00203-024-04017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.
Collapse
Affiliation(s)
- Bei-Bei Ying
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xiu Gao
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Li-Fang Zhang
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Qing-Fang Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Qi-He Xu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Wei-Liang Liu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
| | - Xian-Min Huang
- School of Agronomy and Life Sciences, Zhaotong University, Zhaotong, Yunnan, 657000, People's Republic of China
| | - Yu-Chen Wang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, People's Republic of China.
- School of Chemcal Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, People's Republic of China.
| | - Ling Zhu
- Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China.
| |
Collapse
|
22
|
Bunbury-Blanchette AL, Fan L, Kernaghan G. Yeast communities of a North American hybrid wine grape differ between organic and conventional vineyards. J Appl Microbiol 2024; 135:lxae092. [PMID: 38621715 DOI: 10.1093/jambio/lxae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/20/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
AIMS To compare the species diversity and composition of indigenous yeast communities of hybrid grapes from conventionally and organically cultivated vineyards of an emerging cool-climate wine producing region. METHODS AND RESULTS Illumina MiSeq sequences from L'Acadie blanc grape musts were processed and filtered to characterize indigenous yeast communities in organic and conventional vineyards of the Annapolis Valley wine region in Nova Scotia, Canada. While cultivation practice was not associated with yeast diversity or species richness, there was a strong effect on yeast community composition, with conventional vineyards characterized by higher proportions of Sporidiobolales and Filobasidium magnum, and organic vineyards supporting Filobasidium species other than F. magnum and higher proportions of Symmetrospora. There was also variation in yeast community composition among individual vineyards, and from year to year. CONCLUSIONS This is the first comprehensive assessment of yeasts associated with hybrid grapes grown using different cultivation practices in a North American cool climate wine region. Communities were dominated by basidiomycete yeasts and species composition of these yeasts differed significantly between vineyards employing organic and conventional cultivation practices. The role of basidiomycete yeasts in winemaking is not well understood, but some species may influence wine characteristics.
Collapse
Affiliation(s)
- Adele L Bunbury-Blanchette
- Saint Mary's University, Faculty of Graduate Studies and Research, 923 Robie St, Atrium Building, Suite 210, Halifax, Nova Scotia B3H 1G3, Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St, Kentville, Nova Scotia B4N 1J5, Canada
| | - Gavin Kernaghan
- Mount Saint Vincent University, Department of Biology, 166 Bedford Highway, Halifax, Nova Scotia, B3M 1J9, Canada
| |
Collapse
|
23
|
Zeng C, Mu Y, Yuan J, Zhang H, Song J, Kang S. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae Co-Fermentation on the Physicochemical and Flavor Compounds of Huaniu Apple Cider. Molecules 2024; 29:1750. [PMID: 38675570 PMCID: PMC11052012 DOI: 10.3390/molecules29081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of different fermentation methods utilizing Torulaspora delbrueckii 1004 and Saccharomyces cerevisiae 32169 on the physicochemical properties, organic acid content, polyphenol and flavonoid concentrations, antioxidant activity, and volatile aroma compounds of Huaniu apple cider were investigated in this study. Employing methods of single inoculation, co-inoculation, and sequential inoculation, it was found that sequential fermentation exhibited strong fermentative power in the initial stages, effectively reducing the content of soluble solids and achieving a balanced composition of malic, succinic, and citric acids while maintaining a lower titratable acidity. Sequential inoculation was observed to significantly enhance the total polyphenols and flavonoids, as well as the antioxidant capacity (p < 0.05). Specifically, in the synthesis of volatile aroma compounds, sequential inoculation significantly enhanced the richness and diversity of the Huaniu apple cider's aromas, particularly in terms of the concentration of ester compounds (p < 0.05). Principal component analysis further confirmed the superiority of sequential inoculation in terms of aroma component diversity and richness. The findings of this study suggest that sequential inoculation of fermentation with non-Saccharomyces and S. cerevisiae is an effective strategy for optimizing the flavor characteristics of Huaniu apple cider, offering valuable theoretical support and practical guidance for enhancing cider quality and fostering the development of new products.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanjiang Kang
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (C.Z.); (Y.M.); (J.Y.); (H.Z.); (J.S.)
| |
Collapse
|
24
|
Wang J, Wang Z, He F, Pan Z, Du Y, Chen Z, He Y, Sun Y, Li M. Effect of microbial communities on flavor profile of Hakka rice wine throughout production. Food Chem X 2024; 21:101121. [PMID: 38292683 PMCID: PMC10824689 DOI: 10.1016/j.fochx.2024.101121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Hakka rice wine is produced from grains by co-fermentation with abundant microbes in an open fermentation environment. Indigenous microbiota and enzymes convert the nutrients in grains into flavor compounds through enzymatic biochemical reactions and microbial metabolism. High-throughput sequencing technology revealed that non-Saccharomyces yeasts dominated the traditional fermentation process, with genera such as Kodamaea ohmeri, Candida orthopsilosis, and Trichosporon asteroides forming a dynamic community that highly correlated with the evolution of 80 volatile compounds in Hakka rice wine. Among the 104 volatile compounds detected by GC-MS, 22 aroma-active compounds with relative odor activity values (ROAV) > 1 were quantified, 11 of which made significant contributions (P < 0.05) to the overall aroma and were responsible for the sweet, grainy, and herbal aromas of Hakka rice wine.
Collapse
Affiliation(s)
- Junyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ziyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fangqing He
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhuangguang Pan
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yixuan Du
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhiying Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuxin He
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
25
|
Wang Y, Fu Y, Zhang Q, Zhu Y, Yang Q, Bian C, Zhao LL, Chen Q, Bi HJ, Yang XH, Gao XL. Enhancement of ester biosynthesis in blueberry wines through co-fermentation via cell-cell contact between Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Res Int 2024; 179:114029. [PMID: 38342548 DOI: 10.1016/j.foodres.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
This study investigated the effects of co-fermentation of T. delbrueckii and S. cerevisiae on the volatile composition and sensory characteristics of blueberry wines. Mixed fermentation led to higher levels of terpenes, higher alcohols, and esters compared to wines fermented with each yeast individually. Conversely, when T. delbrueckii were physically separated from S. cerevisiae in the double-compartment fermenter, contrasting outcomes emerged. The stronger fruity aroma induced by mixed fermentation were linked to higher ester concentrations, including isoamyl acetate, ethyl isovalerate, ethyl hexanoate, and diethyl succinate. The enhanced esters in mixed fermentation can be attributed to the upregulated alcohol acyltransferase activity and the expressions of ACC1, FAS2, ELO1 and ATF1 genes in late fermentation stage via the cell-cell contact between T. delbrueckii and S. cerevisiae. These findings can deepen the understanding of the interaction between non-Saccharomyces and S. cerevisiae in ester production, assisting wineries in effectively controlling wine aroma through mixed fermentations.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Fu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qin Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chen Bian
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lu-Lu Zhao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Jun Bi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Hui Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Ling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
26
|
Wang L, Yin H, Shao X, Zhang Z, Zhong X, Wei R, Ding Y, Wang H, Li H. Improving the aging aroma profiles of Italian Riesling and Petit Verdot Wines: Impact of spontaneous and inoculated fermentation processes. Food Chem X 2023; 20:100978. [PMID: 37954144 PMCID: PMC10633531 DOI: 10.1016/j.fochx.2023.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
The study employed gas chromatography-ion mobility spectrometry to differentiate between wines undergoing spontaneous fermentation and inoculated fermentation, with aging periods of 3, 9, and 15 months. The results indicate that throughout the three aging periods, there was a notable increase in the levels of ethyl hexanoate (Monomer, M), 2-methyl butanal, ethyl octanoate (M), ethyl octanoate (Dimer, D), propyl acetate, and 3-methylbutanal in the spontaneous Italian Riesling wine (RS). Furthermore, the compounds isoamyl acetate (M), ethyl formate (D), 4-methyl-2-pentanone (M), and ethyl formate (M) demonstrated the highest concentrations at 15 months in RS, accordingly, these compounds displayed a consistent upward trend throughout the aging period. A total of 14 volatile compounds exhibited an upward trend from 3 to 15 months in the spontaneous fermentation of Petit Verdot Wine (VS). Subsequently, these compounds attained their maximum levels. Spontaneous fermentation effectively enhances the aromatic characteristics of wines, consequently improving their capacity for aging.
Collapse
Affiliation(s)
- Lin Wang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Haining Yin
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xuedong Shao
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| | - Zhengwen Zhang
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| | - Xiaomin Zhong
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| | - Ruteng Wei
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yinting Ding
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi Province, China
- Junding Winery Co., LTD., Penglai 265600, Shandong Province, China
| |
Collapse
|
27
|
López-Enríquez L, Vila-Crespo J, Rodríguez-Nogales JM, Fernández-Fernández E, Ruipérez V. Non- Saccharomyces Yeasts from Organic Vineyards as Spontaneous Fermentation Agents. Foods 2023; 12:3644. [PMID: 37835297 PMCID: PMC10572797 DOI: 10.3390/foods12193644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Currently, non-Saccharomyces yeasts are the subject of interest, among other things, for their contribution to the aromatic complexity of wines. In this study, the characterisation of non-Saccharomyces yeasts was addressed by their isolation during spontaneous fermentations of organic Verdejo grapes, obtaining a total of 484 isolates, of which 11% were identified by molecular techniques as non-Saccharomyces yeasts. Fermentative isolates belonging to the species Hanseniaspora meyeri, Hanseniaspora osmophila, Pichia guilliermondii, Pichia kudriavzevii, Torulaspora delbrueckii, and Wickerhamomyces anomalus were analysed. Significant differences were found in the yeast populations established at the different fermentation stages. Interestingly, W. anomalus stood up as a widely distributed species in vineyards, vintages, and fermentation stages. Several of the strains studied stood out for their biotechnological potential in the production of Verdejo wine, showing the presence of relevant enzymatic activity for the release of varietal aromas and the technological improvement of the winemaking process. Three enzymatic activities were found in an important number of isolates, β-glucosidase, protease, and β-lyase, implicated in the positive aromatic impact on this style of white wine. In that sense, all the isolates of W. anomalus presented those activities. T. delbrueckii isolates were highlighted for their significant β-lyase activity. In addition, T. delbrueckii was outlined because of its potential to achieve an elevated fermenting power, as well as the lack of lag phase. The results obtained highlight the importance of maintaining the microbial diversity that contributes to the production of wines with unique and distinctive characteristics of the production region.
Collapse
Affiliation(s)
- Lorena López-Enríquez
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (L.L.-E.); (J.V.-C.)
| | - Josefina Vila-Crespo
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (L.L.-E.); (J.V.-C.)
| | - José Manuel Rodríguez-Nogales
- Food Technology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (J.M.R.-N.); (E.F.-F.)
| | - Encarnación Fernández-Fernández
- Food Technology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (J.M.R.-N.); (E.F.-F.)
| | - Violeta Ruipérez
- Microbiology Department, Higher Technical School of Agrarian Engineering of Palencia, University of Valladolid, Av. Madrid 50, 34004 Palencia, Spain; (L.L.-E.); (J.V.-C.)
| |
Collapse
|
28
|
Das S, Tamang JP. Metagenomics and metabolomics of Toddy, an Indian fermented date palm beverage. Food Res Int 2023; 172:113205. [PMID: 37689952 DOI: 10.1016/j.foodres.2023.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 09/11/2023]
Abstract
Toddy is a popular fermented palm beverage of India. No scientific information on shotgun metagenomics and metabolomics are available on toddy of India till date. Hence, we choose the fermented date palm beverage, locally called khejur toddy, of West Bengal and Jharkhand states of India, to profile microbial community, their targeted and untargeted metabolites to study the putative bio-functional genes corresponding to regulatory metabolic pathways. Shotgun-based metataxonomic analyses revealed the existence of all domains where bacteria were the most abundant domain (94.48%) followed by eukaryotes (3.38%), viruses (1.53%) and archaea (0.61%). Overall, 54 phyla, 363 families, 1087 genera and 1885 species were observed and identified. Bacillota (49.3%) was the most abundant bacterial phylum. At species level, several species of bacteria and yeasts were detected in toddy samples which included Leuconostoc mesenteroides,Leuconostoc citreum,Lactobacillus helveticus,Lactiplantibacillus plantarum,Lactococcus lactis, Acetobacter malorum, Gluconobacter japonicus, Gluconacetobacter liquefaciens, Fructobacillus durionis, Zymomonas mobilis and yeastsSaccharomyces cerevisiae, Hanseniaspora uvarumandHanseniaspora guilliermondii. Toddy metagenome was also compared with metagenome of pulque, the Mexican fermented fresh sap ofAgave, which was retrieved from NCBI database, and also with metagenomic data of some amplicon-based previous studies on toddy and African fermented palm drink for similarity, dissimilarity and uniqueness among them. Predictive biosynthesis of ethanol, acetic acid, butanoate, linalool, staurosporine, prodigiosin, folic acid, riboflavin, etc. were annotated by KEGG/COG database. Clustered regularly interspaced short palindromic repeats (CRISPR) analysis detected 23 arrays (average length 23.69 bp ± 4.28). Comprehensive Antibiotic Resistance Database (CARD) analysis did not show the presence of any momentous antibiotic resistance gene among the major microbial members. Metabolomics analysis detected many primary and secondary metabolites. We believe this is the first report on complete shotgun metagenomics, and metabolomics of fermented palm drink of India as well as Eastern India.
Collapse
Affiliation(s)
- Souvik Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102 Sikkim, India
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, 737102 Sikkim, India.
| |
Collapse
|
29
|
Galaz V, Franco W. Lachancea quebecensis a Novel Isolate for the Production of Craft Beer. Foods 2023; 12:3347. [PMID: 37761056 PMCID: PMC10529567 DOI: 10.3390/foods12183347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Yeasts are ubiquitously present in different natural sources. Some of these yeasts have interesting characteristics for the production of fermented food products. This study characterized Lachancea thermotolerans and L. quebecensis isolated from insects to determine their brewing potential. The yeasts were evaluated according to their fermentative potential in glucose and maltose-defined media and their resistance to ethanol and hop. Finally, craft beer was elaborated at a laboratory scale (10 L). The yeasts utilized glucose as the only carbon source and produced 3.25 ± 1.77, and 4.25 ± 1.06% (v/v), of ethanol for L. thermotolerans and quebecensis, respectively. While in the maltose-defined medium, ethanol content reached 3.25 ± 0.45, and 3.92 ± 0.36, respectively. The presence of alpha acids and ethanol affected the growth of L. quebecensis, which showed lower growth at 90 IBU and 8 ethanol% (v/v) mixtures. The craft beer brewed with L. quebecensis in monoculture experiments showed fruity flavors associated with ethyl acetate and isoamyl acetate. The ethanol content reached 3.50 ± 0.46% (v/v). The beer pH was 4.06 ± 0.20, with a lactic acid concentration of 1.21 ± 0.05 g/L. The sensory panel identified the beer as "fruity", "floral", "hoppy", "sweet", and "sour". To our knowledge, this is the first time L. quebecensis was reported as a potential candidate for sour beer production with reduced ethanol content.
Collapse
Affiliation(s)
- Valeria Galaz
- Department of Chemical Engineering and Bioprocess, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Wendy Franco
- Department of Chemical Engineering and Bioprocess, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- Departamento de Ciencias de la Salud, Carrera de Nutrición y Dietética, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
30
|
Ge X, Wang J, Wang X, Liu Y, Dang C, Suo R, Sun J. Evaluation of Indigenous Yeasts Screened from Chinese Vineyards as Potential Starters for Improving Wine Aroma. Foods 2023; 12:3073. [PMID: 37628071 PMCID: PMC10453611 DOI: 10.3390/foods12163073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Exploitation of the biodiversity of native wine yeast is a means of modifying the sensory characteristics of wine. Samples from different regions in China were analysed to screen native isolates as potential starter cultures. Through morphological and molecular biological analyses, we found six species, belonging to four genera (Hanseniaspora, Saccharomyces, Rhodotorula and Metschnikowia). These species were subjected to stress tolerance assays (ethanol, glucose, SO2 and pH), enzymatic activity tests (sulphite reductase activity, β-glucosidase activity and protease activity) and fermentation tests. Saccharomyces cerevisiae showed a high tolerance to ethanol and completed fermentation independently. Hanseniaspora demonstrated good enzymatic activity and completed sequential fermentation. The fermentation experiment showed that the PCT4 strain had the best aroma complexity. This study provides a reference for selecting new starters from the perspective of flavour enzymes and tolerance and diversifying the sensory quality of wines from the region.
Collapse
Affiliation(s)
- Xiaoxin Ge
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Xiaodi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Chao Dang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Ran Suo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China; (X.G.)
- Hebei Technology Innovation Center of Agricultural Products Processing, Baoding 071001, China
| |
Collapse
|
31
|
Jeong WS, Kong HR, Kim SY, Yeo SH. Exploring the Health Benefits of Yeast Isolated from Traditional Fermented Foods in Korea: Anti-Inflammatory and Functional Properties of Saccharomyces and Non- Saccharomyces Strains. Microorganisms 2023; 11:1503. [PMID: 37375005 DOI: 10.3390/microorganisms11061503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Traditional yeast (Saccharomyces cerevisiae) has been used for its benefits in various fermentation processes; the benefits of non-Saccharomyces yeast as a material for food, feed, and pharmaceuticals have been studied recently. This study evaluated the anti-inflammatory activity and extracellular functional characteristics of wild-type yeasts isolated from traditional fermented foods (doenjang (common name: soybean paste) and nuruk) in Korea. The viability of the yeast and lipopolysaccharide (LPS)-stimulated RAWBlue™ cells was improved, similar to unstimulated RAWBlue™ cells, and the isolates demonstrated NF-κB inhibitory activity. Yeast suppressed the nitric oxide production in LPS-stimulated RAWBlue™ cells, which was attributed to the inhibition of iNOS or COX-2 mRNA expression depending on the strain. Although there were differences depending on the strain, the production of anti-inflammatory cytokines was reduced in the yeast and LPS-stimulated RAWBlue™ cells, some of which were demonstrated at the mRNA level. In addition, the isolates exhibited high antioxidant and antihypertensive activities (similar to the positive control), which varied depending on the strain. This suggests that yeast can be used for fermentation with enhanced antioxidant and antihypertensive activities. Furthermore, the isolates inhibited the growth of pathogenic Gram-negative bacteria, indicating that yeast can inhibit food spoilage and the growth of pathogenic bacteria during fermentation. Consequently, utilizing raw materials to cultivate yeast strains could be a promising avenue for developing functional foods to prevent and treat inflammatory reactions; such foods may exhibit antioxidant, antihypertensive, and antibacterial properties.
Collapse
Affiliation(s)
- Woo-Soo Jeong
- Fermented and Processed Food Science Division, Department of Agrofood Resources, Rural Development Administration, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Ha-Ram Kong
- Fermented and Processed Food Science Division, Department of Agrofood Resources, Rural Development Administration, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - So-Young Kim
- Fermented and Processed Food Science Division, Department of Agrofood Resources, Rural Development Administration, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Soo-Hwan Yeo
- Fermented and Processed Food Science Division, Department of Agrofood Resources, Rural Development Administration, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| |
Collapse
|
32
|
Fazio NA, Russo N, Foti P, Pino A, Caggia C, Randazzo CL. Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 2023; 11:1338. [PMID: 37317312 DOI: 10.3390/microorganisms11051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.
Collapse
Affiliation(s)
- Nunzio A Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
33
|
Ohwofasa A, Dhami M, Tian B, Winefield C, On SL. Environmental influences on microbial community development during organic pinot noir wine production in outdoor and indoor fermentation conditions. Heliyon 2023; 9:e15658. [PMID: 37206017 PMCID: PMC10189187 DOI: 10.1016/j.heliyon.2023.e15658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
The role of microbial diversity in influencing the organoleptic properties of wine and other fermented products is well est ablished, and understanding microbial dynamics within fermentation processes can be critical for quality assurance and product innovation. This is especially true for winemakers using spontaneous fermentation techniques, where environmental factors may play an important role in consistency of product. Here, we use a metabarcoding approach to investigate the influence of two environmental systems used by an organic winemaker to produce wines; vineyard (outdoors) and winery (indoors) to the bacterial and fungal communities throughout the duration of a spontaneous fermentation of the same batch of Pinot Noir grapes. Bacterial (RANOSIM = 0.5814, p = 0.0001) and fungal (RANOSIM = 0.603, p = 0.0001) diversity differed significantly across the fermentation stages in both systems. Members of the Hyphomicrobium genus were found in winemaking for the first time, as a bacterial genus that can survive alcoholic fermentation. Our results also indicate that Torulaspora delbrueckii and Fructobacillus species might be sensitive to environmental systems. These results clearly reflect the substantial influence that environmental conditions exert on microbial populations at every point in the process of transforming grape juice to wine via fermentation, and offer new insights into the challenges and opportunities for wine production in an ever-changing global climate.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephen L.W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
- Corresponding author. Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
34
|
Shen S, Chen Y, Zhou J, Zhang H, Xia X, Yang Y, Zhang Y, Noori A, Mousavi MF, Chen M, Xia Y, Zhang W. Microbe‐Mediated Biosynthesis of Multidimensional Carbon‐Based Materials for Energy Storage Applications. ADVANCED ENERGY MATERIALS 2023; 13. [DOI: 10.1002/aenm.202204259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis methods are considered to be a promising technology for engineering new carbon‐based materials or redesigning the existing ones for specific purposes with the aid of synthetic biology. Lots of biosynthetic processes including metabolism, fermentation, biological mineralization, and gene editing have been adopted to prepare novel carbon‐based materials with exceptional properties that cannot be realized by traditional chemical methods, because microbes evolved to possess special abilities to modulate components/structure of materials. In this review, the recent development on carbon‐based materials prepared via different biosynthesis methods and various microbe factories (such as bacteria, yeasts, fungus, viruses, proteins) are systematically reviewed. The types of biotechniques and the corresponding mechanisms for the synthesis of carbon‐based materials are outlined. This review also focuses on the structural design and compositional engineering of carbon‐based nanostructures (e.g., metals, semiconductors, metal oxides, metal sulfides, phosphates, Mxenes) derived from biotechnology and their applications in electrochemical energy storage devices. Moreover, the relationship of the architecture–composition–electrochemical behavior and performance enhancement mechanism is also deeply discussed and analyzed. Finally, the development perspectives and challenges on the biosynthetic carbons are proposed and may pave a new avenue for rational design of advanced materials for the low‐carbon economy.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yanbin Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Jiancang Zhou
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
| | - Haomiao Zhang
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinhui Xia
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yefeng Yang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 611371 China
| | - Abolhassan Noori
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Mir F. Mousavi
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yang Xia
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Wenkui Zhang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
35
|
Li R, Liu Y, Zheng J, Xu M, Wang H, Sun C, Cai S, Guo X, Wu X, Chen Y. Oenological characteristics of two indigenous Starmerella bacillaris strains isolated from Chinese wine regions. Appl Microbiol Biotechnol 2023; 107:3717-3727. [PMID: 37097503 DOI: 10.1007/s00253-023-12502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
To broaden knowledge about the oenological characteristics of Starmerella bacillaris, the influence of two Chinese indigenous S. bacillaris strains on the conventional enological parameters and volatile compounds of Cabernet Sauvignon wines were investigated under different inoculation protocols (single inoculation and simultaneous/sequential inoculation with the commercial Saccharomyces cerevisiae EC1118). The results showed that the two S. bacillaris strains could complete alcohol fermentation alone under high sugar concentrations while increasing the content of glycerol and decreasing the content of acetic acid. Compared with wines fermented by EC1118 single inoculation, S. bacillaris single inoculation and S. bacillaris/EC1118 sequential inoculation increased the contents of isobutanol, ethyl isobutanoate, terpenes, and ketones and decreased the contents of isopentanol, phenylethyl alcohol, fatty acids, acetate esters, and total ethyl esters. Furthermore, for S. bacillaris/EC1118 simultaneous inoculation, the concentrations of ethyl esters were increased, contributing to a higher score of "floral" and "fruity" notes in agreement with sensory analysis. KEY POINTS: • S. bacillaris single and simultaneous/sequential inoculation. • Conventional enological parameters and volatile compounds were investigated. • S. bacillaris/EC1118 simultaneous fermentation increased ethyl esters.
Collapse
Affiliation(s)
- Ruirui Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yanjun Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jia Zheng
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, China
| | - Meng Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chunhong Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shijie Cai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaole Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, China.
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Key Laboratory of Wuliangye-Flavor Liquor Solid-State Fermentation, China National Light Industry, Yibin, 644000, China.
| |
Collapse
|
36
|
Impact of Non-Saccharomyces Yeast Fermentation in Madeira Wine Chemical Composition. Processes (Basel) 2023. [DOI: 10.3390/pr11020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Madeira wine is produced via spontaneous alcoholic fermentation arrested by ethanol addition. The increasing demand of the wine market has led to the need to standardize the winemaking process. This study focuses on identifying the microbiota of indigenous yeasts present during Madeira wine fermentation and then evaluates the impact of selected indigenous non-Saccharomyces as pure starter culture (Hanseniaspora uvarum, Starmerella bacillaris, Pichia terricola, Pichia fermentans, and Pichia kluyveri) in the chemical and phenolic characterization of Madeira wine production. Results showed that the polyphenol content of the wines was influenced by yeast species, with higher levels found in wines produced by Pichia spp. (ranging from 356.85 to 367.68 mg GAE/L in total polyphenols and 50.52 to 51.50 mg/L in total individual polyphenols through HPLC methods). Antioxidant potential was higher in wines produced with Hanseniaspora uvarum (133.60 mg Trolox/L) and Starmerella bacillaris (137.61 mg Trolox/L). Additionally, Starmerella bacillaris stands out due to its sugar consumption during fermentation (the totality of fructose and 43% of glucose) and 15.80 g/L of total organic acids compared to 9.23 g/L (on average) for the other yeasts. This knowledge can be advantageous to standardizing the winemaking process and increasing the bioactive compounds, resulting in the production of high-quality wines.
Collapse
|
37
|
Quality Improvement in Apple Ciders during Simultaneous Co-Fermentation through Triple Mixed-Cultures of Saccharomyces cerevisiae, Pichia kudriavzevii, and Lactiplantibacillus plantarum. Foods 2023; 12:foods12030655. [PMID: 36766182 PMCID: PMC9914050 DOI: 10.3390/foods12030655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study explored the effect of the combination of Saccharomyces yeast, non-Saccharomyces yeast (Pichia kudriavzevii), and Lactiplantibacillus plantarum during cider fermentation on physicochemical properties, antioxidant activities, flavor and aroma compounds, as well as sensory qualities. Ciders fermented with the triple mixed-cultures of these three species showed lower acid and alcohol content than those fermented with the single-culture of S. cerevisiae. The antioxidant activities were enhanced by the triple mixed-culture fermentation, giving a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and total antioxidant capacity; specifically, the SPL5 cider showed the highest DPPH radical scavenging rate (77.28%), while the SPL2 gave the highest total antioxidant capacity (39.57 mmol/L). Additionally, the triple mixed-culture fermentation resulted in improved flavor and aroma with a lower acidity (L-malic acid) and higher aroma compounds (Esters), when compared with the single-culture fermented ciders (Saccharomyces cerevisiae); more specifically, the SPL4 cider resulted in the highest total flavor and aroma compounds. In addition, sensory evaluation demonstrated that ciders produced using the triple mixed-cultures gained higher scores than those fermented using the single-culture of S. cerevisiae, giving better floral aroma, fruity flavor, and overall acceptability. Therefore, our results indicated that the triple mixed-cultures (S. cerevisiae, P. kudriavzevii, and L. plantarum) were found to make up some enological shortages of the single S. cerevisiae fermented cider. This study is believed to provide a potential strategy to enhance cider quality and further give a reference for new industrial development protocols for cider fermentation that have better sensory qualities with higher antioxidant properties.
Collapse
|
38
|
A Versatile Toolset for Genetic Manipulation of the Wine Yeast Hanseniaspora uvarum. Int J Mol Sci 2023; 24:ijms24031859. [PMID: 36768181 PMCID: PMC9915424 DOI: 10.3390/ijms24031859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Hanseniaspora uvarum is an ascomycetous yeast that frequently dominates the population in the first two days of wine fermentations. It contributes to the production of many beneficial as well as detrimental aroma compounds. While the genome sequence of the diploid type strain DSM 2768 has been largely elucidated, transformation by electroporation was only recently achieved. We here provide an elaborate toolset for the genetic manipulation of this yeast. A chromosomal replication origin was isolated and used for the construction of episomal, self-replicating cloning vectors. Moreover, homozygous auxotrophic deletion markers (Huura3, Huhis3, Huleu2, Huade2) have been obtained in the diploid genome as future recipients and a proof of principle for the application of PCR-based one-step gene deletion strategies. Besides a hygromycin resistance cassette, a kanamycin resistance gene was established as a dominant marker for selection on G418. Recyclable deletion cassettes flanked by loxP-sites and the corresponding Cre-recombinase expression vectors were tailored. Moreover, we report on a chemical transformation procedure with the use of freeze-competent cells. Together, these techniques and constructs pave the way for efficient and targeted manipulations of H. uvarum.
Collapse
|
39
|
Comparison of potential Wickerhamomyces anomalus to improve the quality of Cabernet Sauvignon wines by mixed fermentation with Saccharomyces cerevisiae. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Bunbury-Blanchette AL, Fan L, English MM, Kernaghan G. Yeast communities before and after spontaneous fermentation of wine grapes: a case study from Nova Scotia. Can J Microbiol 2023; 69:32-43. [PMID: 36288607 DOI: 10.1139/cjm-2022-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Wine fermentations are generally completed by the domestic yeast Saccharomyces cerevisiae, but many indigenous vineyard yeasts also influence wine flavour and aroma. Despite the flourishing wine industry in Nova Scotia, there has yet to be any systematic evaluation of these yeasts in Atlantic Canada. The yeast communities of pressed L'Acadie blanc grapes sampled from an organic vineyard in the Annapolis Valley in 2018 and 2019 were characterized before and after spontaneous fermentation by both Illumina and PacBio sequencing, to address and compare potential platform biases. Chemical and sensory evaluations were also conducted. Basidiomycete yeasts, including Vishniacozyma carnescens, Filobasidium globisporum, and Curvibasidium cygneicollum, dominated pre-fermentation diversity. Species of Saccharomyces made up ∼0.04% of sequences prior to fermentation, but 85%-100% after fermentation, with some replicates dominated by S. cerevisiae and some by S. uvarum. PacBio sequencing detected high proportions of Hanseniaspora uvarum, while Illumina sequencing did not. A better understanding of Nova Scotia vineyard yeast communities will allow local wine makers to make better use of non-traditional yeasts and spontaneous fermentations to produce high-quality wines unique to the region.
Collapse
Affiliation(s)
- Adele L Bunbury-Blanchette
- Faculty of Graduate Studies and Research, Saint Mary's University, 923 Robie St, Atrium Building, Suite 210, Halifax, NS, Canada
| | - Lihua Fan
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, 32 Main St, Kentville, NS, Canada
| | - Marcia M English
- Department of Human Nutrition, St. Francis-Xavier University, 2320 Notre Dame Ave, J. Bruce Brown Hall 208, Antigonish, NS, Canada
| | - Gavin Kernaghan
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada
| |
Collapse
|
41
|
Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The contribution of grape pomace on tannin concentration, tannin composition and aroma profile of Pinot noir wine was studied using different fermentation media to make up four treatments: GJ-P, grape juice plus pomace; MJ-P, model juice plus pomace; GJ, grape juice; MJ, model juice. The MJ-P treatment showed significantly lower amounts of tannins, mean degree of polymerisation (mDP), similar amounts of anthocyanin, and a similar secondary aroma profile compared to the GJ-P treatment. Grape pomace addition significantly increased the tannin concentration in wines. This study was also revealed the importance of phenolics present in grape juice in tannin polymerisation and final tannin concentration in wines. Grape pomace addition significantly reduced some important aroma compounds such as acetate esters (except ethyl acetate), most of the volatile fatty acids, a few ethyl esters and β-damascenone but increased some primary aromas in wines due to the presence of their aroma precursors in skins. Hence, these results indicate that grape pomace may bind or delay the release of some aroma compounds and/or lose these compounds during cap management in GJ-P and MJ-P treatments compared to the respective juice treatments.
Collapse
|
42
|
Wang Y, Wang M, Li W, Wang X, Kong W, Huang W, Zhan J, Xia G, You Y. Indigenous yeast can increase the phenolic acid and volatile ester compounds in Petit Manseng wine. Front Nutr 2022; 9:1031594. [PMID: 36562039 PMCID: PMC9763556 DOI: 10.3389/fnut.2022.1031594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Indigenous yeasts are generally found in grapes, vineyards, and natural environments. Sequential inoculation and fermentation with non-Saccharomyces cerevisiae yeast (H30) and Saccharomyces cerevisiae (YT13) also improve the flavor of wine. Methods This study sequentially inoculated fermented Petit Manseng and natural grape juice with native H30 and YT13 selected from vineyards in Yantai, China. Results and discussion The sensory characteristics of Petit Manseng wine were evaluated by detecting the primary organic acids, phenolic acid compounds, and volatile ester compounds. The results showed that the lactic acid content of the natural wine fermented sequentially with H30 and YT13 increased by 490 μg/L compared with the control group, while the ferulic acid content was 1.4 times that of the single-yeast fermentation group. Furthermore, butyrolactone and anthocyanidin propionate were present in the mixed fermentation group, increasing the aroma complexity of Petit Manseng wine and providing high-quality yeast resources that increase the regional characteristics when producing dry white wine.
Collapse
Affiliation(s)
- Yanyu Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Miao Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Wenjuan Li
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China
| | - Xinyuan Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weifu Kong
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yantai Research Institute, China Agricultural University, Yantai, Shandong, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guangli Xia
- Yantai Pula Valley Winery Management Co., Ltd., Yantai, Shandong, China,College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China,*Correspondence: Guangli Xia,
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Yilin You,
| |
Collapse
|
43
|
López-Enríquez L, Vila-Crespo J, Rodríguez-Nogales JM, Fernández-Fernández E, Ruipérez V. Screening and Enzymatic Evaluation of Saccharomyces cerevisiae Populations from Spontaneous Fermentation of Organic Verdejo Wines. Foods 2022; 11:3448. [PMID: 36360060 PMCID: PMC9656934 DOI: 10.3390/foods11213448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
Microbial populations in spontaneous winemaking contribute to the distinctiveness and quality of the wines. In this study, molecular methods were applied to 484 isolated yeasts to survey the diversity of the Saccharomyces cerevisiae population in spontaneous fermentations of organic Verdejo grapes. Identification was carried out at strain level for samples from different vineyards correct.and stages of the winemaking process over the course of two vintages, establishing 54 different strains. The number of isolates belonging to each strain was not homogeneous, as two predominant strains represented more than half of the isolates independent of vineyard or vintage. Regarding the richness and abundance, differences among the stages of fermentation were confirmed, finding the highest diversity values in racked must and in the end of fermentation stages. Dissimilarity in S. cerevisiae communities was found among vineyards and vintages, distinguishing representative groups of isolates for each of the populations analysed. These results highlight the effect of vineyard and vintage on yeast communities as well as the presence of singular strains in populations of yeasts. Oenologically relevant enzymatic activities, β-lyase, protease and β-glucanase, were detected in 83.9%, 96.8% and 38.7% of the isolates, respectively, which may be of interest for potential future studies.
Collapse
Affiliation(s)
- Lorena López-Enríquez
- Área de Microbiología, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - Josefina Vila-Crespo
- Área de Microbiología, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - José Manuel Rodríguez-Nogales
- Área de Tecnología de los Alimentos, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - Encarnación Fernández-Fernández
- Área de Tecnología de los Alimentos, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| | - Violeta Ruipérez
- Área de Microbiología, Universidad de Valladolid, Escuela Técnica Superior de Ingenierías Agrarias, Av. Madrid 50, 34004 Palencia, Spain
| |
Collapse
|
44
|
Impact of Two Commercial S. cerevisiae Strains on the Aroma Profiles of Different Regional Musts. BEVERAGES 2022. [DOI: 10.3390/beverages8040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present research is aimed at investigating the potential of two commercial Saccharomyces cerevisiae strains (EC1118 and AWRI796) to generate wine-specific volatile molecule fingerprinting in relation to the initial must applied. To eliminate the effects of all the process variables and obtain more reliable results, comparative fermentations on interlaboratory scale of five different regional red grape musts were carried out by five different research units (RUs). For this purpose, the two S. cerevisiae strains were inoculated separately at the same level and under the same operating conditions. The wines were analyzed by means of SPME-GC/MS. Quali-quantitative multivariate approaches (two-way joining, MANOVA and PCA) were used to explain the contribution of strain, must, and their interaction to the final wine volatile fingerprinting. Our results showed that the five wines analyzed for volatile compounds, although characterized by a specific aromatic profile, were mainly affected by the grape used, in interaction with the inoculated Saccharomyces strain. In particular, the AWRI796 strain generally exerted a greater influence on the aromatic component resulting in a higher level of alcohols and esters. This study highlighted that the variable strain could have a different weight, with some musts experiencing a different trend depending on the strain (i.e., Negroamaro or Magliocco musts).
Collapse
|
45
|
What Is Candida Doing in My Food? A Review and Safety Alert on Its Use as Starter Cultures in Fermented Foods. Microorganisms 2022; 10:microorganisms10091855. [PMID: 36144457 PMCID: PMC9502980 DOI: 10.3390/microorganisms10091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
The use of yeasts as starter cultures was boosted with the emergence of large-scale fermentations in the 20th century. Since then, Saccharomyces cerevisiae has been the most common and widely used microorganism in the food industry. However, Candida species have also been used as an adjuvant in cheese production or as starters for coffee, cocoa, vegetable, meat, beer, and wine fermentations. A thorough screening of candidate Candida is sometimes performed to obtain the best performing strains to enhance specific features. Some commonly selected species include C. pulcherrima (teleomorph Metschnikowia pulcherrima) (wine), C. parapsilosis (teleomorph Monilia parapsilosis) (coffee), C. famata (teleomorph Debaryomyces hansenii) (cheese), and C. zeylanoides (teleomorph Kurtzmaniella zeylanoides) and C. norvegensis (teleomorph Pichia norvegensis) (cocoa). These species are associated with the production of key metabolites (food aroma formation) and different enzymes. However, safety-associated selection criteria are often neglected. It is widely known that some Candida species are opportunistic human pathogens, with important clinical relevance. Here, the physiology and metabolism of Candida species are addressed, initially emphasizing their clinical aspects and potential pathogenicity. Then, Candida species used in food fermentations and their functional roles are reported. We recommended that Candida not be used as food cultures if safety assessments are not performed. Some safety features are highlighted to help researchers choose methods and selection criteria.
Collapse
|
46
|
Changes in the aroma characteristics during the different processes of dry Cabernet Sauvignon wine production. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
The Impact of Indigenous Non-Saccharomyces Yeasts Inoculated Fermentations on ‘Semillon’ Icewine. FERMENTATION 2022. [DOI: 10.3390/fermentation8080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emerging low acidity in icewine grapes is becoming a major problem in producing quality icewine. Using non-Saccharomyces cerevisiae yeasts in fermentation can improve wine’s organoleptic characteristics and aromatic quality. This study evaluated two indigenous non-Saccharomyces cerevisiae yeasts, Lachancea thermotolerans (LT-2) and Torulaspora delbrueckii (TD-3), for their ability to improve the acidity and quality of ‘Semillon’ icewine. Five different inoculation schemes were implemented, including a single inoculation of S. cerevisiae (SC), L. thermotolerans (LT), and T. delbrueckii (TD); the sequential inoculation of L. thermotolerans, followed by S. cerevisiae after 6 days (L-S); and the sequential inoculation of L. thermotolerans, followed by T. delbrueckii after 6 days (L-D). The results showed that, during sequential fermentation (L-S and L-D), the presence of S. cerevisiae or T. delbrueckii slightly restrained the growth of L. thermotolerans. Single or sequential inoculation with L. thermotolerans and T. delbrueckii significantly reduced the amount of volatile acidity and increased the glycerol content. Furthermore, fermentations involving L. thermotolerans produced relevant amounts of lactic acid (2.04–2.2 g/L) without excessive deacidification of the icewines. Additionally, sequential fermentations increased the concentration of terpenes, C13-norisoprenoid compounds, and phenethyl compounds. A sensory analysis also revealed that sequentially fermented icewines (L-S and L-D) had more fruity and floral odors and aroma intensity. This study highlights the potential application of L. thermotolerans and T. delbrueckii in sequential fermentation to improve the icewine quality.
Collapse
|
48
|
Biodiversity and Oenological Property Analysis of Non-Saccharomyces Yeasts Isolated from Korla Fragrant Pears (Pyrus sinkiangensis Yu). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oenological yeasts play a critical role in the winemaking process. In this study, the biodiversity of the non-Saccharomyces yeast was analyzed and monitored using high-throughput sequencing and culture-dependent approaches. Oenological and fermentation characteristics of these native yeasts were further investigated. A total of 241 fungus species and 5 species of culturable non-Saccharomyces yeasts were detected using high-throughput sequencing and culture-dependent approaches, respectively. Five strains of aroma-producing yeasts (K4, K14, K19, K21, and K26) were isolated, and their growth characteristics, carbon source utilization, hydrogen sulfide production performance, and β-glucosidase activity were different. The oenological condition tolerances of most strains were lower than that of commercial S. cerevisiae X16. The co-inoculum of these strains and S. cerevisiae X16 regulated the volatile aroma characteristics of the fermented Korla fragrant pear (KFP) fruit wine, enriching and complicating the aroma flavor. Thus, the combined inoculation of these indigenous wine yeasts and S. cerevisiae has some application potential in the production of KFP wine.
Collapse
|
49
|
Relationship between Fungal Communities and Volatile Flavor Components during the Traditional Chinese Fermentation of Capsicum annuum L. Var. Dactylus M. Processes (Basel) 2022. [DOI: 10.3390/pr10081513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Microbial diversity and dynamic changes play an important role in the production of fermented peppers. In this study, the relationship between fungal communities and the volatile flavor compounds of traditional Chinese fermented peppers was investigated by high-throughput sequencing technology. The results showed that Hanseniaspora was a dominant fungus during the whole fermentation course and accounted for 82.22% of the fungal community on average (ranging from 50.44% to 98.15%). Bidirectional orthogonal partial least squares (O2PLS) analysis between fungal community and volatile flavor compounds showed that Pichia, Hanseniaspora, Cryptococcus, Debarvomvces, and Trichosporon were closely correlated with the concentrations of the volatile flavor components such as α-terpineol, trans-3-tetradecene, 4-methylpentyl 3-methylbutanoate, and 11 other volatile flavor compounds. This study elucidated the dynamics of fungal communities and volatile flavor compounds during pepper fermentation and the correlation between them. Our analysis of the relationships between fungal communities and volatile flavor compounds advanced our understanding of the formation mechanism of volatile flavor compounds in fermented peppers.
Collapse
|
50
|
Romano P, Braschi G, Siesto G, Patrignani F, Lanciotti R. Role of Yeasts on the Sensory Component of Wines. Foods 2022; 11:1921. [PMID: 35804735 PMCID: PMC9265420 DOI: 10.3390/foods11131921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
The aromatic complexity of a wine is mainly influenced by the interaction between grapes and fermentation agents. This interaction is very complex and affected by numerous factors, such as cultivars, degree of grape ripeness, climate, mashing techniques, must chemical−physical characteristics, yeasts used in the fermentation process and their interactions with the grape endogenous microbiota, process parameters (including new non-thermal technologies), malolactic fermentation (when desired), and phenomena occurring during aging. However, the role of yeasts in the formation of aroma compounds has been universally recognized. In fact, yeasts (as starters or naturally occurring microbiota) can contribute both with the formation of compounds deriving from the primary metabolism, with the synthesis of specific metabolites, and with the modification of molecules present in the must. Among secondary metabolites, key roles are recognized for esters, higher alcohols, volatile phenols, sulfur molecules, and carbonyl compounds. Moreover, some specific enzymatic activities of yeasts, linked above all to non-Saccharomyces species, can contribute to increasing the sensory profile of the wine thanks to the release of volatile terpenes or other molecules. Therefore, this review will highlight the main aroma compounds produced by Saccharomyces cerevisiae and other yeasts of oenological interest in relation to process conditions, new non-thermal technologies, and microbial interactions.
Collapse
Affiliation(s)
- Patrizia Romano
- Faculty of Economy, Universitas Mercatorum, 00186 Rome, Italy; (P.R.); (G.S.)
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
| | - Gabriella Siesto
- Faculty of Economy, Universitas Mercatorum, 00186 Rome, Italy; (P.R.); (G.S.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Quinto Bucci 336, 47521 Bologna, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus Food Science, p.zza Goidanich 60, 47521 Cesena, Italy; (G.B.); (R.L.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Quinto Bucci 336, 47521 Bologna, Italy
| |
Collapse
|