1
|
Brai A, Pasqualini C, Poggialini F, Vagaggini C, Dreassi E. Insects as Source of Nutraceuticals with Antioxidant, Antihypertensive, and Antidiabetic Properties: Focus on the Species Approved in Europe up to 2024. Foods 2025; 14:1383. [PMID: 40282785 PMCID: PMC12027113 DOI: 10.3390/foods14081383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Insects represent a traditional food in different parts of the world, where eating insects is not only related to nutrition, but also results from a variety of sociocultural customs. Insects' nutritional profiles typically vary by species. Nevertheless, in terms of nutrition, edible insects can be a rich source of protein, dietary fiber, healthy fatty acids, and micronutrients, including minerals and vitamins. Insects have a low carbon footprint and require fewer resources in terms of land, water, and food with respect to animal livestock. Interestingly, insects are a source of bioactive compounds with different pharmacological activities, including antioxidant, antimicrobial, antidiabetic, antiobesity, antihypertensive, and antilipidemic. Among the bioactive compounds, polyphenols, chitosan, and protein hydrolysates are the most important ones, with direct activity on ROS quenching and enzymatic inhibition. Glucosidase, DPP-IV, ACE, and lipases are directly inhibited by insects' bioactive peptides. Lipids and tocopherols reduce inflammation and lipid peroxidation by acting on LOX and COX-2 enzymes and on ROS quenching. The insects' nutrient composition, coupled with their easy and economical breeding, is the cause of the growing interest in edible insects. During the last 20 years, the study and development of novel insect-based products increased, with relevant effects on the market. This review focuses on the edible insects currently approved in Europe, namely, Acheta domesticus, Alphitobus diaperinus, Locusta migratoria, and Tenebrio molitor. The nutrient profile and the functional compounds are examined, with an eye on market trends and on the patent applications filed in the last decades.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (C.P.); (F.P.); (C.V.); (E.D.)
| | | | | | | | | |
Collapse
|
2
|
Nachtigall L, Grune T, Weber D. Proteins and Amino Acids from Edible Insects for the Human Diet-A Narrative Review Considering Environmental Sustainability and Regulatory Challenges. Nutrients 2025; 17:1245. [PMID: 40219002 PMCID: PMC11990478 DOI: 10.3390/nu17071245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The scientific interest in edible insects as an alternative source of high-value protein for the human diet has increased drastically over the last decade. Edible insects harbour enormous potential in terms of planetary health. Their lower water and land use, lower feed conversion ratios, and overall lower global warming potential paired with a high nutritional value compared with conventional livestock are key drivers towards an environmentally sustainable diet. However, low consumer acceptance, as well as regulatory challenges, have slowed down the success of edible insects in Western countries, despite edible insects being consumed regularly all over the world. To date, four edible insect species have been approved as novel foods in the European Union-namely yellow mealworm (Tenebrio molitor), migratory locust (Locusta migratoria), house cricket (Acheta domesticus), and lesser mealworm (Alphitobius diaperinus). Depending on the species, they have a high protein content (48-67%), with a beneficial indispensable amino acid profile, high fat content (21-39%), with a high content of unsaturated fatty acids based on the dry matter, and contain reasonable amounts of minerals and vitamins. Unlike other animal-based foods, edible insects contain dietary fibre. Data on the bioavailability of nutrients in humans are scarce. Although numerous publications have investigated the nutritional profiles, environmental impacts, and future perspectives of edible insects, here, those findings are reviewed critically, as some publications were partially contradictory or related to selected species only. In this narrative review, we emphasise that edible insects could play a key role in a changing world with a steadily increasing demand for nutritionally valuable food and the depletion of natural resources.
Collapse
Affiliation(s)
- Lukas Nachtigall
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- ProtinA (Joint BMEL Project DIfE/ATB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- ProtinA (Joint BMEL Project DIfE/ATB), Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- ProtinA (Joint BMEL Project DIfE/ATB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- ProtinA (Joint BMEL Project DIfE/ATB), Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- ProtinA (Joint BMEL Project DIfE/ATB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
| |
Collapse
|
3
|
Magara HJO, Hugel S, Fisher BL. Effect of Feed on the Growth Performance, Nutrition Content and Cost of Raising the Field Cricket ( Gryllus madagascarensis) as a Sustainable Nutrient Source in Madagascar. Foods 2024; 13:3139. [PMID: 39410175 PMCID: PMC11475400 DOI: 10.3390/foods13193139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field cricket, Gryllus madagascarensis, is a sustainable and nutritious food resource that has the potential to mitigate global malnutrition. Feeds provided to this cricket can influence its growth parameters, nutritional content, and the cost of raising it for food. The current study aimed to evaluate the effects of feeds formulated from weeds, agro-byproducts, and chicken feed (control) on the growth parameters and nutritional content of G. madagascarensis. The formulated feeds included CFB (25.0% protein), CFC (24.5% protein), CFD (24.0% protein), CFE (23.5% protein), CFF (22.5% protein), CFG (21.5% protein), CFH (20.0% protein), CFI (14.5% protein), and CFJ (13.5% protein), and chicken feed (CFA) (28% protein) was used as the control. The formulation of the feeds was based on the acceptability and protein content of the 12 selected weeds and agro-byproducts. Proximate, mineral, and fatty acid analyses were conducted to determine the nutrient content of each feed, as well as the crickets raised on these feeds. The fastest development time was recorded with CFE and CFC. The highest survivorship (98%) was observed in CFG, CFE, and CFC. The highest body mass (1.15 g) and body length (26.80 mm) were observed in crickets fed CFG. By comparison, crickets fed control feed averaged a body mass of 0.81 g and a body length of 23.55 mm. The feed conversion ratio for G. madagascarensis fed CFG, CFE, and CFC was 1.71. Crickets raised on CFH and CFG had the lowest cost of feeding per kg live mass gain. Crickets fed on CFF had the highest quantity of protein (67%), followed by those fed CFG (65% protein); crickets with the lowest protein content (50%) were fed CFJ. Crickets fed on CFG had the highest mineral content. Linoleic acid, oleic acid, and palmitic acid were the major fatty acids. The findings indicate that formulated feeds from weeds and agro-byproducts have great potential to be used as an alternative feed source for crickets for two reasons: their capacity to positively influence the biology and nutrition of the cricket, and they can serve as an inexpensive replacement for chicken feed.
Collapse
Affiliation(s)
- Henlay J. O. Magara
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
| | - Sylvain Hugel
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
- Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS-Université de Strasbourg, 67087 Strasbourg, France
| | - Brian L. Fisher
- Department of Feed Development, Madagascar Biodiversity Center, Antananarivo 101, Madagascar; (S.H.); (B.L.F.)
- Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| |
Collapse
|
4
|
Kolobe SD, Manyelo TG, Malematja E, Sebola NA, Mabelebele M. Fats and major fatty acids present in edible insects utilised as food and livestock feed. Vet Anim Sci 2023; 22:100312. [PMID: 37736572 PMCID: PMC10509705 DOI: 10.1016/j.vas.2023.100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Common food sources including meat, fish and vegetables are the main source of fats and fatty acids required by human body. Edible insects such as worms, locusts, termites, crickets and flies have also been identified as a potential source of essential fatty acids since they are highly documented to be rich in unsaturated fatty acids such as α-linolenic and linoleic acids which are vital for the normal functioning of the body. The approval of insects as edible food by the European Union has sparked research interest in their potential to form part of human and animal diets due to their abundant protein, amino acids, fats, and minerals. However, little attention has been given to the importance and health benefits of lipids and fatty acids present in edible insects consumed by human and animals. This article aims to review the biological significance of essential fatty acids found in edible insects. The accumulation of fats and essential fatty acids present in edible insects were identified and described based on recommended levels required in human diets. Furthermore, the health benefits associated with insect oils as well as different processing techniques that could influence the quality of fats and fatty acid in edible insects were discussed.
Collapse
Affiliation(s)
- Sekobane Daniel Kolobe
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Tlou Grace Manyelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Emmanuel Malematja
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Nthabiseng Amenda Sebola
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
5
|
Yang J, Zhou S, Kuang H, Tang C, Song J. Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit Rev Food Sci Nutr 2023; 64:10361-10383. [PMID: 37341655 DOI: 10.1080/10408398.2023.2223644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Edible insect products contain high-quality protein and other nutrients, including minerals and fatty acids. The consumption of insect food products is considered a future trend and a potential strategy that could greatly contribute to meeting food needs worldwide. However, insect proteins have the potential to be allergenic to insect consumers. In this review, the nutritional value and allergy risk of insect-derived foods, and the immune responses elicited by insect allergens are summarized and discussed. Tropomyosin and arginine kinase are the most important and widely known insect allergens, which induce Th2-biased immune responses and reduced the activity of CD4+T regulatory cells. Besides, food processing methods have been effectively improving the nutrients and characteristics of insect products. However, limited reviews systematically address the immune reactions to allergens present in edible insect proteins following treatment with food processing technologies. The conventional/novel food processing techniques and recent advances in reducing the allergenicity of insect proteins are discussed in this review, focusing on the structural changes of allergens and immune regulation.
Collapse
Affiliation(s)
- Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Shuling Zhou
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chunhong Tang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Aleman RS, Marcia J, Pournaki SK, Borrás-Linares I, Lozano-Sanchez J, Fernandez IM. Formulation of Protein-Rich Chocolate Chip Cookies Using Cricket ( Acheta domesticus) Powder. Foods 2022; 11:3275. [PMID: 37431022 PMCID: PMC9602185 DOI: 10.3390/foods11203275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 07/03/2024] Open
Abstract
In the Western world, the successful introduction of insect consumption may need awareness of insect ingredient benefits, and consumers' anticipation of insect-based foods with sensory quality is crucial. The objective of this study was to develop protein-rich nutritional chocolate chip cookies (CCC) from cricket powder (CP) and analyze their physicochemical, liking, emotions, purchase intent, and sensory properties. The CP additions levels were 0%, 5%, 7.5%, and 10%. Chemical composition, physicochemical, and functional properties were analyzed using individual and mixed CP and wheat flour (WF). The proximate composition of CP mainly consisted of ash (3.9%), fat (13.4%), and protein (60.7%). In vitro protein digestibility of CP was 85.7%, whereas the essential amino acid score was 0.82. The CP inclusion significantly impacted the WF functional and rheological properties in all given incorporation levels in flour blends and doughs. The incorporation of CP produced darker and softer CCC, resulting from the effect of the CP protein. Adding 5% of CP did not impact the sensory attributes. Purchase intent and liking improved by using 5% of CP after panelists had revealed the beneficial information regarding CP. Concerning emotion terms, "happy" and "satisfied" significantly decreased while the negative emotion term "disgusted" increased among the highest CP substitute levels (7.5% and 10%) after beneficial information. Overall liking, flavor linking, education, consumption intent, gender, age, and positive emotion term "happy" were significantly assertive predictors affecting purchase intent.
Collapse
Affiliation(s)
- Ricardo S. Aleman
- School of Nutrition and Food Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jhunior Marcia
- Faculty of Technological Sciences, Universidad Nacional de Agricultura, Catacamas 16201, Olancho, Honduras
| | | | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, Avda Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Jesus Lozano-Sanchez
- Department of Food Science and Nutrition, University of Granada, 18071 Granada, Spain
| | - Ismael Montero Fernandez
- Department of Agricultural and Forestry Engineering, School of Agrarian Engineering, Universidad de Extremadura, 06007 Badajoz, Spain
| |
Collapse
|