1
|
Wang H, Zhou Q, Pan K, Liu L, Niu X. Enhancing Botrytis cinerea resistance in strawberry preservation with non-contact functionalized chitosan-Cinnamaldehyde composite films. Food Chem 2025; 476:143488. [PMID: 39986084 DOI: 10.1016/j.foodchem.2025.143488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Current escalating food safety concerns from packaging-food surface interactions pose a significant hurdle in developing novel preservation materials. In this study, differing from conventional contact-based antibacterial films, we employed a Schiff base reaction to anchor the volatile antimicrobial agent cinnamaldehyde (CIN) onto functionalized N-succinyl chitosan (NSC), resulting in a non-contact CIN-NSC antimicrobial preservation film. At room temperature, the film shows sustained CIN release, peaking at 144 h. Targeting the sterol 14α-demethylase (CYP51) of Botrytis cinerea (B. cinerea), CIN significantly inhibits spore germination and mycelial growth (EC50 values of 137.12 μg/mL and 77.23 μg/mL, respectively) without direct contact. In application, CIN-NSC films maintain strawberry quality for over a week through non-contact mechanisms, ensuring safety. These findings highlight the potential of CIN-NSC packaging films as effective antimicrobial materials for improving food preservation standards.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Qianliao Zhou
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Keyan Pan
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Lu Liu
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaodi Niu
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Yu K, Yang L, Zhang S, Zhang N, Zhu D, He Y, Cao X, Liu H. Tough, antibacterial, antioxidant, antifogging and washable chitosan/nanocellulose-based edible coatings for grape preservation. Food Chem 2025; 468:142513. [PMID: 39700797 DOI: 10.1016/j.foodchem.2024.142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
This study focused on extracting nanocellulose from food processing waste to create a multi-functional edible coating for preserving grapes. Nanocellulose, in the form of short rods with diameters ranging from 30 to 130 nm, was extracted from soy hulls. Edible coatings were then prepared through an ion cross-linking method. Results revealed that the film surfaces and cross-sections were smooth, flat and pore-free, with monomers cross-linked through hydrogen bonding, ester bonds and electrostatic interactions. Further, the incorporation of soy-hull nanocellulose (2 g) effectively improved the mechanical strength (elongation = 281.03 % and tensile strength = 114.88 MPa), barrier properties and antifogging and antibacterial properties (95.55 %) of SCT composite films. Moreover, compared with the control, the SCT-3 coating can extend the shelf life of grapes to 10 d at 25 °C. This study offers a new perspective on the high-value use of agricultural by-products and development of edible films.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
3
|
Zhu J, Lei Z, Tang Y, Lu L, Qiu X, Pan L. Preparation, characterization, and antibacterial and antioxidant activities of caffeic acid grafted ε-polylysine. Int J Biol Macromol 2025; 292:139276. [PMID: 39740710 DOI: 10.1016/j.ijbiomac.2024.139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
The antioxidant activity of ε-polylysine (EPL) can be enhanced by grafting phenolic compound caffeic acid (CA) onto its amino groups. To enhance the antioxidant activity of EPL, this study synthesized caffeic acid-ε-polylysine conjugate (CA-EPL) by grafting CA onto EPL using carbodiimide coupling reaction. Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy confirmed the successful conjugation of caffeic acid and ε-polylysine. The ultraviolet-visible absorption spectra, grafting ratio, and Zeta potential data indicate that the molar ratio of CA to EPL has a significant impact on the grafting degree and Zeta potential of the conjugates. In particular, the highest grafting degree and the lowest Zeta potential were obtained when the molar ratio of carboxyl groups in CA to amino groups in EPL was 3:1. Furthermore, the antimicrobial and antioxidant activities of the conjugates were evaluated. The results of antimicrobial activity indicate that the conjugate CA-EPL still exhibits excellent antimicrobial properties. The results of antioxidant activity show a significant increase in the antioxidant activity of the conjugate CA-EPL, which was significantly higher than that of free EPL. In addition, the research results on the antimicrobial mechanism show that CA-EPL has a similar antimicrobial mechanism to EPL: by interacting with the bacterial cell membrane, it disrupts the cell membrane, causing leakage of cell contents, ultimately leading to bacterial death. These results indicate that CA-EPL, as a novel dual-functional active substance, has broad prospects in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Junhui Zhu
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiying Lei
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yali Tang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lixin Lu
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaolin Qiu
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liao Pan
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Ponnusamy A, Khan A, Prodpran T, Kim JT, Benjakul S, Rhim JW. Active packaging film based on chitosan/gelatin blend incorporated with mango peel carbon dots: Properties and shelf life extension of minced pork. Int J Biol Macromol 2025; 288:138692. [PMID: 39672429 DOI: 10.1016/j.ijbiomac.2024.138692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Active packaging is essential for reducing food quality loss and ensuring consumer safety. Recently, carbon dots, synthesized from agricultural bio-wastes, have been used as active nanofillers. Mango peels, generally discarded as waste, can serve as potential precursor for synthesis of carbon dots. Mango peel carbon dots (MPCD) were prepared and characterized. Characteristics of active film based on chitosan (CS)/fish gelatin (FG) blend incorporated with MPCD at different concentrations (1, 3, and 5 wt%) were investigated. MPCD with augmenting concentrations enhanced mechanical properties of CS/FG film. Film containing 5 % MPCD had 15 % higher tensile strength than the control (without MPCD). The film containing MPCD showed the improved antioxidant activity, antimicrobial and UV barrier properties. The pouch (5 × 5 cm2) made from film added with 5 % MPCD via heat sealing was used for packaging minced pork. Minced pork packed in the pouch showed lower bacterial growth (below 6 log CFU/g) and chemical changes than that packed in polyethylene pouch during 15 days of storage at 4 °C. Therefore, the conversion of mango peel into valuable carbon dots promotes a zero-waste sustainable approach in line with the biocircular economy. Active pouch could be employed as novel biodegradable active and green packaging for the food industry.
Collapse
Affiliation(s)
- Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Doan NT, Quan NV, Anh LH, Duc ND, Xuan TD. Exploring the Potential of Chitosan-Phytochemical Composites in Preventing the Contamination of Antibiotic-Resistant Bacteria on Food Surfaces: A Review. Molecules 2025; 30:455. [PMID: 39942558 PMCID: PMC11820375 DOI: 10.3390/molecules30030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 02/16/2025] Open
Abstract
The escalating presence of antibiotic-resistant bacteria (ARB) in food systems presents a pressing challenge, particularly in preventing contamination and ensuring food safety. Traditional sanitation methods, such as cooking and chemical disinfectants, provide effective means to reduce ARB, yet there is a growing need for additional preventive measures directly on food surfaces. This review explores the potential of chitosan-phytochemical composites (CPCs) as surface coatings to prevent the initial contamination of food by ARB, thereby offering a novel complementary approach to conventional food safety practices. Chitosan, combined with active plant-derived metabolites (phytochemicals), forms composites with notable antibacterial and antioxidant properties that enhance its protective effects. We examine CPC synthesis methodologies, including chemical modifications, free radical-induced grafting, and enzyme-mediated techniques, which enhance the stability and activity of CPCs against ARB. Highlighting recent findings on CPCs' antibacterial efficacy through minimum inhibitory concentrations (MIC) and zones of inhibition, this review underscores its potential to reduce ARB contamination risks on food surfaces, particularly in seafood, meat, and postharvest products. The insights provided here aim to encourage future strategies leveraging CPCs as a preventative surface treatment to mitigate ARB in food production and processing environments.
Collapse
Affiliation(s)
- Nguyen Thi Doan
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Van Quan
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - La Hoang Anh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Dang Duc
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Bach Mai Hospital, Hanoi 122000, Vietnam
| | - Tran Dang Xuan
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| |
Collapse
|
6
|
Liu X, Sun X, Du H, Li Y, Wen Y, Zhu Z. A transparent p-coumaric acid-grafted-chitosan coating with antimicrobial, antioxidant and antifogging properties for fruit packaging applications. Carbohydr Polym 2024; 339:122238. [PMID: 38823908 DOI: 10.1016/j.carbpol.2024.122238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 06/03/2024]
Abstract
The study aimed to develop a novel, transparent and non-toxic coating with antimicrobial, antioxidant, and antifogging properties. The p-coumaric acid-grafted chitosan (CS-PCA) was synthesized via a carbodiimide coupling reaction and then characterized. The CS-PCA coatings were further prepared using the casting method. The CS-PCA coatings obtained exhibited excellent transparency, UV-light barrier ability, and antifogging properties, as confirmed by spectroscopy and antifogging tests. The CS-PCA coatings showed stronger antioxidant capacity and antimicrobial properties against Escherichia coli, Staphylococcus aureus and Botrytis cinerea compared to CS. The multifunctional coatings were further coated on the polyethylene cling film and their effectiveness was confirmed through a strawberry preservation test. The decay of the strawberries was reduced by CS-PCA coated film at room temperature.
Collapse
Affiliation(s)
- Xinru Liu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xiaoli Sun
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Haiyu Du
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yiyi Li
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Yongqiang Wen
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhu Zhu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants (Basel) 2024; 13:853. [PMID: 39061921 PMCID: PMC11273498 DOI: 10.3390/antiox13070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Ferulic acid is a ubiquitous ingredient in cereals, vegetables, fruits and Chinese herbal medicines. Due to the ferulic phenolic nucleus coupled to an extended side chain, it readily forms a resonant-stable phenoxy radical, which explains its potent antioxidant potential. In addition, it also plays an important role in anti-cancer, pro-angiogenesis, anti-thrombosis, neuroprotection, food preservation, anti-aging, and improving the antioxidant performance of livestock and poultry. This review provides a comprehensive summary of the structure, mechanism of antioxidation, application status, molecular mechanism of pharmacological activity, existing problems, and application prospects of ferulic acid and its derivatives. The aim is to establish a theoretical foundation for the utilization of ferulic acid in medicine, food, cosmetics, livestock, and poultry.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Martínez-Hernández GB, Taboada-Rodríguez A, Marin-Iniesta F. Plant Bioactive Compounds in Foods and Food Packages. Foods 2024; 13:1419. [PMID: 38731790 PMCID: PMC11083204 DOI: 10.3390/foods13091419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
There has been growing interest in the use of numerous plant bioactive compounds (PBCs) in food and nutrition technology due to their properties that promote human health by reducing the risk of various serious diseases [...].
Collapse
Affiliation(s)
- Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain;
| | | | - Fulgencio Marin-Iniesta
- Group of Research Food Biotechnology-BTA, Department of Food Science, Nutrition and Bromatology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
9
|
Yong H, Wang Z, Huang J, Liu J. Preparation, characterization and application of antioxidant packaging films based on chitosan-epicatechin gallate conjugates with different substitution degrees. Int J Biol Macromol 2024; 260:129568. [PMID: 38246436 DOI: 10.1016/j.ijbiomac.2024.129568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
In this study, chitosan (CS) was conjugated with epicatechin gallate (ECG) to prepare CS-ECG conjugates with different substitution degrees (5.18 %, 6.36 % and 7.74 %). Then, antioxidant packaging films were fabricated by blending CS and CS-ECG conjugates. The impact of CS-ECG conjugates' substitution degree on the functionality of CS/CS-ECG films was determined. CS-ECG conjugates showed UV absorption at 275 nm, proton signal at 6.85 ppm and infrared absorption at 1533 cm-1, assigning to the conjugated ECG. As compared with CS, CS-ECG conjugates exhibited less crystalline state but higher antioxidant activity. The structural characterization of CS/CS-ECG films showed CS and CS-ECG conjugates formed hydrogen bonds. CS/CS-ECG films displayed 26.35 %-29.23 % water solubility, 85.61°-86.96° water contact angle, 3.11-3.41 × 10-11 g m-1 s-1 Pa-1 water vapor permeability, 0.29-0.34 cm3 mm m-2 day-1 atm-1 oxygen permeability, 31.54-36.20 MPa tensile strength, 50.12 %-56.40 % elongation at break, as well as potent antioxidant activity and oil oxidation inhibitory ability. Notably, the film containing CS-ECG conjugate with 7.74 % substitution degree had the strongest barrier ability, mechanical property, antioxidant activity and oil oxidation inhibitory ability. Results suggested the substitution degree of CS-ECG conjugates was positively correlated with the barrier, mechanical and antioxidant properties of CS/CS-ECG films.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zeyu Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
10
|
Bakar B, Pekdemir SS, Birhanlı E, Ulu A, Pekdemir ME, Ateş B. Unveiling the effect of molecular weight of vanillic acid grafted chitosan hydrogel films on physical, antioxidant, and antimicrobial properties for application in food packaging. Int J Biol Macromol 2024; 256:128397. [PMID: 38007024 DOI: 10.1016/j.ijbiomac.2023.128397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Till now, a wide range of chitosan (CHS)-based food packaging films have been developed. Yet, the role of molecular weight (MW), which is an important physical property of CHS, in determining the physicochemical and biochemical properties of vanillic acid (VA)-grafted CHS hydrogel films synthesized using CHS with different MWs has not been investigated until now. Three kinds of CHS including low, medium, and high MWs were grafted separately with VA through a carbodiimide mediated coupling reaction. No significant difference in water resistance properties was observed with increasing MW of CHS, in contrast to obvious decrease in light transmittance and opacity. The VA-g-CHS hydrogel films exhibited significantly improved light blocking capacity. A significant improvement in antioxidant (~6-fold) and antimicrobial (~1.2-fold) activity was observed after grafting with VA. In contrast, the free radical scavenging and antimicrobial activity decreased with increasing MW of CHS. Most importantly, VA-g-CHS hydrogel films could maintain the freshness of cherry tomatoes for up to 10 days at ~25 °C. However, no significant difference was observed depending on the MW value of CHS. This pioneering work is of great importance in guiding the selection of MW of CHS biomacromolecule to design hydrogel films with desired physicochemical and biochemical properties.
Collapse
Affiliation(s)
- Büşra Bakar
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye
| | | | - Emre Birhanlı
- Department of Biology, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| | | | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Türkiye.
| |
Collapse
|
11
|
Zhou Q, Lan W, Xie J. Phenolic acid-chitosan derivatives: An effective strategy to cope with food preservation problems. Int J Biol Macromol 2024; 254:127917. [PMID: 37939754 DOI: 10.1016/j.ijbiomac.2023.127917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a cost-effective and eco-friendly natural polymeric material, possesses excellent film-forming properties. However, it has low solubility and biological activity, which hinders its widespread applications. To overcome these limitations, researchers have developed phenolic acid-chitosan derivatives that greatly enhance the mechanical, antibacterial and antioxidant properties of chitosan, expanding its potential application, particularly in food preservation. This review aims to provide an in-depth understanding of the structure and biological activity of chitosan and phenolic acid, as well as various synthetic techniques employed in their modification. Phenolic acid-chitosan derivatives exhibit improved physicochemical properties, such as enhanced water solubility, thermal stability, rheological properties, and crystallinity, through grafting techniques. Moreover, these derivatives demonstrate significantly enhanced antibacterial and antioxidant activities. Through graft modification, phenolic acid-chitosan derivatives offer promising applications in food preservation for diverse food products, including fruits, vegetables, meat, and aquatic products. Their ability to improve the preservation and quality of these food items makes them an appealing option for the food industry. This review intends to provide a deeper understanding of phenolic acid-chitosan derivatives by delving into their synthetic technology, characterization, and application in the realm of food preservation.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
12
|
Zhang W, Hadidi M, Karaca AC, Hedayati S, Tarahi M, Assadpour E, Jafari SM. Chitosan-grafted phenolic acids as an efficient biopolymer for food packaging films/coatings. Carbohydr Polym 2023; 314:120901. [PMID: 37173040 DOI: 10.1016/j.carbpol.2023.120901] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Chitosan (CS), a bio-renewable natural material, has the potential to be utilized as a biopolymer for food packaging films (PFs)/coatings. However, its low solubility in dilute acid solutions and poor antioxidant and antimicrobial activities limit its application in PFs/coatings. To address these restrictions, chemical modification of CS has garnered increasing interest, with graft copolymerization being the most extensively used method. Phenolic acids (PAs) as natural small molecules are used as excellent candidates for CS grafting. This work focuses on the progress of CS grafted PA (CS-g-PA) based films, introducing the chemistry and methods of preparing CS-g-PA, particularly the effects of different PAs grafting on the properties of CS films. In addition, this work discusses the application of different CS-g-PA functionalized PFs/coatings for food preservation. It is concluded that the food preservation capability of CS-based films/coatings can be improved by modifying the properties of CS-based films through PA grafting.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
Xu F, Yun D, Huang X, Sun B, Tang C, Liu J. Preparation, Characterization, and Application of pH-Response Color-Changeable Films Based on Pullulan, Cooked Amaranth ( Amaranthus tricolor L.) Juice, and Bergamot Essential Oil. Foods 2023; 12:2779. [PMID: 37509872 PMCID: PMC10379735 DOI: 10.3390/foods12142779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pullulan-based smart packaging films were prepared by mixing cooked amaranth juice and bergamot essential oil. The impact of cooked amaranth juice and bergamot essential oil on the color-changeability, structural characterization, and barrier, antioxidant, mechanical and thermal properties of pullulan-based films was determined. Results showed the cooked amaranth juice contained pH-response color-changing betacyanins. The pullulan films containing cooked amaranth juice were color-changeable in pH 9-12 buffers and in ammonia vapor. The color-changeable property of betacyanins in cooked amaranth juice was unaffected by bergamot essential oils. The inner structure of pullulan films was greatly affected by cooked amaranth juice, forming big and ordered humps in film cross-sections. The crystallinity of pullulan films was improved by the combined addition of cooked amaranth juice and bergamot essential oil. Among the films, the pullulan film containing cooked amaranth juice and 6% bergamot essential oil showed the highest UV-vis light barrier property, antioxidant activity, and tensile strength; while the pullulan film containing cooked amaranth juice and 4% bergamot essential oil showed the highest oxygen barrier property and thermal stability. Moreover, the pullulan films containing cooked amaranth juice were able to monitor the freshness of shrimp by presenting color changes from reddish purple to dark red.
Collapse
Affiliation(s)
- Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaoqian Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bixue Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
14
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
15
|
Mahdi AA, Al-Maqtari QA, Al-Ansi W, Hu W, Hashim SBH, Cui H, Lin L. Replacement of polyethylene oxide by peach gum to produce an active film using Litsea cubeba essential oil and its application in beef. Int J Biol Macromol 2023; 241:124592. [PMID: 37116846 DOI: 10.1016/j.ijbiomac.2023.124592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
This study evaluated the effects of adding various concentrations (0 %, 1 %, 2 %, and 3 %) of peach gum (PG) to films made from polyethylene oxide (PEO) combined with Litsea cubeba essential oil (LCEO) to be utilized as active packaging for food in the future. The findings showed that the film containing PG 2 % concentration had the best physic-mechanical properties. In films made with PG, the glass transition temperature was significantly improved. Combining PG and PEO resulted in films that were brighter in color, had lower WVP values, and had the lowest water activity. Furthermore, XRD demonstrated that PG additions were compatible with the film of PEO blended with LCEO. The PG films formulated with PG presented high antioxidant and antibacterial activity against Staphylococcus aureus and E. coli. Wrapping beef with P2G2 film led to maintaining its quality with suitable levels of pH, TBARS, and TVB-N. This also decreased the number of E. coli and S. aureus in beef throughout the storage period. The results indicate that adding PG to PEO films enhances their suitability for food preservation.
Collapse
Affiliation(s)
- Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Qais Ali Al-Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Waleed Al-Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
16
|
Zheng T, Tang P, Li G. Development of composite film based on collagen and phenolic acid-grafted chitosan for food packaging. Int J Biol Macromol 2023; 241:124494. [PMID: 37080407 DOI: 10.1016/j.ijbiomac.2023.124494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Collagen, a fibrous protein with triple-helical structure, is a good film-forming substrate for food packaging films because collagen films show advantages of biodegradability, high mechanical strength and good water resistance. However, collagen films lack functional activities, which may limit their applications in the field of active packaging. In this work, phenolic acid-grafted-chitosan was blended with collagen to improve the antioxidant and antimicrobial activities of collagen films. Gallic acid (GA), ferulic acid (FA) and caffeic acid (CA) were respectively grafted onto chitosan, and the physical properties and functional activities of the collagen/phenolic acids-g-chitosan (CGC, CFC and CCC) films were compared. The prepared films presented varying degrees of yellow color, and exhibited significantly improved UV light blocking capacity, antioxidant and antimicrobial properties due to the function of phenolic acid. Moreover, compared with collagen/chitosan (CC) film, CGC, CFC and CCC films showed higher mechanical strength (69.08-73.79 MPa), higher thermal denaturation temperature (69.4-71.2 °C), and lower water vapor permeability values (2.64-2.98 × 10-12 g m-1 s-1 Pa-1). The properties of collagen/ phenolic acids-g-chitosan films were greatly affected by the type of phenolic acid grafted. CGC film had the best antioxidant property as well as the best mechanical property, thermostability, UV light and water vapor blocking capacity.
Collapse
Affiliation(s)
- Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
17
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S, Michalska-Sionkowska M. The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers-A Review. Foods 2023; 12:foods12061343. [PMID: 36981267 PMCID: PMC10048273 DOI: 10.3390/foods12061343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
18
|
Caro-León FJ, López-Donaire ML, Vázquez R, Huerta-Madroñal M, Lizardi-Mendoza J, Argüelles-Monal WM, Fernández-Quiroz D, García-Fernández L, San Roman J, Vázquez-Lasa B, García P, Aguilar MR. DEAE/Catechol-Chitosan Conjugates as Bioactive Polymers: Synthesis, Characterization, and Potential Applications. Biomacromolecules 2023; 24:613-627. [PMID: 36594453 DOI: 10.1021/acs.biomac.2c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 μg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 μg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 μg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.
Collapse
Affiliation(s)
- Francisco J Caro-León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | | | - Roberto Vázquez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040Madrid, Spain.,Networking Biomedical Research Centre in Respiratory Diseases, CIBERES, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Miguel Huerta-Madroñal
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Jaime Lizardi-Mendoza
- Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | - Waldo Manuel Argüelles-Monal
- Biopolymers Research Group, Centro de Investigación en Alimentación y Desarrollo A. C. (CIAD), 83304Hermosillo, México
| | - Daniel Fernández-Quiroz
- Department of Chemical Engineering and Metallurgy, Universidad de Sonora, 83000Hermosillo, México
| | - Luis García-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Julio San Roman
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040Madrid, Spain.,Networking Biomedical Research Centre in Respiratory Diseases, CIBERES, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| | - Maria Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, 28006Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029Madrid, Spain
| |
Collapse
|
19
|
Development of active packaging films based on collagen/gallic acid-grafted chitosan incorporating with ε-polylysine for pork preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
20
|
Lin L, Mahdi AA, Li C, Al-Ansi W, Al-Maqtari QA, Hashim SB, Cui H. Enhancing the properties of Litsea cubeba essential oil/peach gum/polyethylene oxide nanofibers packaging by ultrasonication. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Yong H, Hu H, Yun D, Jin C, Liu J. Horseradish peroxidase catalyzed grafting of chitosan oligosaccharide with different flavonols: structures, antioxidant activity and edible coating application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4363-4372. [PMID: 35066885 DOI: 10.1002/jsfa.11790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Enzymatic catalyzed grafting of oligosaccharides with polyphenols is a safe and environmentally friendly approach to simultaneously enhance the bioactivity of oligosaccharides and the solubility of polyphenols. In this study, chitosan oligosaccharide (COS) was grafted with three different flavonols including myricetin (MYR), quercetin (QUE) and kaempferol (KAE) by horseradish peroxidase (HRP) catalysis. The structures, antioxidant activity and edible coating application of COS-flavonol conjugates were investigated. RESULTS The total phenol content of COS-MYR, COS-QUE and COS-KAE conjugates was 59.89, 68.37 and 53.77 mg gallic acid equivalents g-1 , respectively. Thin layer chromatography showed the conjugates did not contain ungrafted flavonols. COS-flavonol conjugates showed ultraviolet absorption peak at about 294 nm, corresponding to the A-ring of flavonols. Fourier-transform infrared spectra of conjugates confirmed the formation of Schiff-base and Michael-addition products. The proton-nuclear magnetic resonance spectrum of COS-KAE conjugate exhibited phenyl proton signals of KAE. X-ray diffraction patterns of conjugates showed some diffraction peaks of flavonols. COS-flavonol conjugates presented rough and porous morphologies with sheet-like and/or blocky structures. The conjugates showed higher water solubility, free radical scavenging activity and reducing power than flavonols. Moreover, fish gelatin/COS-flavonol conjugate coatings effectively prolonged the shelf life of refrigerated largemouth bass (Micropterus salmoides) fillets from 5 days to 7-8 days. CONCLUSION COS-flavonol conjugates prepared by HRP catalysis have great potentials as novel antioxidant agents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Huixia Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
23
|
Ding X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr Polym 2022; 297:120011. [DOI: 10.1016/j.carbpol.2022.120011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
24
|
Xie Q, Liu G, Zhang Y, Yu J, Wang Y, Ma X. Active edible films with plant extracts: a updated review of their types, preparations, reinforcing properties, and applications in muscle foods packaging and preservation. Crit Rev Food Sci Nutr 2022; 63:11425-11447. [PMID: 35757888 DOI: 10.1080/10408398.2022.2092058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Currently, edible films have been increasingly explored to solve muscle food spoilage during storage, especially through the incorporation of plant extracts to develop edible packaging materials. Natural polymers matrices with plant extracts are befitting for fabricating edible films by casting methods. In the films system, the structure and physicochemical properties were strengthened via chemical interactions between active molecules in plant extracts and the reactive groups in the polymer chain. The antibacterial and antioxidant properties were dramatically reinforced through both physical and chemical actions of the plant extracts. Additionally, edible films imbedded with color-rich plant extracts could be considered as potential sensitive indicators to monitor the spoilage degree of muscle foods in response to change in gas or temperature. Furthermore, these films could increase sensory acceptability, improve quality and prolong the shelf life of muscle foods. In this article, the types, preparation methods and reinforcing properties of the edible films with plant extracts were discussed. Also, the applications of these films were summarized on quality maintenance and shelf-life extension and intelligent monitoring in muscle foods. Finally, a novel technology for film preparation achieving high-stability and sustained release of active compounds will become an underlying trend for application in muscle food packaging.
Collapse
Affiliation(s)
- Qiwen Xie
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yuanlv Zhang
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food and Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
25
|
Hodel KVS, Machado BAS, Sacramento GDC, Maciel CADO, Oliveira-Junior GS, Matos BN, Gelfuso GM, Nunes SB, Barbosa JDV, Godoy ALPC. Active Potential of Bacterial Cellulose-Based Wound Dressing: Analysis of Its Potential for Dermal Lesion Treatment. Pharmaceutics 2022; 14:pharmaceutics14061222. [PMID: 35745794 PMCID: PMC9228207 DOI: 10.3390/pharmaceutics14061222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The use of innate products for the fast and efficient promotion of healing process has been one of the biomedical sector's main bets for lesion treatment modernization process. The aim of this study was to develop and characterize bacterial cellulose-based (BC) wound dressings incorporated with green and red propolis extract (2 to 4%) and the active compounds p-coumaric acid and biochanin A (8 to 16 mg). The characterization of the nine developed samples (one control and eight active wound dressings) evidenced that the mechanics, physics, morphological, and barrier properties depended not only on the type of active principle incorporated onto the cellulosic matrix, but also on its concentration. Of note were the results found for transparency (28.59-110.62T600 mm-1), thickness (0.023-0.046 mm), swelling index (48.93-405.55%), water vapor permeability rate (7.86-38.11 g m2 day-1), elongation (99.13-262.39%), and antioxidant capacity (21.23-86.76 μg mL-1). The wound dressing based on BC and red propolis was the only one that presented antimicrobial activity. The permeation and retention test revealed that the wound dressing containing propolis extract presented the most corneal stratum when compared with viable skin. Overall, the developed wound dressing showed potential to be used for treatment against different types of dermal lesions, according to its determined proprieties.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Bruna Aparecida Souza Machado
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| | - Giulia da Costa Sacramento
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Carine Assunção de Oliveira Maciel
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Gessualdo Seixas Oliveira-Junior
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| | - Breno Noronha Matos
- Laboratory of Medicines, Food and Cosmetics (LTMAC), University of Brasília, Brasilia 70910-900, Brazil; (B.N.M.); (G.M.G.)
| | - Guilherme Martins Gelfuso
- Laboratory of Medicines, Food and Cosmetics (LTMAC), University of Brasília, Brasilia 70910-900, Brazil; (B.N.M.); (G.M.G.)
| | - Silmar Baptista Nunes
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Josiane Dantas Viana Barbosa
- SENAI Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS), SENAI/CIMATEC University Center, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.); (S.B.N.); (J.D.V.B.)
| | - Ana Leonor Pardo Campos Godoy
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil; (C.A.d.O.M.); (G.S.O.-J.); (A.L.P.C.G.)
| |
Collapse
|
26
|
Liu W, Huang N, Yang J, Peng L, Li J, Chen W. Characterization and application of porous polylactic acid films prepared by nonsolvent-induced phase separation method. Food Chem 2022; 373:131525. [PMID: 34774380 DOI: 10.1016/j.foodchem.2021.131525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
Nonsolvent-induced phase separation (NIPS) method was employed to prepare polylactic acid (PLA) films using N-methyl-2-pyrrolidone (NMP) as a nonsolvent. The morphology and structure of PLA films were characterized, and the application of the films in pork preservation was investigated. When 10 wt% NMP was added, film with uniform porous structures was obtained. The crystalline and Fourier-transform infrared spectra analyses indicated that the addition of NMP during the preparation of PLA films caused their crystalline properties to change, but had no effect on their composition. However, the 10 wt% NMP/PLA film had improved thermal stability, water vapor transmission and oxygen permeability. The results on the changes in pH, total volatile basic nitrogen content and total viable counts of pork during refrigerated storage indicated that the 10 wt% NMP/PLA film could more effectively extend the shelf life of pork than polyethylene film. This work demonstrates the potential of the porous PLA film in pork packaging.
Collapse
Affiliation(s)
- Wenlong Liu
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Nanlan Huang
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Junjie Yang
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Jing Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weijun Chen
- Sichuan Key Laboratory of Meat Processing, Chengdu University, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
27
|
Effect of starch aldehyde-catechin conjugates on the structural, physical and antioxidant properties of quaternary ammonium chitosan/polyvinyl alcohol films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Oladzadabbasabadi N, Mohammadi Nafchi A, Ariffin F, Wijekoon MMJO, Al-Hassan AA, Dheyab MA, Ghasemlou M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr Polym 2022; 277:118876. [PMID: 34893279 DOI: 10.1016/j.carbpol.2021.118876] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Current environmental concerns fostered a strong interest in extracting polymers from renewable feedstocks. Chitosan, a second most abundant polysaccharide after cellulose, may prove to be a promising green material owing to its renewability, inherent biodegradablity, natural availability, non-toxicity, and ease of modification. This review is intended to comprehensively overview the recent developments on the isolation of chitosan from chitin, its modification and applications as a reinforcing candidate for food packaging materials, emphasizing the scientific underpinnings arising from its physicochemical properties, antimicrobial, antioxidant, and antifungal activities. We review various chitosan-reinforced composites reported in the literature and comprehensively present intriguing mechanical and other functional properties. We highlight the contribution of these mechanically robust and responsive materials to extend the shelf-life and maintain the qualities of a wide range of food commodities. Finally, we assess critical challenges and highlight future opportunities towards understanding the versatile applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Nazila Oladzadabbasabadi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Fazilah Ariffin
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - A A Al-Hassan
- Department of Food Science and Human Nutrition, College of Agriculture and vit. Medicine, Qassim University, 51452 Burydah, Saudi Arabia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
29
|
The Physicochemical, Antioxidant, and Color Properties of Thin Films Based on Chitosan Modified by Different Phenolic Acids. COATINGS 2022. [DOI: 10.3390/coatings12020126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chitosan-based films are promising for consideration as packaging materials. In this study, we modified the chitosan by phenolic acid addition, such as ferulic acid, caffeic acid, tannic acid, and gallic acid. The mechanical and thermal properties were studied, and the water vapor permeability rate was determined. Moreover, the antioxidant activity and film color were considered. The results showed that phenolic acids are effective cross-linkers for chitosan. The addition of phenolic acids improved the mechanical properties and decreased the roughness of surfaces. The enthalpy value was lower for films with phenolic acids than for pure chitosan. Chitosan with ferulic acid showed the highest antioxidant activity and water permeability value. Based on the obtained results, we determined that films obtained from the chitosan/ferulic acid mixture are the most promising for use as packaging material.
Collapse
|
30
|
Oulahal N, Degraeve P. Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front Microbiol 2022; 12:753518. [PMID: 35058892 PMCID: PMC8764166 DOI: 10.3389/fmicb.2021.753518] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.
Collapse
Affiliation(s)
- Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | | |
Collapse
|
31
|
Huang B, Zhang Z, Ding N, Zhuang Y, Zhang G, Fei P. Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. Int J Biol Macromol 2022; 194:246-253. [PMID: 34875310 DOI: 10.1016/j.ijbiomac.2021.11.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022]
Abstract
To further improve the performance of chitosan in food processing and preservation, this study investigated the grafting of the caffeic acid onto the chitosan in non-enzymatic and enzymatic systems. Result suggested that the caffeic acid was successfully incorporated into the chitosan in the non-enzymatic system, and the grafting ratio of modified chitosan (CA@CTS-N) was 7.49%. Moreover, lipase had a significant positive effect on the grafting reaction of the chitosan, and the modified chitosan prepared in enzymatic system (CA@CTS-E) obtained a higher grafting ratio, which was 11.82%. In both systems, the carboxyl of the caffeic acid was bonded to the amino of the chitosan and formed carbonyl ammonia. After the introduction of foreign group, many changes occurred in the functional properties of the modified chitosan. First, the water solubility of the chitosan was significantly improved from 0.00285 (native chitosan, CTS) to 0.221 (CA@CTS-N) and 0.774 g/100 mL (CA@CTS-E). The caffeoyl had a significant impact on the emulsifying properties of the chitosan. Compared with those of CTS, the modified chitosan had stronger antioxidation and antibacterial activities against Escherichia coli, Staphylococcus aureus, and Candida albicans. Finally, the pork treated with the modified chitosan exhibited longer shelf life than that treated with CTS.
Collapse
Affiliation(s)
- Bingqing Huang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group Co., Ltd., Xiamen 361000, PR China
| | - Nengshui Ding
- Fujian Aonong Biological Science and Technology Group Co.,Ltd., Zhangzhou 363000, PR China
| | - Yuanhong Zhuang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- Key Laboratory of Characteristics Garden Plants Resource in Fujian and Taiwan, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|
32
|
Cai M, Zhang G, Wang J, Li C, Cui H, Lin L. Application of glycyrrhiza polysaccharide nanofibers loaded with tea tree essential oil/ gliadin nanoparticles in meat preservation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
El-Shorbagy HG, El-Kousy SM, Elwakeel KZ, El-Ghaffar MA. Eco-friendly Chitosan Condensation Adduct Resins for Removal of Toxic Silver Ions from Aqueous Medium. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Contardi M, Lenzuni M, Fiorentini F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Hydroxycinnamic Acids and Derivatives Formulations for Skin Damages and Disorders: A Review. Pharmaceutics 2021; 13:999. [PMID: 34371691 PMCID: PMC8309026 DOI: 10.3390/pharmaceutics13070999] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alterations of skin homeostasis are widely diffused in our everyday life both due to accidental injuries, such as wounds and burns, and physiological conditions, such as late-stage diabetes, dermatitis, or psoriasis. These events are locally characterized by an intense inflammatory response, a high generation of harmful free radicals, or an impairment in the immune response regulation, which can profoundly change the skin tissue' repair process, vulnerability, and functionality. Moreover, diabetes diffusion, antibiotic resistance, and abuse of aggressive soaps and disinfectants following the COVID-19 emergency could be causes for the future spreading of skin disorders. In the last years, hydroxycinnamic acids and derivatives have been investigated and applied in several research fields for their anti-oxidant, anti-inflammatory, and anti-bacterial activities. First, in this study, we give an overview of these natural molecules' current source and applications. Afterwards, we review their potential role as valid alternatives to the current therapies, supporting the management and rebalancing of skin disorders and diseases at different levels. Also, we will introduce the recent advances in the design of biomaterials loaded with these phenolic compounds, specifically suitable for skin disorders treatments. Lastly, we will suggest future perspectives for introducing hydroxycinnamic acids and derivatives in treating skin disorders.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| | - Martina Lenzuni
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Fabrizio Fiorentini
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- DIBRIS, University of Genoa, 16145 Genoa, Italy
| | - Maria Summa
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Giulia Suarato
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
- Translational Pharmacology, Italian Institute of Technology, 16163 Genoa, Italy; (M.S.); (R.B.)
| | - Athanassia Athanassiou
- Smart Materials, Italian Institute of Technology, 16163 Genoa, Italy; (M.L.); (F.F.); (G.S.)
| |
Collapse
|
35
|
Gumienna M, Górna B. Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules 2021; 26:3735. [PMID: 34207426 PMCID: PMC8234186 DOI: 10.3390/molecules26123735] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination with chitosan, PLA, or bacteriocins to improve the properties of packaging in new food packaging technologies. Consequently, they can be a promising solution to improve the quality, delay the spoilage of packaged food, as well as increase the safety and shelf life of food.
Collapse
Affiliation(s)
- Małgorzata Gumienna
- Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | | |
Collapse
|
36
|
Wang G, Liu Y, Yong H, Zong S, Jin C, Liu J. Effect of Ferulic Acid-Grafted-Chitosan Coating on the Quality of Pork during Refrigerated Storage. Foods 2021; 10:foods10061374. [PMID: 34198567 PMCID: PMC8231958 DOI: 10.3390/foods10061374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
Pork is perishable due to oxidation and microbial spoilage. Edible coating based on biopolymers and phenolic compounds is an effective way to preserve the quality of pork. In this study, ferulic acid-grafted-CS (ferulic acid-g-CS) with strong antioxidant and antimicrobial activities was synthesized through a carbodiimide-mediated coupling reaction. The obtained ferulic acid-g-CS was used as an edible coating material for fresh pork. The effect of ferulic acid-g-CS coating on the quality of pork during storage was investigated at 4 °C for 8 days. As compared to the uncoated pork, pork coated with CS and ferulic acid-g-CS showed lower total viable counts, total volatile basic nitrogen values, pH values, thiobarbituric acid reactive substances, and drip losses. Besides, pork coated with CS and ferulic acid-g-CS presented more compact microstructures than the uncoated pork at the eighth day. Sensory evaluation assay showed pork coated with CS and ferulic acid-g-CS had better color, odor, and over acceptance in comparison with the uncoated pork. Ferulic acid-g-CS coating, due to its relatively higher antioxidant and antimicrobial activities compared to CS coating, had a better performance in refrigerated pork preservation. Ferulic acid-g-CS coating effectively extended the shelf life of refrigerated pork to 7 days. This study revealed ferulic acid-g-CS coating was a promising technology for refrigerated pork preservation.
Collapse
Affiliation(s)
- Guotian Wang
- Laboratory and Equipment Management Office, Yangzhou University, Yangzhou 225009, China;
| | - Yunpeng Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Huimin Yong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (H.Y.); (S.Z.); (C.J.)
- Correspondence:
| |
Collapse
|