1
|
Garg A, Saroj J, Tiwari S, Das U, Shukla N, Ghosh JK, Bandyopadhyay S. Exploring the potential anti-senescence effects of soybean-derived peptide Soymetide in mice hippocampal neurons via the Wnt/β-catenin pathway. Front Pharmacol 2025; 16:1510337. [PMID: 40070562 PMCID: PMC11893861 DOI: 10.3389/fphar.2025.1510337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 03/14/2025] Open
Abstract
Soybean-based foods enhance cognitive functions by influencing hippocampal mechanisms. These salutary effects have so far been attributed to isoflavones present in soybeans. Considering cellular senescence contributes to cognitive decline and that no specific soy-derived peptides are known for their potential to mitigate senescence, we examined the efficacy of a thirteen amino acid soy-derived peptide, Soymetide, on a doxorubicin-induced senescence mice model. Soymetide pretreatment lowered the senescence markers p53, p21 and p16, pro-inflammatory cytokines, and Senescence β-Galactosidase staining while enhancing the mature neuronal marker NeuN in the hippocampus. This anti-senescent effect was comparable with that of a well-known senolytic combination (dasatinib and quercetin). Research indicates that Wnt signaling influences cellular senescence, and our findings here demonstrate that doxorubicin decreased hippocampal Wnt3a, p-LRP6, Frizzled, Dishevelled, Axin1, and β-catenin levels and increased GSK-3β, while Soymetide mitigated these effects. Additionally, upon inhibition of the Wnt/β-catenin pathway, Soymetide's ability to reduce senescence markers and restore NeuN expression was reduced. We validated the anti-senescence impact on hippocampal neurons by co-immunostaining Wnt/β-catenin and senescence indicators alongside NeuN in mice and assessed it in primary hippocampal neurons. Further examining the neuronal survival and functions revealed that Soymetide blocked the doxorubicin-induced loss in Nissl-stained surviving neurons and learning-memory performances, measured by Y-Maze and Passive Avoidance tests, which Wnt/β-catenin inhibitors could counteract. In conclusion, our study identifies a novel Wnt/β-catenin-linked mechanism of doxorubicin-induced senescence in the hippocampal neurons and demonstrates Soymetide's effectiveness in reversing this process. Hence, this suggests Soymetide's potential therapeutic application in addressing cognitive decline associated with cellular aging.
Collapse
Affiliation(s)
- Asmita Garg
- Systems Toxicology Group, Food, Drug and Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyotshana Saroj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saurabh Tiwari
- Systems Toxicology Group, Food, Drug and Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uttara Das
- Systems Toxicology Group, Food, Drug and Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Neetu Shukla
- Systems Toxicology Group, Food, Drug and Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jimut Kanti Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Systems Toxicology Group, Food, Drug and Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Shi SS, Hu T. Network pharmacology study on fermented soybeans for the prevention of Alzheimer's disease in older individuals. Biomed Chromatogr 2024; 38:e5921. [PMID: 38886007 DOI: 10.1002/bmc.5921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disruption of synaptic communication among millions of neurons. Recent research has highlighted the potential therapeutic effectiveness of natural polyphenolic compounds in addressing AD. Soybeans are abundant in polyphenols, and their polyphenolic composition undergoes significant alteration through fermentation by Eurotium cristatum. Through comprehensive database searches, we identified active components within fermented soybean polyphenols and genes associated with AD. Subsequently, we utilized Venn diagrams to analyze the overlap between AD-related genes and these components. Furthermore, we visualized the network between intersecting targets and proteins using Cytoscape software. The anti-AD effects of soybeans were further explored through comprehensive analysis, including protein-protein interaction analysis, pathway enrichment analysis, and molecular docking studies. Our investigation unveiled 6-hydroxydaidzein as a major component of fermented soybean polyphenols, shedding light on its potential therapeutic significance in combating AD. The intersection between target proteins of fermented soybeans and disease-related targets in AD comprised 34 genes. Protein-protein interaction analysis highlighted key potential targets, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen synthase kinase 3 beta (GSK3B), amyloid precursor protein (APP), cyclin-dependent kinase 5 (CDK5), and beta-site APP cleaving enzyme 1 (BACE1). Molecular docking results demonstrated a robust binding effect between major components from fermented soybeans and the aforesaid key targets implicated in AD treatment. These findings suggest that fermented soybeans demonstrate a degree of efficacy and present promising prospects in the prevention of AD.
Collapse
Affiliation(s)
- Shuo-Shuo Shi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| | - Ting Hu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Lim HJ, Park IS, Seo JW, Ha G, Yang HJ, Jeong DY, Kim SY, Jung CH. Anti-Inflammatory Effect of Korean Soybean Sauce (Ganjang) on Mice with Induced Colitis. J Microbiol Biotechnol 2024; 34:1501-1510. [PMID: 38960873 PMCID: PMC11294641 DOI: 10.4014/jmb.2404.04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation of the gut, is caused by several factors. Among these factors, microbial factors are correlated with the gut microbiota, which produces short-chain fatty acids (SCFAs) via anaerobic fermentation. Fermented foods are known to regulate the gut microbiota composition. Ganjang (GJ), a traditional fermented Korean soy sauce consumed worldwide, has been shown to exhibit antioxidant, anticancer, anti-colitis, and antihypertensive activities. However, its effects on the gut microbiota remain unknown. In the present study, we aimed to compare the anti-inflammatory effects of GJ manufactured using different methods and investigate its effect on SCFA production in the gut. To evaluate the anti-inflammatory effects of GJ in the gut, we performed animal experiments using a mouse model of dextran sulfate sodium (DSS)-induced colitis. All GJ samples attenuated DSS-induced colitis symptoms, including reduced colonic length, by suppressing the expression of inflammatory cytokines. In addition, GJ administration modulated SCFA production in the DSS-induced colitis model. Overall, GJ exerted anti-inflammatory effects by reducing DSS-induced symptoms via regulation of inflammation and modulation of SCFA levels in a DSS-induced colitis model. Thus, GJ is a promising fermented food with the potential to prevent IBD.
Collapse
Affiliation(s)
- Hyeon-Ji Lim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - In-Sun Park
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - Ji Won Seo
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang-gun, Jeollabuk-do 56048, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do 54810, Republic of Korea
| |
Collapse
|
4
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
5
|
Rees J, Ryan J, Laws M, Devine A. A comprehensive examination of the evidence for whole of diet patterns in Parkinson's disease: a scoping review. Nutr Neurosci 2024; 27:547-565. [PMID: 37431106 DOI: 10.1080/1028415x.2023.2233727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Both motor and non-motor symptoms of Parkinson's disease (PD), a progressive neurological condition, have broad-ranging impacts on nutritional intake and dietary behaviour. Historically studies focused on individual dietary components, but evidence demonstrating ameliorative outcomes with whole-of-diet patterns such as Mediterranean and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) is emerging. These diets provide plenty of antioxidant rich fruits, vegetables, nuts, wholegrains and healthy fats. Paradoxically, the ketogenic diet, high fat and very low carbohydrate, is also proving to be beneficial. Within the PD community, it is well advertised that nutritional intake is associated with disease progression and symptom severity but understandably, the messaging is inconsistent. With projected prevalence estimated to rise to 1.6 million by 2037, more data regarding the impact of whole-of-diet patterns is needed to develop diet-behaviour change programmes and provide clear advice for PD management. Objectives and Methods: Objectives of this scoping review of both peer-reviewed academic and grey literatures are to determine the current evidence-based consensus for best dietary practice in PD and to ascertain whether the grey literature aligns. Results and Discussion: The consensus from the academic literature was that a MeDi/MIND whole of diet pattern (fresh fruit, vegetables, wholegrains, omega-3 fish and olive oil) is the best practice for improving PD outcomes. Support for the KD is emerging, but further research is needed to determine long-term effects. Encouragingly, the grey literature mostly aligned but nutrition advice was rarely forefront. The importance of nutrition needs greater emphasis in the grey literature, with positive messaging on dietary approaches for management of day-to-day symptoms.
Collapse
Affiliation(s)
- Joanna Rees
- Institute for Nutrition Research, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | | - Manja Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Amanda Devine
- Institute for Nutrition Research, Edith Cowan University, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
6
|
Edward OC, Jeong DY, Yang HJ, Han A, Cha YS. Doenjang Ameliorates Diet-Induced Hyperlipidemia and Hepatic Oxidative Damage by Improving Lipid Metabolism, Oxidative Stress, and Inflammation in ICR Mice. Foods 2024; 13:1471. [PMID: 38790771 PMCID: PMC11120292 DOI: 10.3390/foods13101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperlipidemia, characterized by elevated cholesterol, lipids, and triglycerides in the bloodstream, is linked to hepatic oxidative damage. Doenjang, a traditional Korean condiment made from fermented soybeans, is known for its health benefits, yet its anti-hyperlipidemic effects remain understudied. Our study aimed to assess the hypolipidemic and hepatic protective effects of Doenjang on male ICR mice fed a high-fat cholesterol diet for 8 weeks. Mice were divided into three groups: the normal diet (ND), the high-fat cholesterol diet (HD), and the Doenjang-supplemented HD diet (DS) group. Doenjang supplementation significantly regulated total cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol levels compared to the HD group. It also downregulated lipogenic genes, including PPARγ, FAS, and ACC, and positively influenced the cholesterol metabolism-related genes HMGCR and LXR. Moreover, Doenjang intake increased serum glutathione levels, activated oxidative stress defense genes (NRF2, SOD, GPx1, and CAT), positively modulated inflammation genes (NF-kB and IL6) in hepatic tissue, and reduced malondialdehyde levels. Our findings highlight the effectiveness of traditional Doenjang in preventing diet-induced hyperlipidemia and protecting against hepatic oxidative damage.
Collapse
Affiliation(s)
- Olivet Chiamaka Edward
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang 56048, Republic of Korea
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea; (O.C.E.)
- K-Food Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Gadhoumi H, Dhouafli Z, Yeddes W, serairi beji R, Miled K, Trifi M, Chirchi A, Saidani Tounsi M, Hayouni EA. Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice. Indian J Microbiol 2024; 64:229-243. [PMID: 38468731 PMCID: PMC10924858 DOI: 10.1007/s12088-023-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024] Open
Abstract
Functional beverages play an essential role in our modern life and contribute to nutritional well-being. Current efforts to understand and develop functional beverages to promote health and wellness have been enhanced. The present study aimed to investigate the production of three fermented plants beverages (FPBs) from aromatic and medicinal plants and to evaluate the fermented product in terms of physio-biochemical composition, the aromatic compounds, antioxidant activity, and in vivo protective effects on hepatotoxicity and nephrotoxicity induced by carbon tetrachloride (CCl4). The results showed that the fermented beverage NurtBio B had the highest levels of polyphenols, flavonoids, and tannins; 242.3 ± 12.4 µg GAE/mL, 106.4 ± 7.3 µg RE/mL and 94.2 ± 5.1 µg CE/mL, respectively. The aromatic profiles of the fermented beverages showed thirty-one interesting volatile compounds detected by GC-MS headspace analyses such as benzaldehyde, Eucalyptol, Fenchone, 3-Octadecyne, Estragole, and Benzene propanoic acid 1-methylethyl ester. In addition, the fermentation process was significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. In vivo administration of CCl4 in mice induced hepatotoxicity and nephrotoxicity by a significant rise in the levels of serum liver and kidney biomarkers. The protective effects of the FPBs showed that they significantly restored the majority of these biological parameters to normal levels, along with increase antioxidant enzyme activities, as well as an improvement of histopathological changes, suggesting their protective effects.
Collapse
Affiliation(s)
- Hamza Gadhoumi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Zohra Dhouafli
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Walid Yeddes
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Raja serairi beji
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Khaled Miled
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Mounir Trifi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Abdelhamid Chirchi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
8
|
Song JG, Lee B, Kim DE, Seo BK, Oh NS, Kim SH, Kim HW. Fermented mixed grain ameliorates chronic stress-induced depression-like behavior and memory deficit. Food Sci Biotechnol 2024; 33:969-979. [PMID: 38371678 PMCID: PMC10866851 DOI: 10.1007/s10068-023-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
Fermented mixed grain (FG) has beneficial anti-cancer, antioxidant, and anti-inflammatory effects. In this study, we investigated the effects of FG on gut inflammation, brain dysfunction, and anxiety/depression-like behavior induced by unpredictable chronic mild stress (UCMS) in mice. Mice were administered mixed grain or FG for 3 weeks and were then exposed to UCMS for 4 weeks. FG administration ameliorated stress-induced anxiety/despair-like behavior. FG administration also prevented UCMS-induced memory impairment. Additionally, the mRNA levels of 5-HTR1A and IL-6 were restored to normal levels in the brains of FG-administered mice. FG administration also inhibited intestinal damage in stressed mice compared with that in the UCMS (without FG) group. These results suggest that FG can alleviate stress-induced intestinal damage, brain dysfunction, and cognitive impairment.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Do Eon Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| | - Bong Kyeong Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, 30019 Republic of Korea
| | - Sae Hun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
9
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
10
|
Singla M, Verma S, Thakur K, Goyal A, Sharma V, Sharma D, Porwal O, Subramaniyan V, Behl T, Singh SK, Dua K, Gupta G, Gupta S. From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions. Curr Med Chem 2024; 31:6855-6870. [PMID: 37921179 DOI: 10.2174/0109298673250784231011094322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Smriti Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ahsas Goyal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, U.P., India
| | - Vishal Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diksha Sharma
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Tapan Behl
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies, Dehradun, Uttarakhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, the University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
11
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 PMCID: PMC11651280 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People’s Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
12
|
Pal AD, Pal A. Probiotics: beneficial microbes for health and the food industry. MICROBIAL ESSENTIALISM 2024:47-86. [DOI: 10.1016/b978-0-443-13932-1.00026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Walker A, Czyz DM. Oh my gut! Is the microbial origin of neurodegenerative diseases real? Infect Immun 2023; 91:e0043722. [PMID: 37750713 PMCID: PMC10580905 DOI: 10.1128/iai.00437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
There is no cure or effective treatment for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's or Parkinson's diseases, mainly because the etiology of these diseases remains elusive. Recent data suggest that unique changes in the gut microbial composition are associated with these ailments; however, our current understanding of the bacterial role in the pathogenesis of PCDs is hindered by the complexity of the microbial communities associated with specific microbiomes, such as the gut, oral, or vaginal microbiota. The composition of these specific microbiomes is regarded as a unique fingerprint affected by factors such as infections, diet, lifestyle, and antibiotics. All of these factors also affect the severity of neurodegenerative diseases. The majority of studies that reveal microbial contribution are correlational, and various models, including worm, fly, and mouse, are being utilized to decipher the role of individual microbes that may affect disease onset and progression. Recent evidence from across model organisms and humans shows a positive correlation between the presence of gram-negative enteropathogenic bacteria and the pathogenesis of PCDs. While these correlational studies do not provide a mechanistic explanation, they do reveal contributing bacterial species and provide an important basis for further investigation. One of the lurking concerns related to the microbial contribution to PCDs is the increasing prevalence of antibiotic resistance and poor antibiotic stewardship, which ultimately select for proteotoxic bacteria, especially the gram-negative species that are known for intrinsic resistance. In this review, we summarize what is known about individual microbial contribution to PCDs and the potential impact of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Alyssa Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Comprehensive bacterial-metabolite profiles of Hawaijar, Bekang, and Akhone: a comparative study on traditional fermented soybeans of north-east India. World J Microbiol Biotechnol 2023; 39:315. [PMID: 37736853 DOI: 10.1007/s11274-023-03773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Preparation of traditionally fermented soybeans varies across ethnicities with distinct tastes, flavour, and nutritional values. The fermented soybean varieties Hawaijar, Bekang, and Akhone of north-east India are associated with diverse ethnic groups from Manipur, Mizoram, and Nagaland, respectively. These varieties differ in substrate and traditional practice that exerts differential bacterial-metabolite profile, which needs an in-depth analysis i. Culture-dependent and independent techniques investigated the bacterial diversity of the fermented soybean varieties. Gas chromatography and mass spectroscopy (GC-MS) studied these varieties' metabolite profiles. The common dominant bacterial genera detected in Hawaijar, Bekang, and Akhone were Bacillus, Ignatzschinaria, and Corynebacterium, with the presence of Brevibacillus and Staphylococcus exclusively in Hawaijar and Oceanobacillus in Bekang and Akhone. The metabolite analysis identified a higher abundance of essential amino acids, amino and nucleotide sugars, and vitamins in Hawaijar, short-chain fatty acids in Bekang, polyunsaturated fatty acids in Akhone and Hawaijar, and prebiotics in Akhone. The bacteria-metabolite correlation analysis predicted four distinct bacterial clusters associated with the differential synthesis of the functional metabolites. While B. subtilis is ubiquitous, cluster-1 comprised B. thermoamylovorans/B. amyloliquefaciens, cluster-2 comprised B. tropicus, cluster-3 comprised B. megaterium/B. borstelensis, and cluster-4 comprised B. rugosus. To the best of our knowledge, this is the first comparative study on traditional fermented soybean varieties of north-east India linking bacterial-metabolite profiles which may help in designing starters for desired functionalities in the future.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Maloyjo Joyraj Bhattacharjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
15
|
Kim DH, Kim SA, Jo NG, Bae JH, Nguyen MT, Jo YM, Han NS. Phenotypic and genomic analyses of bacteriocin-producing probiotic Enterococcus faecium EFEL8600 isolated from Korean soy-meju. Front Microbiol 2023; 14:1237442. [PMID: 37731927 PMCID: PMC10507247 DOI: 10.3389/fmicb.2023.1237442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Enterococcus faecium is a prevalent species found in fermented soybean products, known for its contributions to flavor development and inhibition of pathogenic microorganisms during fermentation. This study aims to provide comprehensive phenotypic and genomic evidence supporting the probiotic characteristics of E. faecium EFEL8600, a bacteriocin-producing strain isolated from Korean soy-meju. Phenotypic analysis revealed that EFEL8600 produced a peptide with inhibitory activity against Listeria monocytogenes, estimated to be 4.6 kDa, corresponding to the size of enterocins P or Q. Furthermore, EFEL8600 exhibited probiotic traits, such as resilience in gastrointestinal conditions, antioxidant and anti-inflammatory activities, and protection of the intestinal barrier. Safety assessments demonstrated no hemolytic and bile salt deconjugation activities. Genomic analysis revealed the presence of several genes associated with probiotic characteristics and bacteriocin production, while few deleterious genes with a low likelihood of expression or transferring were detected. Overall, this study highlights E. faecium EFEL8600 as a potent anti-listeria probiotic strain suitable for use as a starter culture in soymilk fermentation, providing potential health benefits to consumers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
16
|
Jung SM, Kaur A, Amen RI, Oda K, Rajaram S, Sabatè J, Haddad EH. Effect of the Fermented Soy Q-CAN ® Product on Biomarkers of Inflammation and Oxidation in Adults with Cardiovascular Risk, and Canonical Correlations between the Inflammation Biomarkers and Blood Lipids. Nutrients 2023; 15:3195. [PMID: 37513613 PMCID: PMC10383246 DOI: 10.3390/nu15143195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic low-grade inflammation plays a key role in the development of cardiovascular disease (CVD) but the process may be modulated by consuming fermented soy foods. Here, we aim to evaluate the effect of a fermented soy powder Q-CAN® on inflammatory and oxidation biomarkers in subjects with cardiovascular risk. In a randomized crossover trial, 27 adults (mean age ± SD, 51.6 ± 13.5 y) with a mean BMI ± SD of 32.3 ± 7.3 kg/m2 consumed 25 g daily of the fermented soy powder or an isoenergic control powder of sprouted brown rice for 12 weeks each. Between-treatment results showed a 12% increase in interleukin-1 receptor agonist (IL-1Ra) in the treatment group, whereas within-treatment results showed 23% and 7% increases in interleukin-6 (IL-6) and total antioxidant status (TAS), respectively. The first canonical correlation coefficient (r = 0.72) between inflammation markers and blood lipids indicated a positive association between high-sensitivity C-reactive protein (hsCRP) and IL-1Ra with LDL-C and a negative association with HDL-C that explained 62% of the variability in the biomarkers. These outcomes suggest that blood lipids and inflammatory markers are highly correlated and that ingestion of the fermented soy powder Q-CAN® may increase IL-1Ra, IL-6, and TAS in individuals with CVD risk factors.
Collapse
Affiliation(s)
- Sarah M Jung
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
- Rongxiang Xu College of Health and Human Services, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Amandeep Kaur
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rita I Amen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joan Sabatè
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ella H Haddad
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
17
|
Smriti, Singla M, Gupta S, Porwal O, Nasser Binjawhar D, Sayed AA, Mittal P, El-Demerdash FM, Algahtani M, Singh SK, Dua K, Gupta G, Bawa P, Altyar AE, Abdel-Daim MM. Theoretical design for covering Engeletin with functionalized nanostructure-lipid carriers as neuroprotective agents against Huntington's disease via the nasal-brain route. Front Pharmacol 2023; 14:1218625. [PMID: 37492081 PMCID: PMC10364480 DOI: 10.3389/fphar.2023.1218625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.
Collapse
Affiliation(s)
- Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kamal Dua
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Puneet Bawa
- Center of Excellence for Speech and Multimodel Laboratory, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
18
|
Zhu Y, Chen G, Diao J, Wang C. Recent advances in exploring and exploiting soybean functional peptides-a review. Front Nutr 2023; 10:1185047. [PMID: 37396130 PMCID: PMC10310054 DOI: 10.3389/fnut.2023.1185047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Gang Chen
- Hangzhou Joyoung Soymilk & Food Co., Ltd., Hangzhou, China
| | - Jingjing Diao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
19
|
Byeon YS, Heo J, Park K, Chin YW, Hong SP, Lim SD, Kim SS. Consumer Preference of Traditional Korean Soy Sauce ( Ganjang) and Its Relationship with Sensory Attributes and Physicochemical Properties. Foods 2023; 12:2361. [PMID: 37372572 DOI: 10.3390/foods12122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the physicochemical characteristics, sensory attributes, and consumer acceptance of the Certification of Quality of Traditional Food (CQT) ganjang samples produced in different provinces of Korea. Wide variations in physicochemical properties were found among the samples, especially in lipids, total nitrogen, acidity, and reducing sugar. Traditional fermented foods are known to be closely tied to regional features, but the composition and characteristics of CQT ganjangs might be influenced much more by individual ganjang producers than by region. Preference mapping was performed to understand consumer behavior towards ganjang, and most consumers tended to have similar preferences, implying shared a common sensory ideal. The results of the partial least squares regression revealed drivers of liking for ganjang among sensory attributes, free amino acids, and organic acids. Overall, sensory attributes such as sweetness and umami were positively associated with acceptability, while the terms related to fermentation were negatively associated. In addition, amino acids, such as threonine, serine, proline, glutamate, aspartate, and lysine, and organic acids, such as lactate and malate, were positively associated with consumer acceptance. The important implications of the findings of this study for the food industry can be utilized to develop and optimize traditional foods.
Collapse
Affiliation(s)
- Yang Soo Byeon
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - JeongAe Heo
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Kwon Park
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Young-Wook Chin
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang-Pil Hong
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang-Dong Lim
- Traditional Food Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Sang Sook Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
20
|
Gong Y, Lv J, Pang X, Zhang S, Zhang G, Liu L, Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods 2023; 12:2334. [PMID: 37372545 DOI: 10.3390/foods12122334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Equol is the most potent soy isoflavone metabolite and is produced by specific intestinal microorganisms of mammals. It has promising application possibilities for preventing chronic diseases such as cardiovascular disease, breast cancer, and prostate cancer due to its high antioxidant activity and hormone-like activity. Thus, it is of great significance to systematically study the efficient preparation method of equol and its functional activity. This paper elaborates on the metabolic mechanism of equol in humans; focuses on the biological characteristics, synthesis methods, and the currently isolated equol-producing bacteria; and looks forward to its future development and application direction, aiming to provide guidance for the application and promotion of equol in the field of food and health products.
Collapse
Affiliation(s)
- Yining Gong
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
21
|
Herraiz T. β-Carboline Alkaloids in Soy Sauce and Inhibition of Monoamine Oxidase (MAO). Molecules 2023; 28:molecules28062723. [PMID: 36985694 PMCID: PMC10053526 DOI: 10.3390/molecules28062723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Monoamine oxidase (MAO) oxidizes neurotransmitters and xenobiotic amines, including vasopressor and neurotoxic amines such as the MPTP neurotoxin. Its inhibitors are useful as antidepressants and neuroprotectants. This work shows that diluted soy sauce (1/3) and soy sauce extracts inhibited human MAO-A and -B isozymes in vitro, which were measured with a chromatographic assay to avoid interferences, and it suggests the presence of MAO inhibitors. Chromatographic and spectrometric studies showed the occurrence of the β-carboline alkaloids harman and norharman in soy sauce extracts inhibiting MAO-A. Harman was isolated from soy sauce, and it was a potent and competitive inhibitor of MAO-A (0.4 µM, 44 % inhibition). The concentrations of harman and norharman were determined in commercial soy sauces, reaching 243 and 52 μg/L, respectively. Subsequently, the alkaloids 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (THCA) and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) were identified and analyzed in soy sauces reaching concentrations of 69 and 448 mg/L, respectively. The results show that MTCA was a precursor of harman under oxidative and heating conditions, and soy sauces increased the amount of harman under those conditions. This work shows that soy sauce contains bioactive β-carbolines and constitutes a dietary source of MAO-A and -B inhibitors.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 6, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
22
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
23
|
Csatlos NI, Simon E, Teleky BE, Szabo K, Diaconeasa ZM, Vodnar DC, Ciont (Nagy) C, Pop OL. Development of a Fermented Beverage with Chlorella vulgaris Powder on Soybean-Based Fermented Beverage. Biomolecules 2023; 13:biom13020245. [PMID: 36830613 PMCID: PMC9953086 DOI: 10.3390/biom13020245] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The area of functional beverages made from plant-based or non-dairy milk is one of the fastest-growing sectors in the world. The microalgae Chlorella vulgaris is a source of functional ingredients, with a large spectrum of healthy compounds, such as canthaxanthins, astaxanthins, peptides, and oleic acid. The study aimed to investigate the suitability of C. vulgaris biomass as a substrate for Lactobacillus fermentum and Lactobacillus rhamnosus development and fermentation in vegetal soy beverages and to evaluate the fermented product in terms of bacterial viability, antioxidant capacity, and in vitro bio-accessibility. During fermentation, a bacterial concentration of 8.74 log10 CFU/mL was found in the soy beverage with C. vulgaris and L. rhamnosus, and 8.71 log10 CFU/mL in beverage with C. vulgaris and L. fermentum. Polyphenol content and dietary antioxidant capacity significantly improved after fermentation soy drinks. On the other hand, through the digestibility of the beverages, the bacterial viability significantly decreased. To comprehend the components responsible for the efficient delivery of bacteria across the gastrointestinal tract, further investigation is required on probiotic encapsulation methods.
Collapse
Affiliation(s)
- Norbert-Istvan Csatlos
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Elemer Simon
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Zorița Maria Diaconeasa
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Călina Ciont (Nagy)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (C.C.); (O.-L.P.)
| | - Oana-Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (C.C.); (O.-L.P.)
| |
Collapse
|
24
|
Effects of Cheonggukjang (Fermented Soybean) on the Development of Colitis-Associated Colorectal Cancer in Mice. Foods 2023; 12:foods12020383. [PMID: 36673473 PMCID: PMC9858590 DOI: 10.3390/foods12020383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer and is caused by multiple factors. Chronic inflammation, known to cause inflammatory bowel disease (IBD), is closely associated with CRC. Cheonggukjang (CJ), a traditional Korean fermented soybean, is a functional food with anti-inflammatory effects in the intestines, but its anti-cancer effects have not yet been explored. In this study, we investigated the cancer-protective effects of cheonggukjang in an azoxymethane/DSS (AOM/DSS)-induced colitis-associated colorectal cancer (CAC) mouse model. The CJ alleviated AOM/DSS-induced pathological symptoms such as colonic shortening, increased spleen weight, tumor formation, and histological changes. It also modulated pro-inflammatory and anti-inflammatory cytokine levels via the suppression of NF-κB and inflammatory mediator signaling pathways. Furthermore, the CJ improved intestinal integrity by regulating mucin-associated and tight junction proteins. In addition, it suppressed tumor growth by regulating apoptosis and proliferation. These results highlight the anti-tumor effects of CJ in an AOM/DSS-induced CAC mouse model.
Collapse
|
25
|
LU J, CHENG JH, XU Y, CHEN Y, QIAN K, ZHANG Y. Effect of germination on nutritional quality of soybean. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.008323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Jinting LU
- Institute of Agricultural Products Processing, China
| | | | - Yayuan XU
- Institute of Agricultural Products Processing, China
| | - Yujie CHEN
- Institute of Agricultural Products Processing, China
| | - Kun QIAN
- Institute of Agricultural Products Processing, China
| | | |
Collapse
|
26
|
Wei G, Chitrakar B, Regenstein JM, Sang Y, Zhou P. Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Res Int 2023; 163:112183. [PMID: 36596125 DOI: 10.1016/j.foodres.2022.112183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
27
|
Fasogbon BM, Ademuyiwa OH, Adebo OA. Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. INDIGENOUS FERMENTED FOODS FOR THE TROPICS 2023:315-331. [DOI: 10.1016/b978-0-323-98341-9.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Kusumah J, Gonzalez de Mejia E. Impact of soybean bioactive compounds as response to diet-induced chronic inflammation: A systematic review. Food Res Int 2022; 162:111928. [DOI: 10.1016/j.foodres.2022.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/04/2022]
|
29
|
Singh P, Krishnaswamy K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Marcos Pasero H, García Tejedor A, Giménez-Bastida JA, Laparra Llopis JM. Modifiable Innate Biology within the Gut–Brain Axis for Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10092098. [PMID: 36140198 PMCID: PMC9495985 DOI: 10.3390/biomedicines10092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a prototypical inflammation-associated loss of cognitive function, with approximately 90% of the AD burden associated with invading myeloid cells controlling the function of the resident microglia. This indicates that the immune microenvironment has a pivotal role in the pathogenesis of the disease. Multiple peripheral stimuli, conditioned by complex and varied interactions between signals that stem at the intestinal level and neuroimmune processes, are involved in the progression and severity of AD. Conceivably, the targeting of critical innate immune signals and cells is achievable, influencing immune and metabolic health within the gut–brain axis. Considerable progress has been made, modulating many different metabolic and immune alterations that can drive AD development. However, non-pharmacological strategies targeting immunometabolic processes affecting neuroinflammation in AD treatment remain general and, at this point, are applied to all patients regardless of disease features. Despite these possibilities, improved knowledge of the relative contribution of the different innate immune cells and molecules comprising the chronically inflamed brain network to AD pathogenesis, and elucidation of the network hierarchy, are needed for planning potent preventive and/or therapeutic interventions. Moreover, an integrative perspective addressing transdisciplinary fields can significantly contribute to molecular pathological epidemiology, improving the health and quality of life of AD patients. This review is intended to gather modifiable immunometabolic processes based on their importance in the prevention and management of AD.
Collapse
Affiliation(s)
- Helena Marcos Pasero
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco 8, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-(0)-9-1787-8100
| |
Collapse
|
31
|
Ortega MA, Fraile-Martínez Ó, García-Montero C, Alvarez-Mon MA, Lahera G, Monserrat J, Llavero-Valero M, Gutiérrez-Rojas L, Molina R, Rodríguez-Jimenez R, Quintero J, De Mon MA. Biological Role of Nutrients, Food and Dietary Patterns in the Prevention and Clinical Management of Major Depressive Disorder. Nutrients 2022; 14:3099. [PMID: 35956276 PMCID: PMC9370795 DOI: 10.3390/nu14153099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Major Depressive Disorder (MDD) is a growing disabling condition affecting around 280 million people worldwide. This complex entity is the result of the interplay between biological, psychological, and sociocultural factors, and compelling evidence suggests that MDD can be considered a disease that occurs as a consequence of an evolutionary mismatch and unhealthy lifestyle habits. In this context, diet is one of the core pillars of health, influencing multiple biological processes in the brain and the entire body. It seems that there is a bidirectional relationship between MDD and malnutrition, and depressed individuals often lack certain critical nutrients along with an aberrant dietary pattern. Thus, dietary interventions are one of the most promising tools to explore in the field of MDD, as there are a specific group of nutrients (i.e., omega 3, vitamins, polyphenols, and caffeine), foods (fish, nuts, seeds fruits, vegetables, coffee/tea, and fermented products) or dietary supplements (such as S-adenosylmethionine, acetyl carnitine, creatine, amino acids, etc.), which are being currently studied. Likewise, the entire nutritional context and the dietary pattern seem to be another potential area of study, and some strategies such as the Mediterranean diet have demonstrated some relevant benefits in patients with MDD; although, further efforts are still needed. In the present work, we will explore the state-of-the-art diet in the prevention and clinical support of MDD, focusing on the biological properties of its main nutrients, foods, and dietary patterns and their possible implications for these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28805 Alcalá de Henares, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Llavero-Valero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
| | - Luis Gutiérrez-Rojas
- Department of Psychiatry and CTS-549 Research Group, Institute of Neuroscience, University of Granada, 18071 Granada, Spain;
- Psychiatry Service, San Cecilio University Hospital, 18016 Granada, Spain
| | - Rosa Molina
- Department of Psychiatry and Mental, Health San Carlos University Hospital (HCSC), 28034 Madrid, Spain;
- Research Biomedical Fundation of HCSC Hospital, 28034 Madrid, Spain
- Department of Psychology, Comillas University, Cantoblanco, 28015 Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (imas12)/CIBERSAM-ISCIII (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain; (M.L.-V.); (J.Q.)
- Department of Legal Medicine, Psychiatry, and Pathology, Complutense University (UCM), 28040 Madrid, Spain;
| | - Melchor Alvarez De Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (Ó.F.-M.); (C.G.-M.); (M.A.A.-M.); (G.L.); (J.M.); (M.A.D.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
32
|
Yang HJ, Jeong SJ, Ryu MS, Ha G, Jeong DY, Park YM, Lee HY, Bae JS. Protective effect of traditional Korean fermented soybean foods ( doenjang) on a dextran sulfate sodium-induced colitis mouse model. Food Funct 2022; 13:8616-8626. [PMID: 35894596 DOI: 10.1039/d2fo01347a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective: The cause of ulcerative colitis (UC) is unknown, and the use of anti-inflammatory and immunosuppressive drugs with certain side effects is currently replacing treatment. Therefore, it is important to find new healthy foods or ingredients that exhibit potential protective and anti-inflammatory effects on UC. This study investigated the potential protective effect of doenjang on dextran sulfate sodium (DSS)-induced colitis in a mouse model. Materials and methods: Four doenjang samples (TCD21-51-1, TCD21-55-1, TMD21-16-1, and TFD21-1-1) were used. To examine the effects of the four doenjang samples on UC caused by DSS in a mouse model, the clinical symptoms of UC, such as body weight, disease activity index (DAI), and colon macroscopic damage index (CMDI) were analyzed. Moreover, immune-related blood cell counts, serum levels and protein expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and nitric oxide (NO) production were measured in DSS-induced UC in mice for analysis. Results: The four doenjang samples increased the colon length shortened by DSS, reduced DAI (diarrhea and hemoccult), CMDI (ulceration, inflammation, and hemorrhage) and the content of immune-related cells in the blood. Moreover, the levels of TNF-α, IL-6, and NO increased by DSS were decreased by doenjang, and tissue damage was significantly reduced. Conclusions: These findings confirmed that doenjang exerts protective effects against UC, suggesting its possible use in developing therapeutic strategies or functional products.
Collapse
Affiliation(s)
- Hee-Jong Yang
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Myeong Seon Ryu
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Gwangsu Ha
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, Jeonbuk, 56048, Korea
| | - Young Mi Park
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Hak Yong Lee
- INVIVO Co. Ltd., Deahak-ro, 121, Nonsan, Chungnam, 32992, Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan, Jeonbuk, 54538, Korea.
| |
Collapse
|
33
|
Lee XY, Tan JS, Cheng LH. Gamma Aminobutyric Acid (GABA) Enrichment in Plant-Based Food – A Mini Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- X. Y. Lee
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - J. S. Tan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - L. H. Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
34
|
Iqbal D, Rizvi SMD, Rehman MT, Khan MS, Bin Dukhyil A, AlAjmi MF, Alshehri BM, Banawas S, Zia Q, Alsaweed M, Madkhali Y, Alsagaby SA, Alturaiki W. Soyasapogenol-B as a Potential Multitarget Therapeutic Agent for Neurodegenerative Disorders: Molecular Docking and Dynamics Study. ENTROPY 2022; 24:e24050593. [PMID: 35626478 PMCID: PMC9141571 DOI: 10.3390/e24050593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer’s disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3β, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B–protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B–protein complexes.
Collapse
Affiliation(s)
- Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Correspondence: (D.I.); (S.M.D.R.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - M. Salman Khan
- Clinical Biochemistry & Natural Product Research Laboratory, Department of Biosciences, Integral University, Lucknow 226026, U.P., India;
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.T.R.); (M.F.A.)
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (A.B.D.); (B.M.A.); (S.B.); (Q.Z.); (M.A.); (Y.M.); (S.A.A.); (W.A.)
| |
Collapse
|
35
|
Eroğlu FE, Sanlier N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: mini review. Crit Rev Food Sci Nutr 2022; 63:8066-8082. [PMID: 35317694 DOI: 10.1080/10408398.2022.2053060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are among the traditional foods consumed for centuries. In recent years, awareness of fermented foods has been increasing due to their positive health benefits. Fermented foods contain beneficial microorganisms. Fermented foods, such as kefir, kimchi, sauerkraut, and yoghurt, contain Lactic acid bacteria (LAB), such as Lactobacilli, Bifidobacteria, and their primary metabolites (lactic acid). Although studies on the effect of consumption of fermented foods on diabetes, cardiovascular, obesity, gastrointestinal diseases on chronic diseases have been conducted, more studies are needed regarding the relationship between neurological diseases and microbiota. There are still unexplored mechanisms in the relationship between the brain and intestine. In this review, we answer how the consumption of fermented foods affects the brain and behavior of Alzheimer's disease, Parkinson's disease, multiple sclerosis disease, stroke, and gut microbiota.
Collapse
Affiliation(s)
- Fatma Elif Eroğlu
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, Turkey
| |
Collapse
|
36
|
Protective Effects of Fermented Soybeans ( Cheonggukjang) on Dextran Sodium Sulfate (DSS)-Induced Colitis in a Mouse Model. Foods 2022; 11:foods11060776. [PMID: 35327199 PMCID: PMC8947378 DOI: 10.3390/foods11060776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease, and the incidence of IBD is increasing every year owing to changes in dietary structure. Although the exact pathogenesis of IBD is still unclear, recent evidence suggests that gut dysbiosis is closely associated with IBD pathogenesis. Cheonggukjang is a traditional Korean fermented soybean paste produced using traditional and industrial methods, and contains probiotics, which affect the gut microbiota composition. However, the protective effect of Cheonggukjang against IBD is unknown. In this study, we investigated the bacterial community structure of traditional and commercial Cheonggukjang samples, as well as the protective effect of Cheonggukjang on a dextran sulfate sodium (DSS)-induced colitis mouse model. Traditional and commercial Cheonggukjang were found to contain various type of useful probiotics in their bacterial community structure. Cheonggukjang reduced the progression of DSS-induced symptoms, such as body weight loss, colonic shortening, disease activity index, and histological changes. Further, Cheonggukjang improved the intestinal epithelial barrier integrity on DSS-induced colitis mice. In addition, Cheonggukjang suppressed the expression of proinflammatory cytokines and inflammatory mediators through the inactivation of NF-κB and MAPK signaling pathways. These results indicate that Cheonggukjang exerts protective effects against DSS-induced colitis, suggesting its possible application as a functional food for improving inflammatory diseases.
Collapse
|
37
|
Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation. Food Res Int 2022; 153:110932. [DOI: 10.1016/j.foodres.2021.110932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
|
38
|
Das D, Sarkar S, Borsingh Wann S, Kalita J, Manna P. Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res Int 2022; 152:110922. [PMID: 35181093 DOI: 10.1016/j.foodres.2021.110922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Fermented soy foods (FSF) are gaining significant attention due to promising health benefits. In recent years, FSF are being studied extensively due to the presence of diverse functional ingredients including active isoflavones and peptides along with essential micronutrients. The process of fermentation is responsible for the enrichment of various bioactive principles in soy-based fermented foods and exclusion of some anti-nutrient factors which are found predominantly in raw soybeans. Emerging evidence suggests that FSF possess immense therapeutic potential against inflammation and associated pathological complications. Extracts prepared from various FSF (e.g. fermented soy paste, milk, and sauce) were found to exert promising anti-inflammatory effects in numerous in vitro and in vivo settings. Moreover, clinical findings highlighted an inverse relationship between consumption of FSF and the prevalence of chronic inflammatory disorders among the communities which habitually consume fermented soy products. Molecular mechanisms underlying the anti-inflammatory role of FSF have been delineated in many literatures which collectively suggest that FSF extracts have regulatory actions over the expression and/or activity of several proinflammatory cytokines, inflammatory mediators, oxidative stress markers, and some other factors involved in the inflammatory pathways. The present review discusses the anti-inflammatory effects of FSF with mechanistic insights based upon the available findings from cell culture, preclinical, and clinical investigations.
Collapse
Affiliation(s)
- Dibyendu Das
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sawlang Borsingh Wann
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| |
Collapse
|
39
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
40
|
Ha G, Yang HJ, Ryu MS, Jeong SJ, Jeong DY, Park S. Bacterial Community and Anti-Cerebrovascular Disease-Related Bacillus Species Isolated from Traditionally Made Kochujang from Different Provinces of Korea. Microorganisms 2021; 9:microorganisms9112238. [PMID: 34835364 PMCID: PMC8618569 DOI: 10.3390/microorganisms9112238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022] Open
Abstract
Traditionally made Kochujang (TMK) is a long-term fermented soybean and rice mixture with red pepper and salts. The ambient bacteria in rice straw and nutrient components of Kochujang influence the bacteria community. We aimed to investigate the bacterial composition and quality of TMK from different provinces of Korea: Chungcheung (CC), Jeolla (JL), Kyungsang (KS), and GeongGee plus Kangwon (GK) provinces, and Jeju island (JJ). Furthermore, Bacillus spp. isolated from TMK were studied to have anti-cerebrovascular disease activity and probiotic properties. Seventy-three TMK samples from different regions were collected to assess the biogenic amine contents, bacteria composition using next-generation methods, and bacterial functions using Picrust2. Bacillus spp. was isolated from the collected TMK, and their antioxidant, fibrinolytic, and angiotensin I conversion enzyme (ACE) inhibitory activities and probiotic properties were examined. KS TMK had lower sodium contents than the other TMK. There were no significant differences in histamine and tyramine contents among the TMK samples in different provinces. The predominant bacteria in TMK was Bacillus spp., but KS included much less Bacillus spp. and higher Enterococcus and Staphylococcus than the other TMK. Gene expression related to lipopolysaccharide biosynthesis was higher in KS TMK than the other TMK in Picrust2. The predominant Bacillus spp. isolated from TMK was B. subtilis and B. velezensis. B. subtilis SRCM117233, SRCM117245, and SRCM117253 had antioxidant activity, whereas B. subtilis had higher fibrinolytic activity than other Bacillus spp. Only B. velezensis SRCM117254, SRCM117311, SRCM117314, and SRCM117318 had over 10% ACE inhibitory activity. In conclusion, KS had less Bacillus related to lower sodium contents than the other TMK. The specific strains of B. subtilis and B. velezensis had antioxidant, fibrinolytic, and ACE inhibitory activity, and they can be used as a starter culture to produce better quality controlled Kochujang with anti-cerebrovascular disease activities.
Collapse
Affiliation(s)
- Gwangsu Ha
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Hee-Jong Yang
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Myeong-Seon Ryu
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Su-Ji Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
| | - Do-Youn Jeong
- Department of R & D, Microbial Institute for Fermentation Industry, Sunchang-Gun 56000, Korea; (G.H.); (H.-J.Y.); (M.-S.R.); (S.-J.J.)
- Correspondence: (D.-Y.J.); (S.P.)
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea
- Correspondence: (D.-Y.J.); (S.P.)
| |
Collapse
|
41
|
Kim IS, Yang WS, Kim CH. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int J Mol Sci 2021; 22:8570. [PMID: 34445273 PMCID: PMC8395274 DOI: 10.3390/ijms22168570] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022] Open
Abstract
Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bioresource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoul 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology, Seoul 16419, Gyunggi-Do, Korea
| |
Collapse
|
42
|
A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals (Basel) 2021; 11:ani11071941. [PMID: 34209794 PMCID: PMC8300232 DOI: 10.3390/ani11071941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Spore-forming probiotics are widely used in the poultry industry for their beneficial impact on host health. The main feature that separates spore-forming probiotics from the more common lactic acid probiotics is their high resistance to external and internal factors, resulting in higher viability in the host and correspondingly, greater efficiency. Their most important effect is the ability to confront pathogens, which makes them a perfect substitute for antibiotics. In this review, we cover and discuss the interactions of spore-forming probiotic bacteria with poultry as the host, their health promotion effects and mechanisms of action, impact on poultry productivity parameters, and ways to manufacture the probiotic formulation. The key focus of this review is the lack of reproducibility in poultry research studies on the evaluation of probiotics’ effects, which should be solved by developing and publishing a set of standard protocols in the professional community for conducting probiotic trials in poultry. Abstract One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.
Collapse
|
43
|
Bacterial Distribution, Biogenic Amine Contents, and Functionalities of Traditionally Made Doenjang, a Long-Term Fermented Soybean Food, from Different Areas of Korea. Microorganisms 2021; 9:microorganisms9071348. [PMID: 34206411 PMCID: PMC8304856 DOI: 10.3390/microorganisms9071348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Since doenjang quality depends on the bacterial composition, which ambient bacteria in the environment and production conditions influence, a complete understanding of the bacteria community in traditionally madetraditionally made doenjang (TMD) from different regions is needed. We aimed to investigate the bacteria composition and quality of TMD in the following areas: Chonbuk (CB), Chonnam (CN), Kyungsang (KS), Kangwon (KW), Chungchung (CC) provinces, and Jeju island (JJ) of Korea. Twenty-nine TMD samples from different regions were used to assess biogenic amine contents, bacteria composition using next-generation methods, and metabolic functions of the bacteria using Picrust2. Bacillus spp. were isolated, and their antioxidant and fibrinolytic activities were determined. Most TMD contained high amounts of beneficial bacteria (Bacillus, Lactobacillus, Pediococcus and Weissella). However, some KS samples contained harmful bacteria (Cronobacter, Proteus and Acinetobacter) and less beneficial B. velezensis bacteria. There was no similarity among the regional groups, and each TMD showed a different bacteria composition. Shannon index, α-diversity index, was lower in TMD from JJ and CB than the other areas, but there was no β-diversity among TMD from the six area groups. Picrust2 analysis revealed that the functional potential for arachidonic acid metabolism was lowest in JJ and CN, that for supporting insulin action was highest in KS and JJ, and that for carbohydrate digestion and absorption was lowest in CB and JJ among all groups (p < 0.05) according to the Kyoto Encyclopedia of Genes and Genomes Orthology. Histamine contents were lower in CN and CC, and tyramine contents did not differ significantly. B. velezensis, B. subtilis, B. licheniformis, B. siamensis, and B. amyloliquefaciens were isolated from TMD. None of the isolated Bacillus spp. contained the B. cereus gene. B. subtilis from CN had the highest fibrinolytic activity, and B. velezensis from CB had the highest antioxidant activity. In conclusion, TMD mainly contained various Bacillus spp., and the predominant one was B. velezensis, which had antioxidant and fibrinolytic activity regardless of the regional origin.
Collapse
|
44
|
Kim IS, Hwang CW, Yang WS, Kim CH. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int J Mol Sci 2021; 22:5746. [PMID: 34072216 PMCID: PMC8198423 DOI: 10.3390/ijms22115746] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Korea
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
45
|
Reyes-Cortes JL, Azaola-Espinosa A, Lozano-Aguirre L, Ponce-Alquicira E. Physiological and Genomic Analysis of Bacillus pumilus UAMX Isolated from the Gastrointestinal Tract of Overweight Individuals. Microorganisms 2021; 9:microorganisms9051076. [PMID: 34067853 PMCID: PMC8156450 DOI: 10.3390/microorganisms9051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.
Collapse
Affiliation(s)
- José Luis Reyes-Cortes
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
| | - Alejandro Azaola-Espinosa
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México 04960, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos del Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico;
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
46
|
Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021; 13:1516. [PMID: 33946303 PMCID: PMC8147091 DOI: 10.3390/nu13051516] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Fermented plant foods are gaining wide interest worldwide as healthy foods due to their unique sensory features and their health-promoting potentials, such as antiobesity, antidiabetic, antihypertensive, and anticarcinogenic activities. Many fermented foods are a rich source of nutrients, phytochemicals, bioactive compounds, and probiotic microbes. The excellent biological activities of these functional foods, such as anti-inflammatory and immunomodulatory functions, are widely attributable to their high antioxidant content and lactic acid-producing bacteria (LAB). LAB contribute to the maintenance of a healthy gut microbiota composition and improvement of local and systemic immunity. Besides, antioxidant compounds are involved in several functional properties of fermented plant products by neutralizing free radicals, regulating antioxidant enzyme activities, reducing oxidative stress, ameliorating inflammatory responses, and enhancing immune system performance. Therefore, these products may protect against chronic inflammatory diseases, which are known as the leading cause of mortality worldwide. Given that a large body of evidence supports the role of fermented plant foods in health promotion and disease prevention, we aim to discuss the potential anti-inflammatory and immunomodulatory properties of selected fermented plant foods, including berries, cabbage, and soybean products, and their effects on gut microbiota.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Farzaneh Sharifzad
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Rana Bagheri
- College of Liberal Art and Sciences, Portland State University, Portland, OR 97201, USA;
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (R.S.); (F.S.); (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|