1
|
de Assis BBT, Cabral L, Silva FA, de Araújo Bezerra J, Noronha MF, Vidal H, Dos Santos Lima M, Pimentel TC, Magnani M. Fermentation of Amazonian fruit pulp (bacaba) with distinct probiotics: Impacts on chemical composition, bioaccessibility, and effects on human intestinal microbiota. Food Res Int 2025; 209:116326. [PMID: 40253160 DOI: 10.1016/j.foodres.2025.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025]
Abstract
Bacaba (Oenocarpus bacaba Mart.) is an underexplored Amazonian fruit rich in polyphenols that can serve as a substrate for probiotic survival and may positively impact on the composition and metabolism of the intestinal microbiota. This study aimed to evaluate the bacaba pulp fermented with probiotics Lactobacillus acidophilus 05 (LA-05) and Lacticaseibacillus casei 01 (LC1) regarding the chemical composition and probiotics survivability during fermentation (48 h), and the effect on the modulation of the intestinal microbiota of healthy adults through 16S rRNA sequencing. The probiotic-fermented bacaba pulps showed decreased pH and total soluble solids values and sugar content (maltose, glucose, fructose, and rhamnose), and increased titratable acidity values, organic acid content (lactic and tartaric acids), and phenolic compounds concentration compared to the control pulp. Furthermore, it presented adequate probiotic viability after fermentation and simulated gastrointestinal conditions. The bacaba pulp fermented with LC1 showed a higher concentration of butyric acid and phenolic compounds concentration (trans-resveratrol, cis resveratrol, catechin, procyanidin B2, and pelargonidin 3-glucoside) and bioaccessibility compared to the control pulp. The bacaba pulp fermented with LA-5 showed a higher concentration of pelargonidin 3-glucoside and procyanidin B2 compared to the control pulp and the highest bioaccessibility of some phenolic compounds (trans-resveratrol, cis-resveratrol, catechin, epicatechin, procyanidin B1, procyanidin B2, myricetin, and isorhamnetin). In vitro fecal fermentation reduced the pH and increased the abundance of Desulfovibrionales, Lactobacillales, and Peptostreptococcales-Tissierellales for all treatments. Bacaba pulp with LC1 resulted in the lowest pH values, and increased production of organic acids and concentration of phenolic compounds. Furthermore, both probiotic pulps increased the abundance of Lactobacillales and Acidaminococcales and decreased the abundance of Clostridiales. These findings provide new information about the potential of using bacaba in a functional pulp that may benefit human health through colonic microbiota changes.
Collapse
Affiliation(s)
- Bianca Beatriz Torres de Assis
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucélia Cabral
- Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Francyeli Araújo Silva
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon-1, Pierre Bénite, France
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
2
|
Meral HD, Özcan FŞ, Özcan N, Bozkurt F, Sağdiç O. Determination of prebiotic activity and probiotic encapsulation ability of inulin type fructans obtained from Inula helenium roots. J Food Sci 2024; 89:5335-5349. [PMID: 39042555 DOI: 10.1111/1750-3841.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Inulin, a prebiotic utilized in the food and pharmaceutical industries, promotes the growth of beneficial bacteria in the colon, thereby enhancing human health. Although inulin is commercially produced from chicory and artichoke, Inula helenium roots offer a high potential for inulin production. The aim of this study is to investigate the prebiotic activity of inulin (inulin-P) from I. helenium roots on Lactobacillus rhamnosus, as well as its ability to produce synbiotic microcapsules and the effects on probiotic viability during freeze-drying, in vitro gastrointestinal (GI) digestion, and storage. First, the effect of inulin-P on L. rhamnosus viability and short-chain fatty acid (SCFA) production was compared to other commonly utilized prebiotics. The findings revealed that inulin-P remarkably promoted the growth and SCFA yield of L. rhamnosus for 48 h of fermentation and 28 days of storage. Then, L. rhamnosus was encapsulated with inulin-P and commercial inulin to compare its survival throughout storage and the GI tract. Inulin-P microcapsules outperformed in terms of viability during storage (7.98 log CFU/g after 30 days at 4°C). Furthermore, inulin-P microcapsules were heat-resistant and protected L. rhamnosus from GI conditions, resulting in a high survival rate (89.52%) following large intestine simulation, which is ideal for increasing customer benefits. Additionally, inulin-P microcapsules exhibited similar physical characteristics to commercial inulin. Consequently, this study revealed that inulin-P, which is easy to produce, low-cost, and has industrial application potential, could be used as a good carrier for the synbiotic encapsulation of L. rhamnosus. PRACTICAL APPLICATION: Inulin is a prebiotic that promotes the activity and growth of beneficial bacteria in the human gut. Although commercial inulin is currently produced from chicory root and artichoke, Inula helenium root is a potential raw material for inulin production. In this study, inulin was produced from I. helenium roots with a low-cost and easy production method, and it was determined that this inulin was an effective carrier in the synbiotic encapsulation of L. rhamnosus. This inulin exhibits superior prebiotic activity and encapsulation efficiency compared to commercial inulins like Orafti® GR and HPX and can be easily integrated into industrial production.
Collapse
Affiliation(s)
- Hilal Dikmen Meral
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey
| | | | - Nihat Özcan
- TUBITAK Marmara Research Centre, Life Sciences, Kocaeli, Turkey
| | - Fatih Bozkurt
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Osman Sağdiç
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Athayde AJAA, Berger LRR, de Albuquerque TMR, Sampaio KB, Fernandes KFD, do Nascimento HMA, de Oliveira SPA, Lopes LAA, de Oliveira CEV, da Conceição ML, de Souza EL, Stamford TCM. Physiological and Technological Properties of Probiotic Lacticaseibacillus rhamnosus GG Encapsulated with Alginate-Chitosan Mixture and Its Incorporation in Whole Milk. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10345-w. [PMID: 39162967 DOI: 10.1007/s12602-024-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
This study developed and evaluated chitosan-sodium alginate capsules containing the probiotic Lacticaseibacillus rhamnosus GG using extrusion and emulsification techniques. The encapsulated L. rhamnosus GG cells were also evaluated for technological and probiotic-related physiological functionalities, as well as when incorporated in UHT and powdered milk. Extrusion (86.01 ± 1.26%) and emulsification (74.43 ± 1.41%) encapsulation techniques showed high encapsulation efficiency and high survival rates of L. rhamnosus GG during 28 days of refrigeration and room temperature storage, especially emulsification capsules (> 81%). The encapsulated L. rhamnosus GG cells showed high survival rates during exposure to simulated gastrointestinal conditions (72.65 ± 1.09-114.15 ± 0.44%). L. rhamnosus GG encapsulated by extrusion and emulsification performed satisfactorily in probiotic-related physiological (pH and bile salts tolerance) and technological properties (positive proteolytic activity, diacetyl and exopolysaccharides production, high NaCl tolerance (> 91%), besides having high heat tolerance (> 76%)). L. rhamnosus GG in extrusion and emulsification capsules had high survival rates (> 89%) and did not significantly affect physicochemical parameters in Ultra-High Temperature (UHT) and powdered milk during storage. The results demonstrate that L. rhamnosus GG can be successfully encapsulated with alginate-chitosan as a protective material through extrusion and emulsification techniques. UHT and powdered milk could serve as appropriate delivery systems to increase the intake of this encapsulated probiotic by consumers.
Collapse
Affiliation(s)
- Ana Júlia Alves Aguiar Athayde
- Post-Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Applied Microbiology, Medical Science Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Lúcia Raquel Ramos Berger
- Laboratory of Agricultural and Environmental Microbiology, Department of Biology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Thatyane Mariano Rodrigues de Albuquerque
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil.
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I - Cidade Universitária, João Pessoa, PB, CEP: 58051-900, Brazil.
| | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Karina Félix Dias Fernandes
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Thayza Christina Montenegro Stamford
- Post-Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Applied Microbiology, Medical Science Center, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
4
|
Jeznienė S, Bružaitė I, Šipailienė A. Application of biomacromolecules encapsulation systems for the long-term storage of Lactobacillus plantarum F1 and Lactobacillus reuteri 182. Heliyon 2024; 10:e26566. [PMID: 38439840 PMCID: PMC10909665 DOI: 10.1016/j.heliyon.2024.e26566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
The aim of this study was to improve the viability of lactic acid bacteria (LAB) during extended storage of 1 year and mechanical characteristics of the calcium alginate beads with co-encapsulation of prebiotics and chitosan coating and subsequent freeze drying. The results revealed that the addition of trehalose to alginate matrix effectively protects the LAB cells during freeze drying, i.e., the survival rate has increased up to more than 92.5 %. Chitosan coating reinforced Ca-alginate beads, therefore the sphericity and mechanical strength of the beads improved. The findings also showed that bacteria encapsulation with the prebiotics resulted in more cells stability during the prolonged storage of 1 year and were 4.82 ± 0.06 log CFU g-1 in the lyophilized alginate-trehalose beads for Lactobacillus plantarum and 5.64 ± 0.08 log CFU g-1 in the lyophilized alginate-trehalose-inulin beads for Lactobacillus reuteri. No survival, however, was noted for the LAB cells in wet capsules after the same period. This study demonstrated that prebiotics had a significant impact on the viability of cells during freeze drying and storage. What is more, physical properties of the alginate beads were enhanced by coating beads with the chitosan.
Collapse
Affiliation(s)
- Sigita Jeznienė
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų av. 19, Kaunas, LT-50254, Lithuania
| | - Ingrida Bružaitė
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio av. 11, Vilnius, LT-10223, Lithuania
| | - Aušra Šipailienė
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų av. 19, Kaunas, LT-50254, Lithuania
| |
Collapse
|
5
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
6
|
Youssef HAI, Vitaglione P, Ferracane R, Abuqwider J, Mauriello G. Evaluation of GABA Production by Alginate-Microencapsulated Fresh and Freeze-Dried Bacteria Enriched with Monosodium Glutamate during Storage in Chocolate Milk. Microorganisms 2023; 11:2648. [PMID: 38004660 PMCID: PMC10673371 DOI: 10.3390/microorganisms11112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Two strains of γ-aminobutyric acid (GABA) producing bacteria, L. brevis Y1 and L. plantarum LM2, were microencapsulated in sodium alginate with two concentrations (1% and 2%) of monosodium glutamate (MSG) by using vibrating technology. The mix of both species was microencapsulated both in fresh and freeze-dried form. After 0, 1, 2, and 4 weeks of storage at 4 °C in quarter strength Ringer's solution, the microcapsules were subjected to cell viable counting and sub-cultured in MRS at 37° for 24 h. The MRS cultures were analyzed for the GABA content. The amount of GABA produced per CFU of MRS inoculum was then calculated. Only the 4-week-old microcapsules were used to inoculate a chocolate milk drink with the aim of obtaining a functionalized drink containing viable probiotic cells and GABA after a 1-week incubation at 4 °C. Therefore, the GABA production in chocolate milk per CFU of the probiotic culture after the incubation time was calculated. Results of the GABA analysis by liquid chromatography mass spectrometry of the MRS sub-cultures showed no significant difference (p > 0.05) in GABA yield between 1% and 2% MSG for the microcapsules containing fresh cells. On the contrary, a significant difference (p < 0.05) in productivity along the storage was registered. Microcapsules containing freeze-dried cells showed significant differences (p < 0.05) in GABA yield between 1% and 2% MSG only after 2 and 4 weeks of storage. A significant difference (p < 0.05) in GABA yield between the storage time was found only for the trials with 2% MSG for freeze-dried cells. The synthesis of GABA in chocolate milk significantly decreased (p < 0.05) only for fresh cells when comparing 2% with 1% MSG. In conclusion, a 1-month storage of microcapsules containing both culture forms, fresh and freeze-dried, did not affect GABA production.
Collapse
Affiliation(s)
- Hebat Allah Ibrahim Youssef
- Microbiology Department, Faculty of Science, Ain Shams University, El-Khalyfa El-Mamoun St. Abbasya, Cairo 11566, Egypt
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Jumana Abuqwider
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
7
|
Taweerodjanakarn S, Kongnum K, Hongpattarakere T. Persistence of maternal milk derived Lactobacillus plantarum in the infant feces and its antagonistic activity against Escherichia coli O157:H7. Food Sci Biotechnol 2023; 32:1079-1089. [PMID: 37215257 PMCID: PMC10195941 DOI: 10.1007/s10068-023-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023] Open
Abstract
The diversity of lactic acid bacteria (LAB) in maternal milk and feces from Thai mother-infants pairs were revealed through nested PCR-DGGE. LAB species residing in maternal milk drawn from each individual demonstrated high uniqueness, yet shared similarity to her infant. Multiple strains of L. plantarum, L. fermentum, L. rhamnosus, L. mucosae, L. casei were continuously detected, suggesting direct transfer from a mother to her infant via breastfeeding. L. plantarum, the most commonly found species with many strain variants, remained persistent in infant's feces up to six months postpartum. Such success could be achieved through its ability to utilize fructooligosaccharides (FOS)/inulin together with antibacterial activity and competitive adhesion. With FOS/inulin, the prebiotic utilizing L. plantarum (M117 and M118) isolated from maternal milk effectively inhibited E. coli O157:H7 under highly microflora competitive and glucose-limited environments of colon model. The results introduce the potential trend for development of effective anti-diarrheal synbiotic infant formulae.
Collapse
Affiliation(s)
- Siriporn Taweerodjanakarn
- Biotechnology Program, Faculty of Agro-Industry, Prince of Songkla University, 15 Kanchanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Khanitta Kongnum
- Biotechnology Program, Faculty of Agro-Industry, Prince of Songkla University, 15 Kanchanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Tipparat Hongpattarakere
- Biotechnology Program, Faculty of Agro-Industry, Prince of Songkla University, 15 Kanchanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
8
|
Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, Bai Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel) 2023; 15:polym15102402. [PMID: 37242977 DOI: 10.3390/polym15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Probiotics are beneficial for human health. However, they are vulnerable to adverse effects during processing, storage, and passage through the gastrointestinal tract, thus reducing their viability. The exploration of strategies for probiotic stabilization is essential for application and function. Electrospinning and electrospraying, two electrohydrodynamic techniques with simple, mild, and versatile characteristics, have recently attracted increased interest for encapsulating and immobilizing probiotics to improve their survivability under harsh conditions and promoting high-viability delivery in the gastrointestinal tract. This review begins with a more detailed classification of electrospinning and electrospraying, especially dry electrospraying and wet electrospraying. The feasibility of electrospinning and electrospraying in the construction of probiotic carriers, as well as the efficacy of various formulations on the stabilization and colonic delivery of probiotics, are then discussed. Meanwhile, the current application of electrospun and electrosprayed probiotic formulations is introduced. Finally, the existing limitations and future opportunities for electrohydrodynamic techniques in probiotic stabilization are proposed and analyzed. This work comprehensively explains how electrospinning and electrospraying are used to stabilize probiotics, which may aid in their development in probiotic therapy and nutrition.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
9
|
Pagnini C, Sampietro G, Santini G, Biondi N, Rodolfi L. Tisochrysis lutea as a Substrate for Lactic Acid Fermentation: Biochemical Composition, Digestibility, and Functional Properties. Foods 2023; 12:foods12061128. [PMID: 36981055 PMCID: PMC10048537 DOI: 10.3390/foods12061128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Microalgae, because of their high nutritional value and bioactive molecule content, are interesting candidates for functional foods, including fermented foods, in which the beneficial effects of probiotic bacteria combine with those of biomolecules lying in microalgal biomass. The aim of this work was to evaluate the potential of Tisochrysis lutea F&M-M36 as a substrate for Lactiplantibacillus plantarum ATCC 8014 and to verify fermentation effects on functionality. Bacterium selection among three lactobacilli was based on growth and resistance to in vitro digestion. Microalgal raw biomass and its digested residue were fermented in two matrixes, water and diluted organic medium, and analysed for biochemical composition and antioxidant activity along with their unfermented counterparts. Bacterial survivability to digestion and raw biomass digestibility after fermentation were also evaluated. Fucoxanthin was strongly reduced (>90%) in post-digestion residue, suggesting high bioavailability. Raw biomass in diluted organic medium gave the highest bacterial growth (8.5 logCFU mL-1) and organic acid production (5 mg L-1), while bacterial survivability to digestion (<3%) did not improve. After fermentation, the antioxidant activity of lipophilic extracts increased (>90%). Fermentation appears an interesting process to obtain T. lutea-based functional foods, although further investigations are needed to optimize bacterial growth and fully evaluate its effects on functionality and organoleptic features.
Collapse
Affiliation(s)
- Caterina Pagnini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Giacomo Sampietro
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Gaia Santini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| | - Liliana Rodolfi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy
| |
Collapse
|
10
|
Li S, Fan L, Li S, Sun X, Di Q, Zhang H, Li B, Liu X. Validation of Layer-By-Layer Coating as a Procedure to Enhance Lactobacillus plantarum Survival during In Vitro Digestion, Storage, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1701-1712. [PMID: 36622380 DOI: 10.1021/acs.jafc.2c07139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Probiotics are sensitive to phenolic antibacterial components and the extremely acidic environment of blueberry juices. Layer-by-layer (LbL) coating using whey protein isolate fibrils (WPIFs) and sodium alginate (ALG), carboxymethyl cellulose (CMC), or xanthan gum (XG) was developed to improve the survival rate of Lactobacillus plantarum 90 (LP90) in simulated digestion, storage, and fermented blueberry juices. The LbL-coated LP90 remained at 6.65 log CFU/mL after 48 h of fermentation. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) indicated that dense and rough wall networks were formed on the surface of LP90, maintaining the integrity of LP90 cells after the coating. Stability evaluation showed that the LbL-coated LP90 had a much higher survival rate in the processes of simulated gastrointestinal digestion and storage. The formation mechanism of the LbL coating process was further explored, which indicated that electrostatic interactions and hydrogen bonding were involved. The LbL coating approach has great potential to protect and deliver probiotics in food systems.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Linlin Fan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Shuangjian Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Xiaochen Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Qingru Di
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Hui Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| | - Xiaoli Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing210014, China
- College of Food Science, Shenyang Agricultural University, Shenyang110866, China
| |
Collapse
|
11
|
Kouamé KJEP, Bora AFM, Li X, Sun Y, Tian S, Hussain M, Liu L, Coulibaly I. Development and characterization of probiotic (co)encapsulates in biopolymeric matrices and evaluation of survival in a millet yogurt formulation. J Food Sci 2023; 88:9-27. [PMID: 36443949 DOI: 10.1111/1750-3841.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/28/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022]
Abstract
The formulation of probiotics-enriched products still remains a challenge for the food industry due to the loss of viability, mainly occurring upon consumption and during storage. To tackle this challenge, the current study investigated the potential of using sodium alginate and inulin (SIN) in combination with various encapsulating materials such as skim milk (SKIM), whey protein concentrate (WPC), soy protein concentrate (SPC), and flaxseed oil (FS) to increase the viability of Lactobacillus casei upon freeze-drying, under simulated gastrointestinal conditions, during 28 days of storage at 4°C, and in a formulation of millet yogurt. Microstructural properties of microcapsules and co-microcapsules by SEM, oxidative stability of flaxseed oil in co-microcapsules, and physicochemical and sensory analysis of the product were performed. The produced microcapsules (SIN-PRO-SKIM, SIN-PRO-WP, and SIN-PRO-SP) and co-microcapsules (SIN-PRO-FS-SKIM, SIN-PRO-FS-WP, and SIN-PRO-FS-SP) had a high encapsulation rate >90%. Moreover, encapsulated and co-encapsulated strains exhibited a high in vitro viability accounting for 9.24 log10 CFU/g (SIN-PRO-SKIM), 8.96 log10 CFU/g (SIN-PRO-WP), and 8.74 log10 CFU/g (SIN-PRO-SP) for encapsulated and 10.08 log10 CFU/g (SIN-PRO-FS-SKIM), 10.03 log10 CFU/g (SIN-PRO-FS-WP), and 10.14 log10 CFU/g (SIN-PRO-FS-SP) for co-encapsulated. Moreover, encapsulated and co-encapsulated cells showed higher survival upon storage than free cells. Also, the SEM analysis showed spherical particles of 77.92-230.13 µm in size. The physicochemical and sensory analysis revealed an interesting nutritional content in the millet yogurt. The results indicate that the SIN matrix has significant promise as probiotic encapsulating material as it may provide efficient cell protection while also providing considerable physicochemical and nutritional benefits in functional foods.
Collapse
Affiliation(s)
- Kouadio Jean Eric-Parfait Kouamé
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Awa Fanny Massounga Bora
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yue Sun
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Songfan Tian
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Muhammad Hussain
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- College of Food Science, Northeast Agricultural University, Harbin, China.,Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ibourahema Coulibaly
- Department of Biochemistry-Microbiology, Jean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| |
Collapse
|
12
|
Insights into Protective Effects of Different Synbiotic Microcapsules on the Survival of Lactiplantibacillus plantarum by Electrospraying. Foods 2022; 11:foods11233872. [PMID: 36496680 PMCID: PMC9736631 DOI: 10.3390/foods11233872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
This study evaluated the protective effects of different synbiotic microcapsules on the viability of encapsulated Lactiplantibacillus plantarum GIM1.648 fabricated by electrospraying. The optimum amount of substrate for three synbiotic microcapsules separately containing fructooligosaccharide (FOS), fish oil, and the complex of both were 4% FOS (SPI-F-L-P), 20 μL fish oil (SPI-O-L-P) and the complex of 20 μL fish oil, and 2% FOS (SPI-O-F-L-P), respectively. The obtained synbiotic microcapsules had a better encapsulation efficiency (EE) and survival rate (SR) after in vitro digestion than microcapsules without the addition of substrate (SPI-L-P) and SPI-O-F-L-P presented the highest EE (95.9%) and SR (95.5%). When compared to SPI-L-P, the synbiotic microcapsules possessed a more compact structure as proved by the SEM observation and their cell viability were significantly improved in response to environmental stresses (heat treatment, freeze drying, and storage). The synbiotic microcapsules containing the complex of FOS and fish oil showed the best beneficial effect, followed by ones with fish oil and then FOS, suggesting the FOS and fish oil complex has more potential in application.
Collapse
|
13
|
Wang X, Xie W, Zhang S, Shao Y, Cai J, Cai L, Wang X, Shan Z, Zhou H, Li J, Cui W, Wang L, Qiao X, Li Y, Jiang Y, Tang L. Effect of Microencapsulation Techniques on the Stress Resistance and Biological Activity of Bovine Lactoferricin-Lactoferrampin-Encoding Lactobacillus reuteri. Foods 2022; 11:3169. [PMID: 37430918 PMCID: PMC9602003 DOI: 10.3390/foods11203169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
Bovine lactoferricin-lactoferrampin-encoding Lactobacillus reuteri (LR-LFCA) has been found to benefit its host by strengthening its intestinal barrier. However, several questions remain open concerning genetically engineered strains maintaining long-term biological activity at room temperature. In addition, probiotics are vulnerable to harsh conditions in the gut, such as acidity and alkalinity, and bile salts. Microencapsulation is a technique to entrap probiotic bacteria into gastro-resistant polymers to carry them directly to the intestine. We selected nine kinds of wall material combinations to encapsulate LR-LFCA by spray drying microencapsulation. The storage stability, microstructural morphology, biological activity, and simulated digestion in vivo or in vitro of the microencapsulated LR-LFCA were further evaluated. The results showed that LR-LFCA had the highest survival rate when microcapsules were prepared using a wall material mixture (skim milk, sodium glutamate, polyvinylpyrrolidone, maltodextrin, and gelatin). Microencapsulated LR-LFCA increased the stress resistance capacity and colonization abilities. In the present study, we have identified a suitable wall material formulation for spray-dried microencapsulation of genetically engineered probiotic products, which would facilitate their storage and transport.
Collapse
Affiliation(s)
- Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Adilah RN, Chiu ST, Hu SY, Ballantyne R, Happy N, Cheng AC, Liu CH. Improvement in the probiotic efficacy of Bacillus subtilis E20-stimulates growth and health status of white shrimp, Litopenaeus vannamei via encapsulation in alginate and coated with chitosan. FISH & SHELLFISH IMMUNOLOGY 2022; 125:74-83. [PMID: 35526801 DOI: 10.1016/j.fsi.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to increase the efficacy of probiotic Bacillus subtilis E20 by encapsulating the probiotic in alginate and coating it with chitosan. The protective effect was evaluated by firstly ensuring the viability of encapsulated probiotics in simulated gastrointestinal fluid (SGF) and simulated intestinal fluid (SIF) conditions and then at different storage temperatures. In addition, the encapsulated probiotic was incorporated into the diet to improve the growth performance and health status of white shrimp, Litopenaeus vannamei. B. subtilis E20 has the ability to survive in SGF when encapsulated in 1.5-2% alginate and coated with 0.4% chitosan. Furthermore, viability increased significantly in SIF compared to the probiotic encapsulated in 1% alginate and coated with 0.4% chitosan and the non-encapsulated probiotic. Longer storage time and adverse conditions affected probiotics' survival, which was improved by the encapsulation with significantly higher viability than the non-encapsulated probiotic at different temperatures and storage duration. Encapsulation of B. subtilis E20 and dietary administration at 107 CFU kg-1 decreased shrimp mortality after a Vibrio infection, thereby improving shrimp's disease resistance, while the non-encapsulated probiotic required 109 CFU kg-1 to achieve better resistance. Although the best results of growth performance, immune response, and disease resistance against Vibrio alginolyticus were found in the shrimp fed with the diets supplemented with encapsulated probiotic at >108 CFU kg-1, shrimp's growth performance and health status improved after being fed 107 CFU kg-1 encapsulated probiotic for 56 days. Together, the results of this study prove that encapsulation could improve the viability of probiotic in different gastrointestinal conditions and adverse storage temperatures. Overall, lower concentrations of encapsulated probiotic B. subtilis E20 (107 CFU kg-1) was able to increase the growth performance and health status of shrimp.
Collapse
Affiliation(s)
- Rusyda Nur Adilah
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia
| | - Shieh-Tsung Chiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Pingtung, 91201, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Pingtung, 91201, Taiwan
| | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Nursyam Happy
- Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, Indonesia
| | - Ann-Chang Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Pingtung, 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Pingtung, 91201, Taiwan.
| |
Collapse
|
15
|
Tseng HC, Yang CY. Assessment of Ultrasonic Stress on Survival and β-Glucosidase Activity of Encapsulated Lactiplantibacillus plantarum BCRC 10357 in Fermentation of Black Soymilk. Foods 2022; 11:foods11091234. [PMID: 35563956 PMCID: PMC9103103 DOI: 10.3390/foods11091234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
The enhanced β-glucosidase activity of encapsulated Lactiplantibacillus plantarum BCRC 10357 within calcium alginate capsules was investigated by ultrasonic stimulation to induce the stress response of the bacteria for the biotransformation of isoflavones in black soymilk. The effects of various ultrasound durations, sodium alginate concentrations (% ALG), and cell suspensions on the β-glucosidase activity of encapsulated bacteria were explored. The β-glucosidase activity of encapsulated L. plantarum BCRC 10357 with ultrasonic stimulation (40 kHz/300 W) was greater than that without ultrasound. With 20 min of ultrasonic treatment, the β-glucosidase activity of encapsulated L. plantarum BCRC 10357 from 2% ALG/0.85% NaCl cell suspension was 11.47 U/mL at 12 h, then increased to 27.43 U/mL at 36 h and to 26.25 U/mL at 48 h in black soymilk at 37 °C, showing the high adaptation of encapsulated L. plantarum BCRC 10357 encountering ultrasonic stress to release high β-glucosidase until 48 h, at which point the ratio of isoflavone aglycones (daidzein and genistein) in total isoflavones (daidzin, genistin, daidzein, and genistein) was 98.65%, reflecting the effective biotransformation of isoflavone glycosides into aglycones by β-glucosidase. In this study, the survivability and β-glucosidase activity of encapsulated L. plantarum BCRC 10357 were enhanced under ultrasonic stimulation, and were favorably used in the fermentation of black soymilk.
Collapse
|
16
|
Luca L, Oroian M. Oat Yogurts Enriched with Synbiotic Microcapsules: Physicochemical, Microbiological, Textural and Rheological Properties during Storage. Foods 2022; 11:foods11070940. [PMID: 35407027 PMCID: PMC8998009 DOI: 10.3390/foods11070940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the influence of synbiotic microcapsules on oat yogurt’s properties. For this study, four different microcapsules were added into the oat yogurt and the modifications were studied for 28 days. Microbiological analysis was used to analyze the effect of different factors on the microencapsulated probiotic population in the product. Those factors are: the technological process of obtaining microcapsules; the type of prebiotic chicory inulin (INU), oligofructose (OLI) and soluble potato starch (STH); the prebiotic concentrations in the encapsulation matrix; the technological process of obtaining yogurt; and the yogurt storage period, gastric juice action and intestinal juice action. The experimental data show that oat yogurt containing synbiotic microcapsules has similar properties to yogurt without microcapsules, which illustrates that the addition of synbiotic microcapsules does not change the quality, texture or rheological parameters of the product. Oat yogurt with the addition of synbiotic microcapsules can be promoted as a functional food product, which, in addition to other beneficial components (bioactive compounds), has in its composition four essential amino acids (glycine, valine, leucine and glutamine acids) and eight non-essential amino acids (alanine, serine, proline, asparagine, thioproline, aspartic acid, glutamic acid and α-aminopimelic acid). After 28 days of storage in refrigerated conditions, the cell viability of the microcapsules after the action of the simulated intestinal juice were: 9.26 ± 0.01 log10 cfu/g, I STH (oat yogurt with synbiotic microcapsules—soluble potato starch); 9.33 ± 0.01 log10 cfu/g, I INU, 9.18 ± 0.01 log10 cfu/g, I OIL and 8.26 ± 0.04 log10 cfu/g, IG (oat yogurt with microcapsules with glucose). The new functional food product provides consumers with an optimal number of probiotic cells which have a beneficial effect on intestinal health.
Collapse
|
17
|
Encapsulation of Lactobacillus gasseri: Characterization, Probiotic Survival, In Vitro Evaluation and Viability in Apple Juice. Foods 2022; 11:foods11050740. [PMID: 35267373 PMCID: PMC8909321 DOI: 10.3390/foods11050740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/16/2023] Open
Abstract
The development of functional foods containing probiotic bacteria has become increasingly relevant to improve and maintain health. However, this is often limited to dairy food matrices given the complexity involved in maintaining a stable system together with high microbial viability in matrices such as juices. The objective of this study was to develop and characterize sodium alginate capsules loaded with Lactobacillus gasseri ATCC® 19992 ™ (LG). Cell viability under in vitro gastrointestinal conditions and during storage in apple juice were evaluated. The capsules were prepared by ionic gelation and an emulsification process was performed as pretreatment using two homogenization methods: magnetic stirring (AM) and Ultraturrax® rotor-stator homogenizer (UT). Cell viability after encapsulation was similar in the two processes: 65%. At the end of the in vitro gastrointestinal evaluation, the non-encapsulated probiotic cells did not show any viability, while the AM system was able to retain 100% of its viability and the UT retained 79.14%. The morphology of the capsules consisted of a continuous and homogeneous surface. Cell viability of LG encapsulated in apple juice stored at 4 °C for 21 days was 77% for AM, 55.43% for UT, and 63.10% for free LG.
Collapse
|
18
|
Pourhajibagher M, Pourakbari B, Bahador A. Contribution of antimicrobial photo-sonodynamic therapy in wound healing: an in vivo effect of curcumin-nisin-based poly (L-lactic acid) nanoparticle on Acinetobacter baumannii biofilms. BMC Microbiol 2022; 22:28. [PMID: 35039005 PMCID: PMC8762960 DOI: 10.1186/s12866-022-02438-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/07/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The biofilm-forming ability of Acinetobacter baumannii in the burn wound is clinically problematic due to the development of antibiotic-resistant characteristics, leading to new approaches for treatment being needed. In this study, antimicrobial photo-sonodynamic therapy (aPSDT) was used to assess the anti-biofilm efficacy and wound healing activity in mice with established A. baumannii infections. METHODS Following synthesis and confirmation of Curcumin-Nisin-based poly (L-lactic acid) nanoparticle (CurNisNp), its cytotoxic and release times were evaluated. After determination of the sub-significant reduction (SSR) doses of CurNisNp, irradiation time of light, and ultrasound intensity against A. baumannii, anti-biofilm activity and the intracellular reactive oxygen species (ROS) generation were evaluated. The antibacterial and anti-virulence effects, as well as, histopathological examination of the burn wound sites of treated mice by CurNisNp-mediated aPSDTSSR were assessed and compared with silver sulfadiazine (SSD) as the standard treatment group. RESULTS The results showed that non-cytotoxic CurNisNp has a homogeneous surface and a sphere-shaped vesicle with continuous release until the 14th day. The dose-dependent reduction in cell viability of A. baumannii was achieved by increasing the concentrations of CurNisNp, irradiation time of light, and ultrasound intensity. There was a time-dependent reduction in biofilm growth, changes in gene expression, and promotion in wound healing by the acceleration of skin re-epithelialization in mice. Not only there was no significant difference between aPSDTSSR and SSD groups in antibacterial and anti-virulence activities, but also wound healing and re-epithelialization occurred more efficiently in aPSDTSSR than in the SSD group. CONCLUSIONS In conclusion, CurNisNp-mediated aPSDT might be a promising complementary approach to treat burn wound infections.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
19
|
Osojnik Črnivec IG, Neresyan T, Gatina Y, Kolmanič Bučar V, Skrt M, Dogša I, Bogovič Matijašić B, Kulikova I, Lodygin A, Poklar Ulrih N. Polysaccharide Hydrogels for the Protection of Dairy-Related Microorganisms in Adverse Environmental Conditions. Molecules 2021; 26:molecules26247484. [PMID: 34946575 PMCID: PMC8704654 DOI: 10.3390/molecules26247484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/06/2023] Open
Abstract
Adverse environmental conditions are severely limiting the use of microorganisms in food systems, such as probiotic delivery, where low pH causes a rapid decrease in the survival of ingested bacteria, and mixed-culture fermentation, where stepwise changes and/or metabolites of individual microbial groups can hinder overall growth and production. In our study, model probiotic lactic acid bacteria (L. plantarum ATCC 8014, L. rhamnosus GG) and yeasts native to dairy mixed cultures (K. marxianus ZIM 1868) were entrapped in an optimized (cell, alginate and hardening solution concentration, electrostatic working parameters) Ca-alginate system. Encapsulated cultures were examined for short-term survival in the absence of nutrients (lactic acid bacteria) and long-term performance in acidified conditions (yeasts). In particular, the use of encapsulated yeasts in these conditions has not been previously examined. Electrostatic manufacturing allowed for the preparation of well-defined alginate microbeads (180–260 µm diameter), high cell-entrapment (95%) and viability (90%), and uniform distribution of the encapsulated cells throughout the hydrogel matrix. The entrapped L. plantarum maintained improved viabilities during 180 min at pH 2.0 (19% higher when compared to the free culture), whereas, L. rhamnosus appeared to be less robust. The encapsulated K. marxianus exhibited double product yields in lactose- and lactic acid-modified MRS growth media (compared to an unfavorable growth environment for freely suspended cells). Even within a conventional encapsulation system, the pH responsive features of alginate provided superior protection and production of encapsulated yeasts, allowing several applications in lacto-fermented or acidified growth environments, further options for process optimization, and novel carrier design strategies based on inhibitor charge expulsion.
Collapse
Affiliation(s)
- Ilja Gasan Osojnik Črnivec
- Biotechnical Faculty, University of Ljubljana, 101 Jamnikarjeva, 1000 Ljubljana, Slovenia; (I.G.O.Č.); (V.K.B.); (M.S.); (I.D.); (B.B.M.)
| | - Tigran Neresyan
- Food Engineering and Biotechnology Faculty, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, Russia; (T.N.); (Y.G.); (I.K.); (A.L.)
| | - Yuliana Gatina
- Food Engineering and Biotechnology Faculty, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, Russia; (T.N.); (Y.G.); (I.K.); (A.L.)
| | - Vid Kolmanič Bučar
- Biotechnical Faculty, University of Ljubljana, 101 Jamnikarjeva, 1000 Ljubljana, Slovenia; (I.G.O.Č.); (V.K.B.); (M.S.); (I.D.); (B.B.M.)
| | - Mihaela Skrt
- Biotechnical Faculty, University of Ljubljana, 101 Jamnikarjeva, 1000 Ljubljana, Slovenia; (I.G.O.Č.); (V.K.B.); (M.S.); (I.D.); (B.B.M.)
| | - Iztok Dogša
- Biotechnical Faculty, University of Ljubljana, 101 Jamnikarjeva, 1000 Ljubljana, Slovenia; (I.G.O.Č.); (V.K.B.); (M.S.); (I.D.); (B.B.M.)
| | - Bojana Bogovič Matijašić
- Biotechnical Faculty, University of Ljubljana, 101 Jamnikarjeva, 1000 Ljubljana, Slovenia; (I.G.O.Č.); (V.K.B.); (M.S.); (I.D.); (B.B.M.)
| | - Irina Kulikova
- Food Engineering and Biotechnology Faculty, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, Russia; (T.N.); (Y.G.); (I.K.); (A.L.)
| | - Aleksei Lodygin
- Food Engineering and Biotechnology Faculty, North-Caucasus Federal University, 1 Pushkin Street, 355017 Stavropol, Russia; (T.N.); (Y.G.); (I.K.); (A.L.)
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, 101 Jamnikarjeva, 1000 Ljubljana, Slovenia; (I.G.O.Č.); (V.K.B.); (M.S.); (I.D.); (B.B.M.)
- The Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, 39 Jamova, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Hydrogel Encapsulation of Lactobacillus casei by Block Charge Modified Pectin and Improved Gastric and Storage Stability. Foods 2021; 10:foods10061337. [PMID: 34200620 PMCID: PMC8227579 DOI: 10.3390/foods10061337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus casei (L. casei W8) was encapsulated in pectin methylesterase (PME) charge modified pectin hydrogels; stability and in vitro release were evaluated under simulated gastrointestinal (GI) conditions. PME, 355 U/mL, de-esterified citrus pectin to 35% from 72% degree of esterification (DE). Pectin ζ-potential decreased to about −37 mV and molecular weight decreased from 177 kDa to 143 kDa during charge modification. More than 99% L. casei W8 were encapsulated in block charged, low methoxy pectin (35 mLMP) hydrogels by calcium ionotropic gelation. The integrity of the hydrogels was maintained under simulated GI conditions, and no release of L. casei W8 was observed. Microbial counts of encapsulated L. casei ranged from 6.94 log CFU/g to 10.89 log CFU/g and were 1.23 log CFU/g higher than for unencapsulated L. casei W8. The viability of encapsulated L. casei W8 in wet hydrogels remained the same for 2 weeks, but nearly all flora died after 4 weeks storage at 4 °C. However, freeze dried hydrogels of L. casei W8 were viable for 42 days at 4 °C and 14 days at room temperature. Charge modified pectin hydrogels are potentially good vehicles for colon-targeted delivery carrier for probiotics and longer stability of L. casei W8.
Collapse
|