1
|
Nayak SPRR, Das A, Ramamurthy K, Pasupuleti M, Rajagopal R, Arockiaraj J. Exposure to bisphenol A and sodium nitrate found in processed meat induces endocrine disruption and dyslipidemia through PI3K/AKT/SREBP pathway in zebrafish larvae. J Nutr Biochem 2025; 140:109887. [PMID: 40023200 DOI: 10.1016/j.jnutbio.2025.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Meat is a staple in many cultural diets, and the consumption of processed meats has increased significantly worldwide. The widespread use of sodium nitrate (NaNO3) as a preservative and the unintentional leaching of bisphenol A (BPA) from packaging into meats have raised health concerns. This study evaluates the combined toxicity of BPA and NaNO3 despite their individual safety assessments. Our findings reveal that coexposure to BPA and NaNO3 at levels found in processed meats induces mortality and malformations in zebrafish larvae. The combined exposure triggers oxidative stress, lipid peroxidation, dyslipidemia, inflammation, and apoptosis. Network toxicology analysis elucidates the molecular mechanisms underlying metabolic dysfunction caused by these substances. Dysregulation of genes related to thyroid function (tsh-β, dio-1, thr-b) and inflammation (tnf-α, il-1β, il-6, nfκb) was observed in the co-exposure group. Additionally, this group exhibited increased lipid accumulation, elevated cholesterol and triglyceride levels, and dysregulation of essential lipid metabolism genes (srebp2, pcsk9). Co-exposure also impaired larval motility and behavior, evidenced by hypolocomotion and reduced acetylcholinesterase levels. Further gene expression analysis showed increased levels of pi3k and akt, two major signaling molecules. Ultimately, the simultaneous exposure to BPA and NaNO3 leads to disruptions in the endocrine system and abnormal lipid levels via activating the PI3K/AKT/SREBP pathway.
Collapse
Affiliation(s)
- Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anamika Das
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
2
|
Erdal İ, Yıldız Y, Yalçın SS, Yirün A, Demirel G, Erkekoğlu P. Evaluation of Exposure to Bisphenol A, Bisphenol F, and Phthalates in Patients with Phenylketonuria and Its Differences According to Dietary Status. Nutrients 2024; 16:3213. [PMID: 39339813 PMCID: PMC11435359 DOI: 10.3390/nu16183213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Phenylketonuria (PKU) is the most common amino acid metabolism disorder. Patients with blood phenylalanine (Phe) levels of ≥6 mg/dL require treatment, and the most definitive treatment is the Phe-restricted diet. Bisphenols and phthalates are widely used endocrine-disrupting chemicals (EDCs) found in personal care products, baby bottles, and food packaging. METHODS In this study, we evaluated the possible routes of exposure to these EDCs in patients diagnosed with PKU (n = 105, 2-6 years of age) and determined the relationship between the plasma levels of bisphenol A (BPA), bisphenol F (BPF), di-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), mono-(2ethylhexyl) phthalate (MEHP), and dietary regimens. Participant characteristics and exposure routes were evaluated according to their dietary treatment status. RESULTS Thirty-four of these patients were on a Phe-restricted diet, while the remaining 71 had no dietary restrictions. DBP and DEHP levels were higher in those using plastic tablecloths (p = 0.049 and p = 0.04, respectively). In addition, plasma DBP levels were higher in those who used bottled water (p = 0.01). Being under 4 years of age, using plastic food containers, and using plastic shower curtains were characteristics associated with higher MEHP levels (p = 0.027, p = 0.019, and p = 0.014, respectively). After adjustment for baseline characteristics (Model 1), the odds of having a plasma BPA level in the upper tertile were 3.34 times higher in the free-diet group (95% CI = 1.09-10.25). When we additionally adjusted for plastic exposure (Model 2), the odds ratio was found to be 18.64 (95% CI = 2.09-166.42) for BPA. In the free-diet group, the probability of having plasma DEHP levels in the upper tertile was increased by a relative risk of 3.01 (p = 0.039, 95% CI = 1.06-8.60). CONCLUSION Our results indicate that exposure to bisphenols and phthalates varies with dietary treatment. The difference in sources of exposure to EDCs between the diet and non-diet groups indicates that diet plays an important role in EDC exposure.
Collapse
Affiliation(s)
- İzzet Erdal
- Clinic of Pediatric Metabolic Diseases, Etlik City Hospital, 06170 Ankara, Türkiye
- Division of Social Pediatrics, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children’s Hospital, 06230 Ankara, Türkiye;
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children’s Hospital, 06230 Ankara, Türkiye;
| | - Sıddıka Songül Yalçın
- Division of Social Pediatrics, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children’s Hospital, 06230 Ankara, Türkiye;
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, 01330 Adana, Türkiye; (A.Y.); (G.D.)
| | - Göksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, 01330 Adana, Türkiye; (A.Y.); (G.D.)
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 01330 Ankara, Türkiye;
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230 Ankara, Türkiye
| |
Collapse
|
3
|
Lee Y, Baek J, Kwon Y. Assessing dietary bisphenol A exposure among Koreans: comprehensive database construction and analysis using the Korea National Health and Nutrition Examination Survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1018-1055. [PMID: 38923903 DOI: 10.1080/19440049.2024.2362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) exposure primarily occurs through dietary intake. This study aimed to estimate the extent of dietary BPA exposure among Koreans. A thorough literature search was conducted to establish a BPA content database encompassing common foods consumed in Korea, including various food raw materials and processed food products. Dietary exposure levels were estimated by integrating the constructed BPA database with comprehensive nationwide 24 h-dietary recall datasets. The finding revealed that dietary BPA exposure was low for most Koreans, with a mean of 14.5 ng/kg bw/day, but was higher for preschool-age children (over 23 ng). Canned foods accounted for 9-36% of the total dietary exposure of the highest dietary exposure groups; while across all age groups, a considerable amount was derived from canned tuna, contribution of canned fruits and canned coffee (milk-containing) was high for preschool-age children and adults, respectively. Notably, for adults, a substantial proportion also stemmed from beer packaged in cans. While diet contributed over 80% of aggregate exposure for most age groups, preschool-age children experienced 60% exposure through diet due to additional exposure from indoor dust. Even at the high exposure scenario, aggregate BPA exposure levels remained lower than the current tolerable daily intake (TDI) set by the Korean agency (20 μg/kg bw/day). Nevertheless, most Koreans were exposed to BPA levels surpassing the strictest TDI (0.2 ng/kg bw/day) set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Jiyun Baek
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| |
Collapse
|
4
|
Nayan NM, Kadir SHSA, Husin A, Siran R. Neurodevelopmental effects of prenatal Bisphenol A exposure on the role of microRNA regulating NMDA receptor subunits in the male rat hippocampus. Physiol Behav 2024; 280:114546. [PMID: 38583549 DOI: 10.1016/j.physbeh.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Maternal bisphenol A (BPA) exposure has been reported to cause learning and memory deficits in born offspring. However, little is known that this impairment is potentially caused by epigenetic modulation on the development of NMDA receptor subunits. This study investigates the effect of prenatal BPA exposure on the hippocampal miR-19a and miR-539, which are responsible for regulating NMDA receptor subunits as well as learning and memory functions. Pregnant Sprague Dawley rats were orally administered with 5 mg/kg/day of BPA from pregnancy day 1 (PD1) until gestation day 21 (GD21), while control mothers received no BPA. The mothers were observed daily until GD21 for either a cesarean section or spontaneous delivery. The male offspring were sacrificed when reaching GD21 (fetus), postnatal days 7, 14, 21 (PND7, 14, 21) and adolescent age 35 (AD35) where their hippocampi were dissected from the brain. The expression of targeted miR-19a, miR-539, GRIN2A, and GRIN2B were determined by qRT-PCR while the level of GluN2A and GluN2B were estimated by western blot. At AD35, the rats were assessed with neurobehavioral tests to evaluate their learning and memory function. The findings showed that prenatal BPA exposure at 5 mg/kg/day significantly reduces the expression of miR-19a, miR-539, GRIN2A, and GRIN2B genes in the male rat hippocampus at all ages. The level of GluN2A and GluN2B proteins is also significantly reduced when reaching adolescent age. Consequently, the rats showed spatial and fear memory impairments when reaching AD35. In conclusion, prenatal BPA exposure disrupts the role of miR-19a and miR-539 in regulating the NMDA receptor subunit in the hippocampus which may be one of the causes of memory and learning impairment in adolescent rats.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Laboratory Animal Care Unit (LACU), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abd Kadir
- Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia..
| |
Collapse
|
5
|
Świt P, Orzeł J. Towards the assessment of exposure to bisphenols in everyday items with increased accuracy by the use of integrated calibration method (ICM)-based methodology. J Chromatogr A 2024; 1715:464612. [PMID: 38159404 DOI: 10.1016/j.chroma.2023.464612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The most crucial purpose of the measurement is to obtain a reliable result that reflects the actual qualitative and/or quantitative features of the tested material. The overriding goal of analytical chemistry is to obtain accurate results after compensating of various interference effects as well as non-linear calibration dependence. A new approach based on an integrated calibration method (ICM) supported by H-point standard addition method (HPSAM) has been used to improve the quality of analytical results. The proposed methodological approach was extended using the step-by-step dilution procedure, and five measurement conditions were used to eliminate multiplicative, additive, and non-linear interferences. On this basis, a set of estimations is obtained to improve the quality of the analytical results. The analytical usefulness of the proposed approach was tested on the example of the determination of three compounds from the group of bisphenols (BPs) using the chromatographic technique - HPLC-DAD (high-performance liquid chromatography with diode array detection). Compared to the reference method - fluorescence spectroscopy - the obtained results were characterized by excellent accuracy (RE=3 % in most cases). The developed methodology allowed to carry out a risk assessment on BPA, BPF, and BPS present in samples of shop receipts and canned food. Store clerks have been shown to be particularly vulnerable to PBF and BPS in receipts due to skin permeation (exposure factors were equal to 308.97 µg/g for BPF and 181.89 µg/g for BPS). Consumers should also pay close attention to the BPA found in canned food samples (the average concentration was equal to 20.61 µg/mL, and the tolerable daily intake was exceeded over 165.000 times). The analytical method and the methodological approach were evaluated using the RGB model and the AGREE approach - it was shown that the method can be successfully used for other analytical purposes (the method is White) and is environmentally friendly (Significance=0.63).
Collapse
Affiliation(s)
- Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, Katowice 40-006, Poland.
| | - Joanna Orzeł
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna Street, Katowice 40-006, Poland
| |
Collapse
|
6
|
Peña-Corona SI, Vargas-Estrada D, Juárez-Rodríguez I, Retana-Márquez S, Mendoza-Rodríguez CA. Bisphenols as promoters of the dysregulation of cellular junction proteins of the blood-testis barrier in experimental animals: A systematic review of the literature. J Biochem Mol Toxicol 2023; 37:e23416. [PMID: 37352109 DOI: 10.1002/jbt.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Daily, people are exposed to chemicals and environmental compounds such as bisphenols (BPs). These substances are present in more than 80% of human fluids. Human exposure to BPs is associated with male reproductive health disorders. Some of the main targets of BPs are intercellular junction proteins of the blood-testis barrier (BTB) in Sertoli cells because BPs alter the expression or induce aberrant localization of these proteins. In this systematic review, we explore the effects of BP exposure on the expression of BTB junction proteins and the characteristics of in vivo studies to identify potential gaps and priorities for future research. To this end, we conducted a systematic review of articles. Thirteen studies met our inclusion criteria. In most studies, animals treated with bisphenol-A (BPA) showed decreased occludin expression at all tested doses. However, bisphenol-AF treatment did not alter occludin expression. Cx43, ZO-1, β-catenin, nectin-3, cortactin, paladin, and claudin-11 expression also decreased in some tested doses of BP, while N-cadherin and FAK expression increased. BP treatment did not alter the expression of α and γ catenin, E-cadherin, JAM-A, and Arp 3. However, the expression of all these proteins was altered when BPA was administered to neonatal rodents in microgram doses. The results show significant heterogeneity between studies. Thus, it is necessary to perform more research to characterize the changes in BTB protein expression induced by BPs in animals to highlight future research directions that can inform the evaluation of risk of toxicity in humans.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Juárez-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
7
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Risk assessment of bisphenol A (BPA) in Irish meat and meat products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163496. [PMID: 37062312 DOI: 10.1016/j.scitotenv.2023.163496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Bisphenol A (BPA) is a chemical with large-scale applications in the manufacturing of industrial products. Concerns have been raised regarding human exposure to BPA and dietary consumption is the main route of exposure. BPA is recognised as an endocrine disruptor with multiple adverse effects on the reproductive, immune, and nervous systems. This study aimed to conduct a probabilistic risk assessment to evaluate the human health risk based on the raw concentration data (N = 1266) of BPA in non-canned meat and meat products purchased from supermarkets and local butchers in Dublin and the surrounding area. The mean exposure levels for BPA in non-canned meat and meat products, fresh meat, and processed meat products among children were 0.019, 0.0022, and 0.015 μg (kg bw)-1 day-1, respectively. Therefore, simulated human exposures to BPA were far below the EFSA recommended current temporary tolerable daily intake (t-TDI) of 4 μg (kg bw)-1 day-1. However recently, the EFSA has proposed a draft TDI of 0.04 ng (kg bw)-1 day-1 to replace the current t-TDI. Hence, our results indicated potential health concerns as the estimated exposure levels (5th-95th percentile) were below current t-TDI but above draft TDIs. Further investigation into the source of BPA contamination in processed meat products is highly recommended. The research presented here will inform the public, meat producers and processors, and policymakers on potential exposure to BPA.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Han E, Pan Y, Li L, Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem 2023; 426:136608. [PMID: 37348395 DOI: 10.1016/j.foodchem.2023.136608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
A facile electrochemical sensor based on nano gold-doped molecularly imprinted polymer (MIP) was proposed to realize the selective detection of bisphenol A (BPA) with enhanced sensitivity. Initially, gold-doped MIP (Au@MIP) film was constructed by electropolymerizing p-aminobenzoic acid (PABA) and BPA with in situ gold reduction to distribute gold nanoparticles nearby the imprinted cavities. Subsequently, the template molecules were further extracted from the polymer film, then the MIP could rebind with the template molecules to achieve specific detection of BPA. The nano gold-doped MIP increased the effective surface area and promoted conductivity when BPA was oxidized in the imprinted cavities, which improved the determination sensitivity. Under optimal conditions, the prepared sensor displayed a linear range from 0.5 to 100 μM for BPA detection with a detection limit of 52 nM. The designed sensor was further used to detect BPA in food samples, obtaining satisfactory recoveries from 96.7% to 107.6%.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
9
|
Shi X, Xu T, Li X, Sun X, Zhang W, Liu X, Wang Y, Zhang Y, Xu S. ROS mediated pyroptosis-M1 polarization crosstalk participates in inflammation of chicken liver induced by bisphenol A and selenium deficiency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121392. [PMID: 36906056 DOI: 10.1016/j.envpol.2023.121392] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The earth's natural environmental factors and man-made industrial pollution often lead to the co-occurrence of environmental pathogenic factors and malnutrition. Bisphenol A (BPA) is a serious environmental endocrine disruptor, and its exposure can cause liver tissue damage. Selenium (Se) deficiency is a worldwide problem that afflicts thousands of people, and Se deficiency can cause M1/M2 imbalance. In addition, the crosstalk between hepatocyte and immune cell is closely related to the occurrence of hepatitis. Therefore, this study found for the first time that the combined exposure of BPA and Se deficiency caused liver pyroptosis and M1 polarization through ROS, and the crosstalk between pyroptosis and M1 polarization aggravated liver inflammation in chicken. In this study, the BPA or/and Se deficiency chicken liver, single and co-culture model of LMH and HD11 cells were established. The results displayed that BPA or Se deficiency induced liver inflammation accompanied by pyroptosis and M1 polarization through oxidative stress, and increased expressions of chemokines (CCL4, CCL17, CCL19, and MIF) and inflammatory factors (IL-1β and TNF-α). The vitro experiments further verified the above changes and showed that LMH pyroptosis promoted M1 polarization of HD11 cells, and vice versa. NAC counteracted pyroptosis and M1 polarization caused by BPA and low-Se, reducing the release of inflammatory factors. In brief, BPA and Se deficiency treatment can exacerbate liver inflammation by increasing oxidative stress to induce pyroptosis and M1 polarization.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yuqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Tumu K, Vorst K, Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr Rev Food Sci Food Saf 2023; 22:1337-1359. [PMID: 36789797 DOI: 10.1111/1541-4337.13113] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Phthalates and bisphenol chemicals have been widely used globally in packaging materials and consumer products for several decades. These highly functional chemicals have become a concern due to their toxicity (i.e., endocrine/hormone modulators) and ability to migrate from food contact materials (FCMs) into food matrices and the environment resulting in human and environmental health risks. FCMs, composed of postconsumer materials, are particularly high risk for containing these compounds. The evaluation of postconsumer recycled feedstocks in FCMs is compulsory and selection of an appropriate detection method to comply with applicable regulations is necessary to evaluate human and environmental safety. Numerous regulations have been proposed and passed globally for both compound classes that are recognized as priority pollutants by the United States Environmental Protection Agency and the European Union. Several brand owners and retailers have also released their own "restricted substance lists" due to the mounting consumer and regulatory concerns. This review article has two goals: (1) discuss the utilization, toxicology, human exposure routes, and occurrence levels of phthalates and bisphenols in FCMs and associated legislation in various countries and (2) discuss critical understanding and updates for detection/quantification techniques. Current techniques discussed include extraction and sample preparation methods (solid-phase microextraction [SPME], headspace SPME, Soxhlet procedure, ultrasound-assisted extraction), chromatographic techniques (gas, liquid, detectors), and environmental/blank considerations for quantification. This review complements a previous review of phthalates in foods from 2009 by discussing phthalate and bisphenol characteristics, analytical methods of determining concentrations in packaging materials, and their influence on the migration potential into food.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
11
|
Fucic A, Mantovani A, Vena J, Bloom MS, Sincic N, Vazquez M, Aguado-Sierra J. Impact of endocrine disruptors from mother's diet on immuno-hormonal orchestration of brain development and introduction of the virtual human twin tool. Reprod Toxicol 2023; 117:108357. [PMID: 36863570 DOI: 10.1016/j.reprotox.2023.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Diet has long been known to modify physiology during development and adulthood. However, due to a growing number of manufactured contaminants and additives over the last few decades, diet has increasingly become a source of exposure to chemicals that has been associated with adverse health risks. Sources of food contaminants include the environment, crops treated with agrochemicals, inappropriate storage (e.g., mycotoxins) and migration of xenobiotics from food packaging and food production equipment. Hence, consumers are exposed to a mixture of xenobiotics, some of which are endocrine disruptors (EDs). The complex interactions between immune function and brain development and their orchestration by steroid hormones are insufficiently understood in human populations, and little is known about the impact on immune-brain interactions by transplacental fetal exposure to EDs via maternal diet. To help to identify the key data gaps, this paper aims to present (a) how transplacental EDs modify immune system and brain development, and (b) how these mechanisms may correlate with diseases such as autism and disturbances of lateral brain development. Attention is given to disturbances of the subplate, a transient structure of crucial significance in brain development. Additionally, we describe cutting edge approaches to investigate the developmental neurotoxicity of EDs, such as the application of artificial intelligence and comprehensive modelling. In the future, highly complex investigations will be performed using virtual brain models constructed using sophisticated multi-physics/multi-scale modelling strategies based on patient and synthetic data, which will enable a greater understanding of healthy or disturbed brain development.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska C 2, Zagreb, Croatia.
| | - A Mantovani
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - J Vena
- Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - M S Bloom
- Global and Community Health, George Mason University, 4400 University Dr., Fairfax, VA, USA
| | - N Sincic
- Medical School, University of Zagreb, Salata 3, Croatia
| | - M Vazquez
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - J Aguado-Sierra
- Barcelona Supercomputing Center, Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| |
Collapse
|
12
|
Krivohlavek A, Mikulec N, Budeč M, Barušić L, Bošnir J, Šikić S, Jakasa I, Begović T, Janda R, Vitale K. Migration of BPA from Food Packaging and Household Products on the Croatian Market. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2877. [PMID: 36833573 PMCID: PMC9957217 DOI: 10.3390/ijerph20042877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BPA is a plasticizer for the production of polycarbonate plastics and epoxy resins and is widely used in the production of household goods, including food packaging. Free BPA is known to migrate from packaging to food, and its uptake has been associated with adverse health effect, particularly the disruption of endocrine activity. The presence and migration of BPA from plastic consumer products are subject to strict regulation in the EU. The aim of this study is to analyse the migration of BPA from different packaging items and household products sold on the Croatian market. To simulate real life exposure, we treated samples with a food simulant. The analytical performance was confirmed with the EU requirements. BPA levels were assessed in 61 samples by HPLC-FLD and the LOQ of the method was 0.005 mg kg-1 for the food simulant. These results showed that the levels of BPA that migrated to the food simulant were below LOQ and in accordance with the specific migration limit into food, which was defined as 0.05 mg kg-1 for all samples. None of the analysed products presented a health hazard. However, these regulations do not refer to products intended for children's use, in which BPA is banned. Furthermore, regulations require testing before putting products on the market, and previous research shows that possible BPA migration occurs due to various uses, along with a cumulative effect of exposure from even very small concentrations. Therefore, for accurate BPA consumer exposure evaluation and possible health risks, a comprehensive approach is needed.
Collapse
Affiliation(s)
- Adela Krivohlavek
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Nataša Mikulec
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Maja Budeč
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Lidija Barušić
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Jasna Bošnir
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Teaching Institute for Public Health “Dr. Andrija Štampar”, 10000 Zagreb, Croatia
| | - Ivone Jakasa
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Tajana Begović
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Rea Janda
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ksenija Vitale
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Wang X, Nag R, Brunton NP, Bakar Siddique MA, Harrison SM, Monahan FJ, Cummins E. Hazard characterization of bisphenol A (BPA) based on rodent models - Multilevel meta-analysis and dose-response analysis for reproductive toxicity. Food Chem Toxicol 2023; 172:113574. [PMID: 36566970 DOI: 10.1016/j.fct.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Bisphenol A (BPA) is a widely used synthetic industrial compound frequently detected in food. Dietary exposure to BPA has been recognised as a potential health concern. However, there are uncertainties regarding BPA toxicity. The primary objective of this study was to summarise and analyse multiple toxicity endpoints of adverse reproductive effects caused by BPA exposure in rodent models. Therefore, a multilevel meta-analysis and subsequent dose-response analysis were conducted. Relevant articles published in English between 2012 and 2021 were collected from online databases, viz. Scopus, EmBase, Web of Science, and PubMed. In total, 41 studies were included for statistical analysis. All statistical analyses were performed using open-source RStudio packages. Summary effects indicated the statistical significance of BPA exposure on decreased sperm concentration (Hedges' g: -1.35) and motility (Hedges' g: -1.12) on average, while no significant effects were observed on the absolute and relative weight of male and female reproductive organs. The lowest mean toxicological reference dose values of 0.0011 mg (kg bw)-1 day-1 was proposed for BPA exposure on sperm concentration from the dose-response model. In conclusion, potential health risks from BPA exposure were shown with regards to reproductive toxicity, especially that sperm concentration and sperm motility require further attention.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Dehdashti B, Nikaeen M, Amin MM, Mohammadi F. Health Risk Assessment of Exposure to Bisphenol A in Polymeric Baby Bottles. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231151531. [PMID: 36726789 PMCID: PMC9885033 DOI: 10.1177/11786302231151531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, paying attention to bisphenol A (BPA), as one of the endocrine disruptor compounds, has increased due to its harmful effects. Although, scattered studies have been conducted in order to measure BPA concentration migrated into polymeric baby bottles in different countries of the world, there are no review studies and evaluation with a global perspective in the field of BPA risk. Some of these studies indicated the potential risks and estrogenic effects associated with BPA in babies' daily intake. For this purpose, we reviewed the information on the migration levels of BPA into baby bottles has been reported in 10 countries. The potential risks associated with BPA through the daily intake as well as the estrogenic effect on 3 age groups of babies which include 0 to 6, 6 to 12, and 12 to 24 months were analyzed using the Monte Carlo simulation. Also, kinetic models were applied to predict the kinetics of the migration process of BPA. The median daily intake for 3 age groups was obtained as 191.1, 161.37, and 153.76 µg/kg/day, respectively; which indicated Hazard Index (HI) > 1. The median estrogenic effect for the 3 groups was estimated to be 0.021 ngE2/L. The kinetics of contaminant transfer with Polynomial model at 2 temperatures of 24°C and 40°C showed a better fit with R 2 = 0.99 and 0.91, respectively. Based on the risk assessment analysis conducted in the present study, the BPA migration in baby bottles appeared to be a health concern for babies. Therefore, it is needed to increase the safety level of bottles for babies as they are sensitive and vulnerable members of every society. Furthermore, in this study, only the investigation of the global situation of BPA in polymeric baby bottles was stated; therefore, more investigation about another potential sources of BPA in food chain is needed.
Collapse
Affiliation(s)
- Bahare Dehdashti
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
- Student Research Committee, School of
Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Environment Research Center, Research
Institute for Primordial Prevention of Non-communicable Disease, Isfahan University
of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
- Environment Research Center, Research
Institute for Primordial Prevention of Non-communicable Disease, Isfahan University
of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health
Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan,
Iran
| |
Collapse
|
15
|
Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120319. [PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Divya Bhushan
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Schiano ME, Sodano F, Cassiano C, Fiorino F, Seccia S, Rimoli MG, Albrizio S. Quantitative Determination of Bisphenol A and Its Congeners in Plant-Based Beverages by Liquid Chromatography Coupled to Tandem Mass Spectrometry. Foods 2022; 11:3853. [PMID: 36496660 PMCID: PMC9737382 DOI: 10.3390/foods11233853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The consumption of plant-based beverages as an alternative to cow's milk has recently gained vast attention worldwide. The aim of this work is to monitor the intake of Bisphenol A (BPA), Bisphenol B (BPB) and Bisphenol S (BPS) in the Italian population through the consumption of these foodstuffs. Specifically, the development and validation of an analytical procedure for the quantitative determination of the analytes by liquid chromatography coupled to tandem mass spectrometry was reported. Thirty-four samples of plant-based beverages (soya, coconut, almond, oats and rice) of popular brands marketed in Italy were analyzed. BPA was found in 32% of the samples, while BPB was found in 3% of the samples. The risk assessment using the Rapid Assessment of Contaminant Exposure (RACE) tool demonstrated that there was no risk for all population groups, when using the current Tolerable Daily Intake (TDI) of 4 ng/kg body weight (bw)/day as a toxicological reference point. In contrast, using the new temporary TDI of 0.04 ng/kg bw/day, the existing risk was found to be real for all population groups. If this value were to become final, even more attention would have to be paid to the possible presence of BPA in food to protect consumer health.
Collapse
Affiliation(s)
- Marica Erminia Schiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Institute for Polymers, Composites and Biomaterials, Italian National Research Council, 80078 Naples, Italy
| | - Federica Sodano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Serenella Seccia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Grazia Rimoli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Interuniversity Consortium INBB, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| | - Stefania Albrizio
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Interuniversity Consortium INBB, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
17
|
Cao XL, Xu NX, Zhou XY, Xu CM. Association of urinary bisphenol A concentrations with in vitro fertilisation outcomes: a systematic review and meta-analysis protocol. BMJ Open 2022; 12:e063930. [PMID: 36319056 PMCID: PMC9628666 DOI: 10.1136/bmjopen-2022-063930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Bisphenol A (BPA) is a common environmental endocrine disruptor. BPA has been reported to be associated with female infertility, which may not only affect natural pregnancy and natural fertility but also affect the outcomes of in vitro fertilisation (IVF). BPA exposure may help to partly explain the unsatisfactory IVF outcomes, but the relationship between the concentrations of BPA in urine and IVF outcomes remains controversial. Therefore, we will perform a meta-analysis to identify and review the relationship between urinary BPA concentrations and IVF outcomes. METHODS AND ANALYSIS A comprehensive literature search will be performed in PubMed, Web of Science and the Cochrane central register of controlled trials for relevant articles using MeSH terms and related entry terms (up to 20 April 2022). The language will be restricted to English. Articles will be screened for inclusion in or exclusion from the study independently by two reviewers after removing the duplicates. The titles and abstracts followed by full-text screening will also be conducted independently by two reviewers. In addition, the references of the included literature will also be traced to supplement our search results and to obtain all relevant literature. The Newcastle-Ottawa Scale will be used to assess the methodological quality of the included studies using a star rating system ranging from 0 to 9 stars. Heterogeneity in estimates from different articles will be quantified, and publication bias will be investigated using funnel plots. Finally, a sensitivity analysis will also be conducted to estimate whether our results could have been markedly affected by a single included study. ETHICS AND DISSEMINATION Ethical approval is not required for this protocol, as participants are not included. Findings will be disseminated through peer-reviewed publications and conference presentations.
Collapse
Affiliation(s)
- Xian-Ling Cao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, Fudan University, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Nai-Xin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan-You Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, Fudan University, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Chen-Ming Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China, Fudan University, Shanghai, China
- Institute of Reproduction and Development, Fudan University, Shanghai, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Wang X, Nag R, Brunton NP, Siddique MAB, Harrison SM, Monahan FJ, Cummins E. Human health risk assessment of bisphenol A (BPA) through meat products. ENVIRONMENTAL RESEARCH 2022; 213:113734. [PMID: 35750124 DOI: 10.1016/j.envres.2022.113734] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Meat and meat products are often consumed in our daily diet, providing essential nutrients. Contamination by chemical hazards, including bisphenol A (BPA) in meat products, is a concern and is continuously monitored. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects on reproductive, nervous, and immune systems. Dietary consumption is the main route of BPA exposure, and meat products are a major contributor. BPA exposure from meat consumption is the focus of this review. This review found that BPA has been widely detected in canned and non-canned meat products. BPA in canned meat is assumed to be predominantly from migration from can coatings. Relatively low levels are observed in non-canned products, and the source of contamination in these products has yet to be definitively identified. A recent European Food Safety Authority (EFSA) draft opinion has proposed to lower the tolerable daily intake of BPA from 4 μg kg body weight (bw)-1 day-1 to 0.04 ng kg body weight (bw)-1 day-1, therefore potential health risks need to be addressed. This review has investigated potential contamination at the farm, industrial processes, and retail levels. Data gaps in the literature are also identified to improve future food safety in the meat industry. Also, a unified risk assessment strategy has been proposed. Further understanding of BPA migration in meat products is needed as a part of the exposure assessment to reduce potential risk, and more data on the dose-response relationship will help comprehend potential adverse health effects of BPA on humans. This research will inform the public, meat producers and processing industry, and policymakers on potential exposure to BPA and risk reduction measures, thus, ensuring food safety.
Collapse
Affiliation(s)
- Xin Wang
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Rajat Nag
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Md Abu Bakar Siddique
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sabine M Harrison
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank J Monahan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- School of Biosystems and Food Engineering, Agriculture and Food Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Cerkvenik-Flajs V, Škibin A, Švara T, Gombač M, Pogačnik M, Šturm S. Bisphenol A in edible tissues of rams exposed to repeated low-level dietary dose by high-performance liquid chromatography with fluorescence detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76078-76090. [PMID: 35665893 PMCID: PMC9553849 DOI: 10.1007/s11356-022-21154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
The presented work deals with levels and distribution of bisphenol A (BPA) in the edible tissues of a large food-producing animal species. An experimental animal study included 14 young Istrian pramenka rams (Ovis aries), of which seven were exposed for 64 days to a low dietary dose of BPA at 25 µg/kg b.w./day, and seven served as a control group. Residue analysis of both aglycone and total BPA was performed in the muscle tissue, liver, kidney and fat tissue of the individual animals by means of enzymatic deconjugation (for total BPA), organic solvent extraction, molecularly imprinted polymer solid-phase extraction (MISPE) clean-up and high-performance liquid chromatography with fluorescence detection (HPLC-FLU). The analysis was optimized and validated for aglycone BPA in the fat tissue and for the total BPA in all tissues investigated. Edible tissues of the control group of rams generally remained BPA-free, while there were concentration differences between the control and treated groups for liver and kidney post last administration. The human health risk resulting from this study was assessed by the estimated dietary exposure in adults, which was < 0.1% related to the valid European Union Tolerable Daily Intake (TDI) value of 4 µg/kg b.w./day. However, it would be 58-fold higher than the newly proposed TDI value of 0.04 ng/kg b.w./day.
Collapse
Affiliation(s)
- Vesna Cerkvenik-Flajs
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Andrej Škibin
- Veterinary Faculty, Clinic of Reproduction and Farm Animals, Infrastructure Centre for Sustainable Recultivation Vremščica, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Tanja Švara
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Mitja Gombač
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Milan Pogačnik
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Sabina Šturm
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| |
Collapse
|
20
|
Zhang Y, Yuan ZL, Deng XY, Wei HD, Wang WL, Xu Z, Feng Y, Shi X. Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chem 2022; 386:132753. [PMID: 35367801 DOI: 10.1016/j.foodchem.2022.132753] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The residues of bisphenol A (BPA) in milk packaging may transfer to milk, adversely affecting the human endocrine system. Consequently, to analyse or monitor BPA, it is imperative to develop rapid and effective approaches to BPA extraction from milk and milk packing as BPA is usually present in trace levels. Herein, we developed a rapid, simple, and low-cost dispersive-membrane-solid-phase-extraction (DME) for BPA with MIL-101(Cr) mixed-matrix-membrane (MMM). The MMM had large surface area (1322.09 m2/g) and pore volume (0.65 cm3/g), possessed great extraction efficiency of BPA, and kept more than 90% extraction efficiency after 20 times of reuse. Using the developed MIL-101(Cr)-MMM-based DME coupled with HPLC-fluorescence detector, we received an adequate linearity in the range of 0.1 ∼ 50 μg/L BPA and a limit of detection as low as 16 ng/L under optimized conditions. The recoveries of BPA in milk and milk bottles were from 74.2% to 110.6%, with RSDs less than 9.4%.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhi-Liang Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao-Dong Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Xu
- Huangpu Customs Technology Center, Guangzhou 510770, China
| | - Yongwei Feng
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China.
| | - Xueli Shi
- Shijiazhuang City Maternal and Child Health Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
21
|
Hair Sample Analysis as a Method of Monitoring Exposure to Bisphenol A in Dogs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084600. [PMID: 35457463 PMCID: PMC9030106 DOI: 10.3390/ijerph19084600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) is an organic substance widely used in the plastics industry. It penetrates food and environment and, as an endocrine disruptor, has detrimental effects on human organisms. Pet animals, which live in the immediate vicinity of humans, are also exposed to BPA; however, knowledge regarding the exposure of dogs to this substance is extremely scarce. This is the first study in which hair analysis has been used to biomonitor BPA in 30 dogs using liquid chromatography and tandem mass spectrometry techniques. The presence of BPA in concentration levels above the method detection limit (1.25 ng/g) was noted in 93.33% of samples. BPA concentration levels were found to range from 7.05 ng/g to 436 ng/g (mean 81.30 ng/g). Statistically significant differences in BPA concentration levels were found between animals with physiological weight and animals with abnormal weight (skinny and obese). In turn, differences between males and females, as well as between young, middle-aged and old dogs, were not statistically significant. The obtained results have clearly shown that hair analysis is a useful method to evaluate the exposure of dogs to BPA. This study also confirmed that dogs are exposed to BPA to a large extent, and this substance may play a role as a pathological factor in this animal species. However, many aspects connected to the influence of BPA on canine health status are unclear and need further study.
Collapse
|
22
|
Bisphenol and Phthalate Migration Test from Mexican Meat Packaging Using HPLC-DAD Technique. J CHEM-NY 2022. [DOI: 10.1155/2022/2688236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this work was to analyze the bisphenols’ and phthalates’ (PAEs) migration from meat packages (of sausages, Winnies, and ham found in Mexican markets) to a water simulant. The determination of these compounds was realized by high performance liquid chromatography (HPLC) and diode array detection (DAD) at a wavelength of 254 nm. The mobile phase utilized was a mixture of acetonitrile:H2O (70 : 30). Elution was performed isocratically at a temperature of 25°C and at a flow rate of 1 mL min−1. The LOQs obtained for BPA, DEP, BADGE, DBP, BisDMA, DHP, DOP, and PA in µg mL−1 were 0.53, 2.09, 0.85, 1.45, 5.81, 1.03, 3.12, and 29.6, respectively. Calibration curves exhibited an adequate determination coefficient for all compounds (R2 >0.999). Excellent accuracy and precision in measurements (% RSD) were achieved. The recovery study showed good applicability of the method (percentage recovery 80% to 106%). The BPA, BADGE, DBP, and DOP concentrations found in samples exceeded the simulant migration limits (SMLs) established by the European Union. The contribution of the current investigation was to provide information related to the presence of bisphenols and PAEs in the package of meat products, highlighting the health risks associated with their exposure.
Collapse
|
23
|
Tarafdar A, Sirohi R, Balakumaran PA, Reshmy R, Madhavan A, Sindhu R, Binod P, Kumar Y, Kumar D, Sim SJ. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127097. [PMID: 34488101 DOI: 10.1016/j.jhazmat.2021.127097] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (or BPA) is a toxic endocrine disrupting chemical that is released into the environment through modern manufacturing practices. BPA can disrupt the production, function and activity of endogenous hormones causing irregularity in the hypothalamus-pituitary-gonadal glands and also the pituitary-adrenal function. BPA has immuno-suppression activity and can downregulate T cells and antioxidant genes. The genotoxicity and cytotoxicity of BPA is paramount and therefore, there is an immediate need to properly detect and remediate its influence. In this review, we discuss the toxic effects of BPA on different metabolic systems in the human body, followed by its mechanism of action. Various novel detection techniques (LC-MS, GC-MS, capillary electrophoresis, immunoassay and sensors) involving a pretreatment step (liquid-liquid microextraction and molecularly imprinted solid-phase extraction) have also been detailed. Mechanisms of various remediation strategies, including biodegradation using native enzymes, membrane separation processes, photocatalytic oxidation, use of nanosorbents and thermal degradation has been detailed. An overview of the global regulations pertaining to BPA has been presented. More investigations are required on the efficiency of integrated remediation technologies rather than standalone methods for BPA removal. The effect of processing operations on BPA in food matrices is also warranted to restrict its transport into food products.
Collapse
Affiliation(s)
- Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - R Reshmy
- Department of Chemistry, Bishop Moore College, Mavelikkara 690110, Kerela, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerela, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology and Entrepreneurship and Management, Sonipat 131028, Haryana, India
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
24
|
Comparison of Quantitative Detection Methods Based on Molecular Fluorescence Spectroscopy and Chromatographic Techniques Used for the Determination of Bisphenol Compounds. Int J Mol Sci 2021; 22:ijms221910569. [PMID: 34638911 PMCID: PMC8508877 DOI: 10.3390/ijms221910569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Analytical methods using the fluorescence properties of bisphenols (BPA, BPF and BPS) and their complexes with β-cyclodextrin and methyl-β-cyclodextrin were developed. The methods were applied for the analysis of thermal paper and canned food. Their performance was compared with a standard HPLC approach with a diode array and fluorescence detections. For comparison purposes, basic validation parameters (linear range, limit of detection, sensitivity, precision) were evaluated. It was concluded the developed methods facilitate fast and cost-effective determination of three bisphenol species in liquid samples, similar to the HPLC performance. They are also environmentally friendly. BPA, BPF and BPS can be routinely determined with the presented approach.
Collapse
|
25
|
Baralić K, Živančević K, Jorgovanović D, Javorac D, Radovanović J, Gojković T, Buha Djordjevic A, Ćurčić M, Mandinić Z, Bulat Z, Antonijević B, Đukić-Ćosić D. Probiotic reduced the impact of phthalates and bisphenol A mixture on type 2 diabetes mellitus development: Merging bioinformatics with in vivo analysis. Food Chem Toxicol 2021; 154:112325. [PMID: 34097988 DOI: 10.1016/j.fct.2021.112325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Linkage between bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and bisphenol A (BPA) co-exposure and type 2 diabetes mellitus (T2DM), as well as ability of multi-strained probiotic to reduce DEHP, DBP and BPA mixture-induced oxidative damage in rat pancreas were investigated. The Comparative Toxicogenomics Database, Cytoscape software and ToppGene Suite were used for data-mining. Animals were sorted into seven groups (n = 6): (1) Control group: corn oil, (2) P: probiotic: Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus plantarum LP 6595 + Lactobacillus plantarum HEAL9; (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day, and (6) MIX: 50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA; (7) MIX + P. Rats were sacrificed after 28 days of oral exposure. In silico investigation highlighted 44 DEHP, DBP and BPA mutual genes linked to the T2DM, while apoptosis and oxidative stress were highlighted as the main mechanisms of DEHP, DBP and BPA mixture-linked T2DM. In vivo experiment confirmed the presence of significant changes in redox status parameters (TOS, SOD and SH groups) only in the MIX group, indicating possible additive effects, while probiotic ameliorated mixture-induced redox status changes in rat pancreatic tissue.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Gojković
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|