1
|
Azouz AA, El komy MH, Elmowafy M, Mahmoud MO, Ali FE, Aboud HM. Crafting cationic lecithmer nanocomposites as promising wagons for brain targeting of cinnamaldehyde: Accentuated neuroprotection via downregulation of Aβ1-42/p-tau crosstalk. J Drug Deliv Sci Technol 2025; 106:106664. [DOI: 10.1016/j.jddst.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2025]
|
2
|
Mousavi SF, Arsalani N, Ghorbani M. Preparation of sodium alginate and xanthan gum bionanocomposite films reinforced with hybrid halloysite nanotubes containing ZnO and licorice root extract for wound dressing applications. Int J Biol Macromol 2025; 307:141974. [PMID: 40086546 DOI: 10.1016/j.ijbiomac.2025.141974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study aims to fabricate bio-nanocomposite films using a solution-casting method based on sodium alginate (SA)1 and xanthan gum (XG).2 These films are reinforced with hybrid Halloysite nanotubes (Hal)3 containing zinc oxide nanoparticles (ZnO-Hal) and licorice root extract (ZnO-Hal-LRE) in various concentrations. These films were characterized using FT-IR, XRD, and scanning electron microscopy (SEM). The ZnO-Hal-LRE nanohybrids significantly enhanced the films' mechanical properties, thermal stability, and water vapor permeability (WVP) barrier. The tensile strength (TS) increased from 6 MPa to 13.204 MPa, and the WVP improved from 1.82 × 10-9 g·m·m-2·h-1·Pa-1 to 1.25 × 10-9 g·m·m-2·h-1·Pa-1. Furthermore, incorporating LRE4 into the nanohybrids enhanced antibacterial and antioxidant activities and increased the cell viability of NIH-3T3 fibroblast cells. The in vitro release study of licorice extract from the nanocomposite film demonstrated a controlled and sustained release, prolonging the half-life of the licorice extract. These findings indicate that the prepared bio-nanocomposite films have significant potential for biomedical applications, particularly wound dressing.
Collapse
Affiliation(s)
- Seyyede Fatemeh Mousavi
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Zhang Y, Ning H, Xu J, Lu L. Layer-by-layer assembly of modified halloysite nanotube using chitosan and sodium alginate to control the release of carvacrol and improve its stability. Int J Biol Macromol 2024; 282:137091. [PMID: 39486717 DOI: 10.1016/j.ijbiomac.2024.137091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
This study focused on the encapsulation of modified halloysite nanotubes (AHNT) using sodium alginate (SA) and chitosan (CS) through a layer-by-layer assembly technique. The objective was to develop new composites (CPs) that could control the release of carvacrol (Car) and enhance its stability. The influence of various conditions on the microstructure, chemical properties, and slow-release effects of the CPs was examined by adjusting the pH and concentration of the CS solution. The results indicated that the CPs (CS4.5-1), created with a CS solution concentration of 1 mg/mL at a pH of 4.5, in conjunction with a 1 mg/mL SA solution, demonstrated a superior encapsulation structure and a loading efficiency of 26.33 %. In vitro release experiments confirmed that the CPs exhibited effective slow-release properties for Car. Furthermore, the CS4.5-1 composite provided a physical barrier that resulted in the retention of 94.90 % and 83.61 % of Car after 6 h of exposure to UV light and heat, respectively. Antimicrobial and antioxidant assays indicated that CS4.5-1/Car possessed significant antioxidant properties and effectively inhibited the growth of E. coli and S. aureus. Consequently, the prepared CPs have the potential to enhance the bioactivity of active compounds and may be beneficial for food preservation and other applications.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Xu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Zhou T, Wang H, Han Q, Song Z, Yu D, Li G, Liu W, Dong C, Ge S, Chen X. Fabrication and characterization of an alginate-based film incorporated with cinnamaldehyde for fruit preservation. Int J Biol Macromol 2024; 274:133398. [PMID: 38917925 DOI: 10.1016/j.ijbiomac.2024.133398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/23/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
Sodium alginate (SA) is widely used in the food, biomedical, and chemical industries due to its biocompatibility, biodegradability, and excellent film-forming properties. This article introduces a simple method for preparing uniform alginate-based packaging materials with exceptional properties for fruit preservation. The alginate was uniformly crosslinked by gradually releasing calcium ions triggered by the sustained hydrolysis of gluconolactone (GDL). A cinnamaldehyde (CA) emulsion, stabilized by xanthan without the use of traditional surfactants, was tightly incorporated into the alginate film to enhance its antimicrobial, antioxidant, and UV shielding properties. The alginate-based film effectively blocked ultraviolet rays in the range of 400-200 nm, while allowing for a visible light transmittance of up to 70 %. Additionally, it showed an increased water contact angle and decreased water vapor permeability. The alginate-based film was also employed in the preparation of coated paper through the commonly used coating process in the papermaking industry. The alginate-based material displayed excellent antioxidant properties and antimicrobial activity against Escherichia coli, Staphylococcus aureus and Botrytis cinerea, successfully extending the shelf life of strawberries to 7 days at room temperature. This low-cost and facile method has the potential to drive advancements in the food and biomedical fields by tightly incorporating active oil onto a wide range of biomacromolecule substrates.
Collapse
Affiliation(s)
- Tongxin Zhou
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Qian Han
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257335, China.
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Cuihua Dong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Xiao Chen
- Liaocheng Key Laboratory of High Yield Clean Pulping and Special Cultural Paper, Liaocheng 252000, China
| |
Collapse
|
5
|
Liu X, Song X, Gou D, Li H, Jiang L, Yuan M, Yuan M. A polylactide based multifunctional hydrophobic film for tracking evaluation and maintaining beef freshness by an electrospinning technique. Food Chem 2023; 428:136784. [PMID: 37429236 DOI: 10.1016/j.foodchem.2023.136784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
A nanofiber film was prepared by a facile electrospinning technique using polylactide (PLA), butterfly pea flower extract (BPA) and cinnamaldehyde (CIN). The as-prepared film shows the prominent antioxidative, antibacterial, colorimetric and hydrophobic properties so that the beef freshness can be monitored and maintained up to 6 days at 4 °C simultaneously. Besides, the nanofiber structure endows the film with a fast color responsiveness under acidic-alkaline atmospheres with different concentrations. Moreover, this film exhibits higher tensile strength (9.56 Mpa) than that of the pure PLA electrospinning film (4.40 Mpa). Especially the introduction of the BPA effectively boosts the antimicrobial ability of the CIN. The freshness, sub-freshness and spoilage levels of the beef can be easily testified by observing the color difference change of the film. So the polylactide based multifunctional film as an intelligent packaging has an excellent potential for the sub-freshness detection of meat.
Collapse
Affiliation(s)
- Xinxin Liu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Xiushuang Song
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Dejiao Gou
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Hongli Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Lin Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Minglong Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan University of Nationalities, Kunming 650504, China.
| |
Collapse
|
6
|
Wang W, Li T, Chen J, Ye Y. Inhibition of Salmonella Enteritidis by Essential Oil Components and the Effect of Storage on the Quality of Chicken. Foods 2023; 12:2560. [PMID: 37444298 PMCID: PMC10341335 DOI: 10.3390/foods12132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This research investigates the antibacterial potential of plant essential oil components including thymol, carvacrol, citral, cinnamaldehyde, limonene, and β-pinene against Salmonella Enteritidis (S. Enteritidis). Through the determination of minimum inhibitory concentration, three kinds of natural antibacterial agents with the best inhibitory effect on S. Enteritidis were determined, namely thymol (128 μg/mL), carvacrol (256 μg/mL), and cinnamaldehyde (128 μg/mL). Physical, chemical, microbial, and sensory characteristics were regularly monitored on days 0, 2, 4, and 6. The findings of this study reveal that both thymol at MIC of 128 μg/mL and carvacrol at MIC of 256 μg/mL not only maintained the sensory quality of chicken, but also decreased the pH, moisture content, and TVB-N value. Additionally, thymol, carvacrol and cinnamaldehyde successfully inhibited the formation of S. Enteritidis biofilm, thereby minimizing the number of S. Enteritidis and the total aerobic plate count in chicken. Hence, thymol, carvacrol, and cinnamaldehyde have more effective inhibitory activities against S. Enteritidis, which can effectively prevent the spoilage of chicken and reduce the loss of its functional components.
Collapse
Affiliation(s)
- Wu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (J.C.); (Y.Y.)
| | | | | | | |
Collapse
|
7
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
8
|
Wang Y, Deng X, Liu Y, Wang Y, Luo X, Zhao T, Wang Z, Cheng G. Protective effect of Anneslea fragrans ethanolic extract against CCl4-induced liver injury by inhibiting inflammatory response, oxidative stress and apoptosis. Food Chem Toxicol 2023; 175:113752. [PMID: 37004906 DOI: 10.1016/j.fct.2023.113752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and bark generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.
Collapse
Affiliation(s)
- Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Xiaocui Deng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaodong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
9
|
Perera KY, Hopkins M, Jaiswal AK, Jaiswal S. Nanoclays-containing bio-based packaging materials: properties, applications, safety, and regulatory issues. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 14:1-23. [PMID: 36747507 PMCID: PMC9893189 DOI: 10.1007/s40097-023-00525-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Food packaging is an important concept for consumer satisfaction and the increased shelf life of food products. The introduction of novel food packaging materials has become an emerging trend in recent years, which could be mainly due to environmental pollution caused by plastic packaging and to reduce food waste. Recently, numerous studies have been carried out on nanoclays or nanolayered silicate to be used in packaging material development as reinforcing filler composites. Different types of nanoclays have been used as food packaging materials, while montmorillonite (MMT), halloysite, bentonite (BT), Cloisite, and organically modified nanoclays have become of great interest. The incorporation of nanoclays into the packaging matrix improves the mechanical and barrier properties and at the same time prolongs the biodegradation of the packaging material. The purpose of this article is to examine the development of nanoclay-based food packaging materials. The review article highlights the current state of research on bio-based polymers with nanoclay for food packaging. In addition, the report analyses the mechanical, barrier, and antibacterial characteristics of nanoclay-based food packaging materials. Finally, it discusses the migration of nanoclays, toxicity levels, and the legislation associated with the application of nanoclays. Graphical abstract
Collapse
Affiliation(s)
- Kalpani Y. Perera
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin, D07 H6K8 Ireland
| | - Maille Hopkins
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin, D07 H6K8 Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7 Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin-City Campus, Grangegorman, Dublin, D07 H6K8 Ireland
| |
Collapse
|
10
|
Massaro M, Ciani R, Cinà G, Colletti CG, Leone F, Riela S. Antimicrobial Nanomaterials Based on Halloysite Clay Mineral: Research Advances and Outlook. Antibiotics (Basel) 2022; 11:antibiotics11121761. [PMID: 36551418 PMCID: PMC9774400 DOI: 10.3390/antibiotics11121761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial infections represent one of the major causes of mortality worldwide. Therefore, over the years, several nanomaterials with antibacterial properties have been developed. In this context, clay minerals, because of their intrinsic properties, have been efficiently used as antimicrobial agents since ancient times. Halloysite nanotubes are one of the emerging nanomaterials that have found application as antimicrobial agents in several fields. In this review, we summarize some examples of the use of pristine and modified halloysite nanotubes as antimicrobial agents, scaffolds for wound healing and orthopedic implants, fillers for active food packaging, and carriers for pesticides in food pest control.
Collapse
|
11
|
Duan X, Qin D, Li H, Zhang T, Han Y, Huang YQ, He D, Wu K, Chai X, Chen C. Study of antimicrobial activity and mechanism of vapor-phase cinnamaldehyde for killing Escherichia coli based on fumigation method. Front Nutr 2022; 9:1040152. [PMID: 36386918 PMCID: PMC9659922 DOI: 10.3389/fnut.2022.1040152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2023] Open
Abstract
The vapor-phase antibacterial activity of essential oils makes them suitable for applications in air disinfection and other fields. At present, vapor-phase antibacterial activity of plant-based essential oils has rarely been reported. Herein, we report a new approach to investigate the antimicrobial activity and mechanism of vapor-phase cinnamaldehyde using Escherichia coli (E. coli) and three other pathogenic bacteria (Pseudomonas aeruginosa, Salmonella, Staphylococcus aureus) as model bacteria. Plate fumigation and agar block transfer techniques were used to determine the antimicrobial activities of vapor-phase cinnamaldehyde fumigation on the four types of bacteria, and the mechanism of action was determined by electrical conductivity (EC), OD260nm measurement, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and fluorescence spectroscopy. Cinnamaldehyde had good vapor-phase antibacterial activity against the four types of bacteria. The TEM, EC, and OD260nm measurements showed that after fumigation with cinnamaldehyde, the ultrastructures of the cells were damaged, and plasmolysis, cell collapse, and leakage of intracellular substances were observed. The FTIR and fluorescence spectroscopy analyses showed that the secondary and tertiary structures of bacterial membrane proteins were altered. These findings indicate that the cell membrane is an important target for plant-based essential oils to exert their vapor-phase antimicrobial effects. The results showed that plant-based essential oils can be developed as volatile broad-spectrum disinfection products and vapor-phase antiseptics.
Collapse
Affiliation(s)
- Xuejuan Duan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Dongying Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongming Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Tong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yali Han
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu qiang Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Dong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Kegang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xianghua Chai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Chun Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Ramos J, Villacrés NA, Cavalheiro ÉTG, Alarcón HA, Valderrama AC. Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Agroindustry needs novel materials to replace synthetic plastics. This article introduces sodium alginate films with antioxidant properties. The films, which were incorporated with hydroalcoholic extract of Macrocystis pyrifera, were tested on sliced Hass avocados.
The research featured sodium alginate films incorporated with hydroalcoholic extracts of M. pyrifera. Uncoated avocado halves served as control, while the experimental samples were covered with polymer film with or without hydroalcoholic extract. A set of experiments made it possible to evaluate the effect of the extracts on polymeric matrices, release kinetics, and sensory profile of halved Hass avocados.
A greater concentration of hydroalcoholic extracts increased the content of phenolic compounds and their antioxidant activity. As a result, the bands in the carboxylate groups of sodium alginate became more intense. Crystallinity decreased, whereas opacity and mass loss percentage increased, and conglomerates appeared on the surface of the films. These processes fit the KorsmeyerPeppas kinetic model because they resulted from a combination of diffusion and swelling mechanisms in the films.
The films incorporated with hydroalcoholic extract of M. pyrifera proved to be an effective alternative to traditional fruit
wrapping materials.
Collapse
|
13
|
Sun J, Leng X, Zang J, Zhao G. Bio-based antibacterial food packaging films and coatings containing cinnamaldehyde: A review. Crit Rev Food Sci Nutr 2022; 64:140-152. [PMID: 35900224 DOI: 10.1080/10408398.2022.2105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a typical bioactive compound from the bark and leaves of the trees of the genus Cinnamomum, cinnamaldehyde (CIN) is natural and safe. Its excellent antibacterial activity against various foodborne microorganisms is growingly regarded as a promising additive for improving and enhancing the properties of bio-based packaging films/coatings. This review systematically summarized the bio-based food packaging films/coatings containing CIN developed recently. The effects of CIN incorporation on physical and chemical properties of the antibacterial food packaging films/coatings, including thickness, color index, transparency, water content, water solubility, water contact angle, mechanical performances, water barrier performances, and antibacterial performances, were discussed. Simultaneously, this work also concluded that an explanation of the antibacterial mechanism of CIN and preparation methods of bio-based packaging films/coatings containing CIN/CIN carriers. Notably, the incorporation of CIN into the films/coatings could enhance their antibacterial performance extend the shelf-life of various foods, such as fish, meats, vegetables, fruits, and other perishable food, while improving their physical and chemical properties. Although incorporating CIN into food packaging films/coatings has been extensively studied, long-term follow-up research on the human safety of active food packaging films/coatings containing CIN needs to be carried out.
Collapse
Affiliation(s)
- Jishuai Sun
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications. Int J Biol Macromol 2022; 216:927-939. [DOI: 10.1016/j.ijbiomac.2022.07.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
|
15
|
Wu H, Zhang H. Preparation of Novel Nanomaterial and Its Application in Food Industry. Foods 2022; 11:foods11101382. [PMID: 35626952 PMCID: PMC9141088 DOI: 10.3390/foods11101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510000, China
- Correspondence: (H.W.); (H.Z.)
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.W.); (H.Z.)
| |
Collapse
|
16
|
The development and application of nanocomposites with pH-sensitive “gates” to control the release of active agents: Extending the shelf-life of fresh wheat noodles. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|