1
|
Grahn P, Lassila P, Valoppi F. Micromechanical finite element modeling of crystalline lipid-based materials: monoglyceride-based oleogels and their composites. MATERIALS HORIZONS 2025. [PMID: 39957439 DOI: 10.1039/d4mh01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The mechanical properties of crystalline lipid-based materials are dependent on the microscale structure formed during the crystallization process. In this work, we show for the first time that the mechanical properties of such materials can be mathematically calculated by performing 3D mechanistic modeling on the exact microstructure obtained by non-destructive imaging. Initially, we obtained a digital twin of a monoglyceride-based oleogel from phase-contrast X-ray tomography. The microstructure was found to be composed of an interconnected network of crystalline platelets. Then, we applied micromechanical finite element modeling on the microstructure, which revealed that the effective shear modulus scales with the local solid fraction and also depends on the precise crystalline arrangement. Lastly, we designed composite materials in a digital environment by adding particle inclusions to the digital twin. The particle material, concentration and size are varied to demonstrate their effect on the composite's mechanical properties. The designed materials reveal that particle inclusions can either decrease or greatly increase the shear modulus of lipid-based materials. Our new micromechanical approach accelerates the design of lipid-based materials by leveraging virtual environments, leading the path towards materials with tailored mechanical properties.
Collapse
Affiliation(s)
- Patrick Grahn
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Perfat Technologies Oy, Helsinki, Finland
| | - Petri Lassila
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Perfat Technologies Oy, Helsinki, Finland
| | - Fabio Valoppi
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Perfat Technologies Oy, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Bharti D, Kulanthaivel S, Mishra P, Jain N, Pal K, Banerjee I. Emulsifier-modified sunflower oil-sunflower wax oleogel as growth modulator of probiotics. BBA ADVANCES 2025; 7:100147. [PMID: 40051817 PMCID: PMC11883383 DOI: 10.1016/j.bbadva.2025.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
The efficiency of oleogel as an oral delivery vehicle of probiotics depends on the chemical composition and gelator used. However, the gelators, which are surfactant in nature often interact with the probiotics and alter the therapeutic outcome. Keeping this perspective in mind, here we have developed oleogel of sunflower oil containing 5% (w/w) of sunflower wax and different emulsifiers, namely Span80 (S), Tween 80(T), stearyl alcohol (SA), and Span60 (SP), and checked their influence on probiotics in-vitro. Using confocal laser scanning microscopy, it was found that adding different emulsifiers changed the length and arrangement of the gelator network. SA and SP-modified oleogels, used at a concentration of 0.05% (w/v), demonstrated enhanced growth and metabolic activity of Lactiplantibacillus pentosus, which was employed as a model probiotic. Furthermore, the mucin adhesion test and scanning electron microscopy confirmed the negligible effect of those oleogels on the activity and morphology of the probiotic, respectively. When the secretome of such probiotics was applied to the colonic cell line, no negative effects were seen. This study implied that sunflower oil-sunflower wax oleogels modified using different emulsifiers can modulate probiotic growth.
Collapse
Affiliation(s)
- Deepti Bharti
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela 769008 Odisha, India
| | - Senthilguru Kulanthaivel
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi 110016 New Delhi, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi 110016 New Delhi, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, IIT Jodhpur 342037, Jodhpur, Rajasthan, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela 769008 Odisha, India
| | - Indranil Banerjee
- Department of Bioscience and Bioengineering, IIT Jodhpur 342037, Jodhpur, Rajasthan, India
| |
Collapse
|
3
|
Qin Z, Li Z, Huang X, Du L, Li W, Gao P, Chen Z, Zhang J, Guo Z, Li Z, Liu B, Shen T. Advances in 3D and 4D Printing of Gel-Based Foods: Mechanisms, Applications, and Future Directions. Gels 2025; 11:94. [PMID: 39996637 PMCID: PMC11854713 DOI: 10.3390/gels11020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
This review examines recent advancements in gel-based 3D and 4D food-printing technologies, with a focus on their applications in personalized nutrition and functional foods. It emphasizes the critical role of tunable rheological and mechanical properties in gels such as starch, protein, and Pickering emulsions, which are essential for successful printing. The review further explores 4D food printing, highlighting stimuli-responsive mechanisms, including color changes and deformation induced by external factors like temperature and pH. These innovations enhance both the sensory and functional properties of printed foods, advancing opportunities for personalization. Key findings from recent studies are presented, demonstrating the potential of various gels to address dietary challenges, such as dysphagia, and to enable precise nutritional customization. The review integrates cutting-edge research, identifies emerging trends and challenges, and underscores the pivotal role of gel-based materials in producing high-quality 3D-printed foods. Additionally, it highlights the potential of Pickering emulsions and lipid gels for expanding functionality and structural diversity. Overall, this work provides a comprehensive foundation for advancing future research and practical applications in gel-based 3D and 4D food printing.
Collapse
Affiliation(s)
- Zhou Qin
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Liuzi Du
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Wenlong Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Peipei Gao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Zhiyang Chen
- International Joint Research Laboratory of Intelligent Agriculture and Agro-Products Processing, Jiangsu Education Department, Zhenjiang 212013, China;
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Ziang Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Zexiang Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Baoze Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| |
Collapse
|
4
|
Barros BVD, Kraemer MVDS, Milano E, Bernardo GL, Chaddad MCC, Uggioni PL, Proença RPDC, Fernandes AC. Substitutes for Industrial Trans Fats in Packaged Foods: A Scoping Review. Nutr Rev 2025:nuae194. [PMID: 39868755 DOI: 10.1093/nutrit/nuae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The World Health Organization recommended the global elimination of industrial trans fats by 2023, leading to a decrease in their use in packaged foods. Nevertheless, a gap remains in the scientific literature regarding the ingredients adopted as substitutes by the food industry. This study aimed to map evidence on substitutes for industrial trans fats in packaged foods, discussing their possible designation in the ingredients lists. For this, a scoping review was conducted according to recommendations from the Joanna Briggs Institute. Systematic searches were performed in 6 databases using terms related to industrial trans fats, identification of possible substitutes, and trans fats exemption. The search retrieved 5072 articles. Of these, 233 (152 original articles and 81 review studies) were included in the scoping review. A total of 87 different raw materials were cited as trans fats substitutes in the selected studies, with palm stearin being the most frequent. The processing methods were categorized in 8 groups, with interesterification being the most cited (46% of studies). Food items belonging to 15 food groups were found to contain trans fats substitutes, mainly margarine, shortenings, and spreads. From the collected data, it was estimated that there are at least 690 distinct terms for referring to industrial trans fats substitutes in the ingredients list. Despite the extensive body of research on the subject, the Codex Alimentarius guidelines and some national labeling regulations do not address the reporting of such materials in the ingredients lists. Furthermore, there is limited understanding of the short- and long-term effects of novel technological ingredients on human health. The disclosure of industrial processes to modify oils and fats, as well as the raw materials used, is suggested to be made mandatory in the ingredients list, aiming to safeguard consumers' right to information and enhance monitoring efforts.
Collapse
Affiliation(s)
- Beatriz Vasconcellos de Barros
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Mariana Vieira Dos Santos Kraemer
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Elisa Milano
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Greyce Luci Bernardo
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Maria Cecília Cury Chaddad
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Movimento Põe no Rótulo, São Paulo 01310-930, Brazil
| | - Paula Lazzarin Uggioni
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Rossana Pacheco da Costa Proença
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Ana Carolina Fernandes
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
- Nutrition in Foodservice Research Center, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| |
Collapse
|
5
|
Chen Y, Xiao J, Zhu X, Fan X, Peng M, Mu Y, Wang C, Xia L, Zhou M. Exploiting conjugated linoleic acid for health: a recent update. Food Funct 2025; 16:147-167. [PMID: 39639784 DOI: 10.1039/d4fo04911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Conjugated linoleic acid (CLA) is widely used as a dietary supplement due to its reported benefits in enhancing immunity, regulating inflammation, treating obesity, and preventing cancer. However, there is a lack of comprehensive studies on its mechanisms and dose-effect relationships. Moreover, there are insufficient in-depth studies on CLA's new functions, safety, side effects, and clinical utility. This review systematically examines the structure and sources of CLA, summarizes its role in improving human health, and critically reviews the potential mechanisms behind these benefits. It also analyzes the side effects of CLA and addresses issues related to dosing and oxidative decomposition in CLA research. Additionally, the potential of using CLA-producing probiotics to manage diseases is explored. This review can guide and promote further research on CLA's functions and support the development of CLA dietary supplements. It will accelerate the development of CLA nutritional and medical foods, contribute to the improvement of human health, and have important social meaning and economic value.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Lusha Xia
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
6
|
Ijaz H, Sun S. A review on preparation and application of low-calorie structured lipids in food system. Food Sci Biotechnol 2025; 34:49-64. [PMID: 39758727 PMCID: PMC11695523 DOI: 10.1007/s10068-024-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 01/07/2025] Open
Abstract
Low-calorie structured lipids are an advanced form of functional lipids made by changing the position of fatty acids attached to the glycerol backbone. The main reason for their production is to get nutraceutical lipids. Different methods are used to synthesize low-calorie structured lipids, like chemical or enzymatic methods. Initially, these lipids are prepared by using chemical methods. Synthesis of low-calorie structured lipids using enzymes is now in demand due to several advantages like good catalytic efficiency, environmentally friendly, and moderate reaction conditions. Enzymatic interesterification is mostly used in industries to make modified lipids like low-calorie structured lipids, human milk substitutes, cocoa butter equivalents, margarine, and shortenings. This review summarizes the synthesis, uses and clinical applications of modified lipids in food systems. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01689-8.
Collapse
Affiliation(s)
- Hira Ijaz
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| | - Shangde Sun
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Lianhua Road 100, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
7
|
Wang S, Fan Z, Huang X, Gao Y, Sui H, Yang J, Li B. Preparation of Chitosan Oleogel from Capillary Suspension and Its Application in Pork Meatballs. Gels 2024; 10:826. [PMID: 39727584 DOI: 10.3390/gels10120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost. Increasing chitosan from 15% to 45% reduced oil loss from 46% to 13%, and raising the water/chitosan ratio from 0 to 0.8 lowered oil loss from 37% to 13%. After normalization, the optimal soybean oil, chitosan, and water ratio was 1:0.45:0.36, yielding a solid-like appearance, minimal oil loss of 13%, and maximum gel strength and viscosity. To assess the potential application of the optimized oleogel, it was incorporated into pork meatballs as a replacement for pork fat. Textural and cooking experiments revealed that as the oleogel content increased, the hardness of the pork meatballs increased, while the cooking loss decreased. It suggested that the chitosan oleogel could enhance the quality of pork meatballs while also contributing to a healthier product by reducing saturated fat content.
Collapse
Affiliation(s)
- Shishuai Wang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Zhongqin Fan
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Xinya Huang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Yue Gao
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Hongwei Sui
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Jun Yang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Papadaki A, Kachrimanidou V, Mandala I, Kopsahelis N. Valorization of Spent Coffee Grounds Oil for the Production of Wax Esters: Enzymatic Synthesis and Application in Olive Oil Oleogels. Gels 2024; 10:817. [PMID: 39727575 DOI: 10.3390/gels10120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Spent coffee grounds, the main by-product of the coffee-brewing process, were valorized as a renewable source of lipids for the synthesis of novel wax esters and as an alternative and sustainable oil-structuring agent for the production of oleogels. The lipase-catalyzed reactions were implemented using fatty alcohols both under solvent-free conditions and with limonene as an environmentally friendly solvent. Wax esters were evaluated for their ability to formulate olive oil oleogels through the determination of the physical properties of oleogels. Results showed that high conversion yields were achieved when cetyl and behenyl alcohols were applied under solvent-free conditions, achieving a maximum yield of 90.3% and 91.7%, respectively. In the presence of limonene, the highest conversion yields were 88.9% and 94.5% upon the use of cetyl and behenyl alcohols, respectively. The behenyl wax esters exhibited greater oil-structuring properties, regardless of whether they were derived from solvent or solvent-free conditions. Rheological curves showed that the produced oleogels exhibited a strong gel strength, which was enhanced as the wax ester concentration increased. Frequency sweep curves confirmed the formation of a stable three-dimensional oleogel network and revealed the low dependence of the storage modulus on frequency. Overall, this study demonstrated that producing wax esters from renewable lipid sources has the potential to serve as an effective circular economy paradigm for creating novel oleogels with a broad range of applications.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| |
Collapse
|
9
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Miró-Colmenárez PJ, Illán-Marcos E, Díaz-Cruces E, Rocasolano MM, Martínez-Hernandez JM, Zamora-Ledezma E, Zamora-Ledezma C. Current Insights into Industrial Trans Fatty Acids Legal Frameworks and Health Challenges in the European Union and Spain. Foods 2024; 13:3845. [PMID: 39682917 DOI: 10.3390/foods13233845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The presence of industrial trans-fatty acids (iTFAs) in processed foods poses significant public health concerns, necessitating comprehensive regulatory frameworks. In this study, the current legal landscape governing iTFA in the European Union and Spain is analyzed, with a particular focus on regulatory effectiveness and implementation challenges. The research methodology combines a systematic review of existing regulations, including EU Regulation No. 1169/2011 and Spanish Law 17/2011, with the analysis of the scientific literature on iTFA health impacts. The results reveal significant regulatory gaps, particularly in enforcement mechanisms and iTFA detection methods. Key challenges are also identified in the present study, including inconsistent compliance monitoring, varying analytical methods for iTFA detection, and contradictions between EU and Spanish regulatory frameworks. Additionally, in this work, the need for harmonized approaches to ultra-processed food regulation is emphasized. Further, the conclusion is that despite the current regulations providing a foundation for iTFA control, it is compulsory to enhance the monitoring systems, and clearer regulatory guidelines are necessary. These would contribute valuable insights for policymakers, food industry stakeholders, and public health professionals working towards effective iTFA regulation.
Collapse
Affiliation(s)
- Pablo Javier Miró-Colmenárez
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Esther Illán-Marcos
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Méndez Rocasolano
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Manuel Martínez-Hernandez
- Department of Nutrition and Food Technology, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ezequiel Zamora-Ledezma
- Ecosystem Functioning & Climate Change Team-FAGROCLIM, Faculty of Agriculture Engineering, Universidad Técnica de Manabí (UTM), Lodana 13132, Ecuador
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Cañada, 28691 Madrid, Spain
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
11
|
Gao Y, Zhao Y, Yao Y, Chen S, Xu L, Wu N, Tu Y. Recent trends in design of healthier fat replacers: Type, replacement mechanism, sensory evaluation method and consumer acceptance. Food Chem 2024; 447:138982. [PMID: 38489876 DOI: 10.1016/j.foodchem.2024.138982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
In recent years, with the increasing awareness of consumers about the relationship between excessive fat intake and chronic diseases, such as obesity, heart disease, diabetes, etc., the demand for low-fat foods has increased year by year. However, a simple reduction of fat content in food will cause changes in physical and chemical properties, physiological properties, and sensory properties of food. Therefore, developing high-quality fat replacers to replace natural fats has become an emerging trend, and it is still a technical challenge to completely simulate the special function of natural fat in low-fat foods. This review aims to provide an overview of development trends of fat replacers, and the different types of fat replacers, the potential fat replacement mechanisms, sensory evaluation methods, and their consumer acceptance are discussed and compared, which may provide a theoretical guidance to produce fat replacers and develop more healthy low-fat products favored by consumers.
Collapse
Affiliation(s)
- Yuanxue Gao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Egg Safety Production and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Zare M, Golmakani MT, Niakousari M, Eskandari MH, Ghiasi F, Hosseini SMH. Alginate/whey protein isolate-based emulgel as an alternative margarine replacer in processed cheese: Impact on rheological, mechanical, nutritional, and sensory characteristics. J Dairy Sci 2024; 107:4308-4319. [PMID: 38490543 DOI: 10.3168/jds.2024-24140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024]
Abstract
The effects of partial or full replacement of margarine by alginate/whey protein isolate-based olive oil emulgel on nutritional, physicochemical, mechanical, and rheological properties of processed cheese (PC) were investigated in this work. All formulated samples had the same amount of total fat, DM, and pH. According to the results of the fatty acids profile, the PC sample in which the margarine was fully replaced by the emulgel (EPC100) had the highest (49.84%) oleic acid content and showed a reduction of 23.7% in SFA compared with the control sample (EPC0; formulated just with margarine). In addition, EPC0 had the highest hardness among various cheese samples, which was also confirmed by its compact microstructure. Dynamic oscillatory measurements revealed that EPC100 had the highest crossover strain (or resistance to deformation). The high rigidity of this sample was related to the 3-dimensional structure of emulgel. According to the creep test results, EPC100 showed the lowest relative recovery (flowability). A high temperature dependency of viscoelastic moduli was observed in EPC0 at 42°C. No significant differences were observed between the color attributes and sensory properties of the various cheese samples. Alginate/whey protein isolate-based olive oil emulgel can be considered as a healthy margarine replacer in PC.
Collapse
Affiliation(s)
- Mahdieh Zare
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | - Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, 71441-65186, Shiraz, Iran
| | | |
Collapse
|
13
|
Szymanska I, Zbikowska A, Onacik-Gür S. New Insight into Food-Grade Emulsions: Candelilla Wax-Based Oleogels as an Internal Phase of Novel Vegan Creams. Foods 2024; 13:729. [PMID: 38472842 DOI: 10.3390/foods13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cream-type emulsions containing candelilla wax-based oleogels (EC) were analyzed for their physicochemical properties compared to palm oil-based creams (EP). The microstructure, rheological behavior, stability, and color of the creams were determined by means of non-invasive and invasive techniques. All the formulations exhibited similar color parameters in CIEL*a*b* space, unimodal-like size distribution of lipid particles, and shear-thinning properties. Oleogel-based formulations were characterized by higher viscosity (consistency index: 172-305 mPa·s, macroscopic viscosity index: 2.19-3.08 × 10-5 nm-2) and elasticity (elasticity index: 1.09-1.45 × 10-3 nm-2), as well as greater resistance to centrifugal force compared to EP. Creams with 3, 4, or 5% wax (EC3-5) showed the lowest polydispersity indexes (PDI: 0.80-0.85) 24 h after production and the lowest instability indexes after environmental temperature changes (heating at 90 °C, or freeze-thaw cycle). EC5 had particularly high microstructural stability. In turn, candelilla wax content ≥ 6% w/w accelerated the destabilization processes of the cream-type emulsions due to disintegration of the interfacial layer by larger lipid crystals. It was found that candelilla wax-based lipids had great potential for use as palm oil substitutes in the development of novel vegan cream analogues.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Anna Zbikowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Sylwia Onacik-Gür
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| |
Collapse
|
14
|
Mohammad AA, Mehaya FM, Salem SH, Amer HM. Psyllium and okra mucilage as co-carrier wall materials for fenugreek oil encapsulation and its utilization as fat replacers in pan bread and biscuit production. Heliyon 2024; 10:e25321. [PMID: 38352795 PMCID: PMC10862519 DOI: 10.1016/j.heliyon.2024.e25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to investigate the potential use of okra and psyllium mucilage as co-carrier wall materials with whey protein and gum Arabic polymers for encapsulation of fenugreek oil to mask its undesirable flavor and promote their health benefits. Particle size, zeta potential, encapsulation efficiency, morphological properties and fatty acid profiles of crude and encapsulated oils were examined using zeta-sizer, SEM and GC-MS techniques. Crude and encapsulated fenugreek oils were added as functional ingredients during production of pan bread and biscuits. The quality characteristics (baking quality, color and organoleptic properties) of bread and biscuits as well as microbiological properties of bred samples were evaluated. Results showed that the forming microcapsules had sphere particles with the size of 5.05 and 31.64 μm for okra and pysillium mucilage, respectively and had smooth continuous surfaces with no holes or fractures. Fatty acids analysis showed that fenugreek oil is superior functional edible oil, rich in unsaturated fatty acids. The organoleptic properties of products were improved when fat replaced with encapsulated fenugreek oil with okra or psyllium mucilage. Likewise, encapsulated fenugreek oil showed antimicrobial activity in bread samples during storage period. On contrary, Bread and biscuits incorporated with crude fenugreek oil gained the lowest scores for all organoleptic parameters. Regarding these results, encapsulated fenugreek oil presents good fat alternatives in dough formulations with acceptable technological, sensory and antimicrobial properties. However, further investigations still needed regarding the biological activity of encapsulated fenugreek oil and its utilization as a food supplement in other food products.
Collapse
Affiliation(s)
- Ayman A. Mohammad
- Food Technology Dept., National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Fathy M. Mehaya
- Food Technology Dept., National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Salah H. Salem
- Food Toxicology and Contaminants Dept., National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| | - Heba M. Amer
- Medicinal and Aromatic Plants Research Dept, National Research Centre, 33 El Buhouth St., 12622, Dokki, Cairo, Egypt
| |
Collapse
|
15
|
Icyer NC, Kuran N. Evaluation of edible oil types used in packaged foods in Türkiye with principal component analysis. J Food Sci 2024; 89:1035-1046. [PMID: 38193170 DOI: 10.1111/1750-3841.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
In our rapidly changing world, where consumers' expectations for healthy food are on the rise, the edible oil content in packaged foods has become a central focus. Among various types of oils, palm oil is often regarded as one of the most contentious. This research study aimed to identify the types of fats present in packaged food products in Türkiye and examined the reasons for their utilization. A total of 1380 packaged food items, classified into 11 categories, were scrutinized, and the types of oils within their ingredients were classified using principal component analysis and hierarchical cluster analysis. The study's results have determined that among packaged food products available in Türkiye, 50.1% contain palm oil, 30.4% contain sunflower oil, 16.4% contain canola oil, 14.9% contain cottonseed oil, 17.9% contain cocoa oil, and 12.6% contain coconut oil. In particular, it was determined that palm oil was used in 91% of bakery products, 81% of margarine and shortening products, and 71.3% of ice creams. Consequently, the data obtained in the context of ongoing debates regarding the fat content in packaged foods, especially concerning palm oil usage, will make a valuable contribution to the literature.
Collapse
Affiliation(s)
- Necattin Cihat Icyer
- Department of Food Engineering, Faculty of Engineering and Architecture, Mus Alparslan University, Mus, Turkey
| | - Nesrin Kuran
- Department of Food Engineering, Faculty of Engineering and Architecture, Mus Alparslan University, Mus, Turkey
| |
Collapse
|
16
|
Kowalski R, Kowalska G, Mitura P, Rowiński R, Pankiewicz U, Hawlena J. The Effect of Peppermint and Thyme Oils on Stabilizing the Fatty Acid Profile of Sunflower Oil. Molecules 2024; 29:292. [PMID: 38257205 PMCID: PMC10819199 DOI: 10.3390/molecules29020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Presently, there is an increasing shift towards the utilization of natural antioxidants and compounds with protective attributes for fatty acids in order to replace synthetic counterparts that may pose health risks. This transition aligns with the growing emphasis on promoting healthy and organic food choices. Essential oils stand out in this context due to scientific validations of their antioxidant properties. There are few published research results concerning changes in the fatty acid composition in model systems with the addition of essential oils. This study aims to investigate the impact of incorporating peppermint and thyme oils on inhibiting changes in the fatty acid profile of sunflower oil stored at both room temperature with exposure to daylight and in a thermostat set at 40 °C. The experimental procedure involved the addition of peppermint and thyme oils, along with butylated hydroxyanisole (BHA), to batches of sunflower oil. The samples were then stored for 11 months. The study observed a detrimental influence of storage conditions on the quantitative changes in the fatty acid profile of the sunflower oil. The addition of BHA stabilized the content of linoleic acid in the sunflower oil (approximately 53 g/100 g of linoleic acid compared to approximately 58 g/100 g in the control sample). Meanwhile, the model system of sunflower oil with the addition of peppermint and thyme oils (40 °C) exhibited a statistically significant decrease in the concentration of linoleic acid to approximately 8 g/100 g after eleven months of thermostating. Similar trends to those observed for linoleic acid were noted for the total fatty acid content in the sunflower oil. Notably, the efficacy of the selected substances in inhibiting adverse transformations in fats was contingent upon their concentration and the storage temperature.
Collapse
Affiliation(s)
- Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| | - Przemysław Mitura
- Department of Urology and Oncological Urology, Medical University of Lublin, 8 Jaczewskiego Str., 20-954 Lublin, Poland;
| | - Rafał Rowiński
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| | - Urszula Pankiewicz
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Joanna Hawlena
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| |
Collapse
|
17
|
Wu CC, Honda K, Kazuhito F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review. World J Microbiol Biotechnol 2023; 39:234. [PMID: 37358633 PMCID: PMC10293357 DOI: 10.1007/s11274-023-03595-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fujiyama Kazuhito
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
da Silva RC, Ferdaus MJ, Foguel A, da Silva TLT. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023; 9:gels9030180. [PMID: 36975629 PMCID: PMC10048032 DOI: 10.3390/gels9030180] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Fats and oils in food give them flavor and texture while promoting satiety. Despite the recommendation to consume predominantly unsaturated lipid sources, its liquid behavior at room temperature makes many industrial applications impossible. Oleogel is a relatively new technology applied as a total or partial replacement for conventional fats directly related to cardiovascular diseases (CVD) and inflammatory processes. Some of the complications in developing oleogels for the food industry are finding structuring agents Generally Recognized as Safe (GRAS), viable economically, and that do not compromise the oleogel palatability; thus, many studies have shown the different possibilities of applications of oleogel in food products. This review presents applied oleogels in foods and recent proposals to circumvent some disadvantages, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.
Collapse
Affiliation(s)
- Roberta Claro da Silva
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Md. Jannatul Ferdaus
- Family and Consumer Sciences Department, College of Agriculture and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aline Foguel
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | |
Collapse
|
19
|
Nourmohammadi N, Austin L, Chen D. Protein-Based Fat Replacers: A Focus on Fabrication Methods and Fat-Mimic Mechanisms. Foods 2023; 12:foods12050957. [PMID: 36900473 PMCID: PMC10000404 DOI: 10.3390/foods12050957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
The increasing occurrence of obesity and other non-communicable diseases has shifted the human diet towards reduced calorie intake. This drives the market to develop low-fat/non-fat food products with limited deterioration of textural properties. Thus, developing high-quality fat replacers which can replicate the role of fat in the food matrix is essential. Among all the established types of fat replacers, protein-based ones have shown a higher compatibility with a wide range of foods with limited contribution to the total calories, including protein isolate/concentrate, microparticles, and microgels. The approach to fabricating fat replacers varies with their types, such as thermal-mechanical treatment, anti-solvent precipitation, enzymatic hydrolysis, complexation, and emulsification. Their detailed process is summarized in the present review with a focus on the latest findings. The fat-mimic mechanisms of fat replacers have received little attention compared to the fabricating methods; attempts are also made to explain the underlying principles of fat replacers from the physicochemical prospect. Finally, a future direction on the development of desirable fat replacers in a more sustainable way was also pointed out.
Collapse
Affiliation(s)
- Niloufar Nourmohammadi
- Department of Animals, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Luke Austin
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Da Chen
- Department of Animals, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence:
| |
Collapse
|
20
|
Frolova Y, Sarkisyan V, Sobolev R, Kochetkova A. Ultrasonic Treatment of Food Colloidal Systems Containing Oleogels: A Review. Gels 2022; 8:gels8120801. [PMID: 36547325 PMCID: PMC9777715 DOI: 10.3390/gels8120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The use of oleogels as an alternative to solid fats to reduce the content of saturated and trans-isomeric fatty acids is a developing area of research. Studies devoted to the search for methods of obtaining oleogels with given properties are of current interest. Ultrasonic treatment as a method for modifying oleogel properties has been used to solve this problem. The number of publications on the study of the effect of ultrasonic treatment on oleogel properties is increasing. This review aimed to systematize and summarize existing data. It allowed us to identify the incompleteness of this data, assess the effect of ultrasonic treatment on oleogel properties, which depends on various factors, and identify the vector of this direction in the food industry. A more detailed description of the parameters of ultrasonic treatment is needed to compare the results between various publications. Ultrasonic treatment generally leads to a decrease in crystal size and an increase in oil-binding capacity, rheological properties, and hardness. The chemical composition of oleogels and the concentration of gelators, the amplitude and duration of sonication, the cooling rate, and the crystallization process stage at which the treatment occurs are shown to be the factors influencing the efficiency of the ultrasonic treatment.
Collapse
|
21
|
Wereńska M, Okruszek A. Impact of frozen storage on fatty acid profile in goose meat. Poult Sci 2022; 101:102213. [PMID: 36334426 PMCID: PMC9636476 DOI: 10.1016/j.psj.2022.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
The objective of this study was to investigate the changes of the fatty acid in breast (BM) and leg (LM) muscles from 17-wk-old female White Kołuda geese packaged in a vacuum and stored in freezing conditions at −20°C. During 17 weeks, the geese were fed ad libitum on the same complete feed. The samples (18 LM and 18 BM) from the right part of the carcasses were stored for 30, 90, 80, 270, and 365 d. The changes in the fatty acid profile were established by gas chromatography. In this work, there were also calculated lipid profile indicators such as Σ PUFA n−6/Σ PUFA n−3, Σ UFA/Σ SFA, and Σ PUFA/Σ SFA. Time of frozen storage affected the decrease in Σ SFA, Σ MUFA, and Σ PUFA of BM and LM. The statistical analysis of the obtained data shows that the type of muscle also generally affected the fatty acid profile. The BM are characterized higher proportion of Σ SFA, and the LM are defined as containing more Σ MUFA and Σ PUFA. Extending frozen storage time caused only the deterioration of Σ PUFA n−6/Σ PUFA n−3. The Σ PUFA n-6/Σ PUFA n−3 were the highest in BM and LM on the 365th day of storage. Although the Σ PUFA n−6/Σ PUFA n−3 ratio in muscles stored for 180, 270, and 365 d was higher than the recommended values. The lipid profile indicators (Σ UFA/Σ SFA, and Σ PUFA/Σ SFA) were similar in raw meat and in all frozen storage samples. It means that frozen storage didn't affect this index and the BM and LM have the same quality from the dietary point of view. Leg muscles during frozen storage are characterized by higher Σ UFA/Σ SFA and Σ PUFA/Σ SFA than the breast muscles.
Collapse
|
22
|
A functional spreadable canola and milk proteins oleogels as a healthy system for candy gummies. Sci Rep 2022; 12:12619. [PMID: 35871205 PMCID: PMC9308800 DOI: 10.1038/s41598-022-16809-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, interest and demand for healthy and useful food products have become a global requirement. Thus, the production of functional foods with high polyunsaturated fatty acids and antioxidants is very challenging. In this study, four functional spreadable oleogels based on canola oil and milk proteins were developed. These spreadable oleogels were used as an innovative model for the preparation of candy gummies. The chemical composition, oxidative stability, and effects of storage conditions were studied. The results showed that the fat content in spreadable oleogels and gummies ranged from 35 to 47 and 2.40–4.15%, respectively. The protein content in spreadable doum and carrot was 7.41%, while it was 6.15% in the spreadable plain and ranged from 10.25 to 12.78% in gummies. The hardness of spreadable oleogels and gummies ranged from 0.3 to 0.9 and 6.22–16.30 N, respectively. Spreadable carrot and spreadable doum had peroxide values greater than 8 meqO2/kg after storage, whereas spreadable plain and spreadable canola oleogel had better oxidative stability. The antioxidant activity of spreadable oleogels and gummies ranged from 66.98–46.83% to 51.44–40.37%, respectively. In addition, transmission electron microscopy and polarized light microscopy micrographs showed the presence of a coherent entangled network between oleogels and nutritional polymers. The oil binding capacity of spreadable carrot oleogel had a maximum value of 97.89%, while formed gummies were higher than 99%. This study showed a promising way to make functional spreadable oleogels as a model for food products that are good for health and nutrition.
Collapse
|
23
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
24
|
Pușcaș A, Tanislav AE, Mureșan AE, Fărcaș AC, Mureșan V. Walnut Oil Oleogels as Milk Fat Replacing System for Commercially Available Chocolate Butter. Gels 2022; 8:gels8100613. [PMID: 36286114 PMCID: PMC9601359 DOI: 10.3390/gels8100613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
A breakfast spread named chocolate butter exists on the market. For economic and technological reasons, cream in the original recipe is replaced with vegetable oils such as palm oil or by partially hydrogenated sunflower oil. The study aims to reformulate chocolate flavor butter, using cold pressed walnut oil (WO) oleogels (OGs) structured with 10% waxes and monoglyceride (MG), as a milk fat replacing system. The rheological, textural and microscopic characteristics of the oleogels and the spreads were compared. Oil binding capacity (OBC) and colorimetry were also assessed. Fourier transform infrared studies were used to monitor the composition of the samples. Oleogels and oleogel based chocolate butter behaved like strong gels (G’ > G”). The use of candelilla wax (CW) led to the formation of a much firmer spread (S-CW), with a hardness of 3521 g and G’LVR of 139,920 Pa, while the monoglyceride-based spread (S-MG) registered a hardness of 1136 g and G’LVR 89,952 Pa. In the spreadability test, S-CW registered a hardness of 3376 g and hardness work of 113 mJ, comparable to the commercially available chocolate butter. The formulated spreads exhibited shear thinning effects, and increased viscosity with decreasing temperature. A large round peak at 3340 cm−1 was present in the spectra of the candelilla wax-based oleogel (OG-CW) and the reference spreads due to hydrogen bonding, but was absent in S-CW or S-MG. The FTIR spectra of the alternative spreads exhibited the same peaks as the WO and the oleogels, but with differences in the intensities. S-CW exhibited a dense crystal network, with spherulitic crystals of 0.66−1.73 µm, which were statistically similar to those of the reference made from cream (S-cream). S-MG exhibited the lowest stability upon centrifugation, with an OBC of 99.76%. Overall, both oleogel-based chocolate spreads can mimic the properties of the commercially existing chocolate butter references.
Collapse
Affiliation(s)
- Andreea Pușcaș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Anda Elena Tanislav
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Andruţa Elena Mureșan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
25
|
Variations in Microstructural and Physicochemical Properties of Soy Wax/Soybean Oil-Derived Oleogels Using Soy Lecithin. Polymers (Basel) 2022; 14:polym14193928. [PMID: 36235877 PMCID: PMC9570507 DOI: 10.3390/polym14193928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging natural-based polymers and materials progress and new technology innovations open the way for unique food products with high nutritional value development. In this regard, oleogel may be essential in replacing fatty acids from food products. In this study, we researched the effects of varied soy lecithin (SYL) concentrations on the various physicochemical characteristics of soy wax (SW)/refined soybean oil (RSO) oleogels. These oleogels had a soft texture. The microscopic analysis of the oleogels suggested that the thickness, length, and density of the wax crystals (needle-shaped) varied as the SYL content was changed. Colorimetric analysis indicated that the oleogels were slightly yellowish. FTIR spectrometry helped analyze the functional groups of the raw materials and the oleogels. All the functional groups present in the raw materials could be accounted for within the oleogels. The only exception is the hydrogen-bonding peak in SW, which was not seen in the FTIR spectrum of the oleogels. It was found that at a critical SYL content, the oleogel showed a stable and repeatable wax network structure. This can be described by the presence of the uniformly distributed fat crystal network in the sample. The DSC analysis revealed that the oleogel samples were thermo-reversible, with their melting and crystallization temperatures ~43 °C and ~22 °C, respectively. In gist, it can be concluded that the incorporation of SYL can impact the color, wax crystal network characteristics, thermal characteristics, and mechanical characteristics of the oleogels in a composition-dependent manner.
Collapse
|
26
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
27
|
Hu X, McClements DJ. Construction of plant-based adipose tissue using high internal phase emulsions and emulsion gels. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels 2022; 8:gels8060330. [PMID: 35735674 PMCID: PMC9222693 DOI: 10.3390/gels8060330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Bigels are biphasic semisolid systems that have been explored as delivery vehicles in the food and pharmaceutical industries. These formulations are highly stable and have a longer shelf-life than emulsions. Similarly, cellulose-based hydrogels are considered to be ideal for these formulations due to their biocompatibility and flexibility to mold into various shapes. Accordingly, in the present study, the properties of an optimized guar gum hydrogel and sesame oil/candelilla wax oleogel-based bigel were tailored using date palm-derived cellulose nanocrystals (dp-CNC). These bigels were then explored as carriers for the bioactive molecule moxifloxacin hydrochloride (MH). The preparation of the bigels was achieved by mixing guar gum hydrogel and sesame oil/candelilla wax oleogel. Polarizing microscopy suggested the formation of the hydrogel-in-oleogel type of bigels. An alteration in the dp-CNC content affected the size distribution of the hydrogel phase within the oleogel phase. The colorimetry studies revealed the yellowish-white color of the samples. There were no significant changes in the FTIR functional group positions even after the addition of dp-CNC. In general, the incorporation of dp-CNC resulted in a decrease in the impedance values, except BG3 that had 15 mg dp-CNC in 20 g bigel. The BG3 formulation showed the highest firmness and fluidity. The release of MH from the bigels was quasi-Fickian diffusion mediated. BG3 showed the highest release of the drug. In summary, dp-CNC can be used as a novel reinforcing agent for bigels.
Collapse
|
29
|
|