1
|
Wang X, Luo D, Kou X, Ye S, Li J, Ba L, Cao S. Carvacrol enhances antioxidant activity and slows down cell wall metabolism by maintaining the energy level of 'Guifei' mango. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2134-2145. [PMID: 39460516 DOI: 10.1002/jsfa.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Postharvest mango fruit are highly susceptible to rapid ripening, softening and senescence, greatly limiting their distribution. In this study, we evaluated the potential effects of carvacrol (0.06 g L-1) on mango (25 ± 1 °C) and the mechanisms by which it regulates antioxidant activity, energy and cell wall metabolism. RESULTS The results showed that carvacrol treatment delayed the 'Guifei' mango color transformation (from green to yellow) and the decrease in firmness, titratable acidity, weight loss and soluble solids content, and suppressed the increase in relative conductivity, malondialdehyde content and reactive oxygen species (H2O2 and O2 ·-) as well as enhancing antioxidant activity. In addition, carvacrol treatment increased ascorbic acid and reduced glutathione levels, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase activities in mango. Meanwhile, energy level (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate and energy charge) content and energy metabolizing enzyme activities (H+-ATPase, Ca2+-ATPase, succinate dehydrogenasepears and cytochrome C oxidase) were increased on carvacrol treatment, which resulted in the maintenance of higher energy levels. Finally, the application of carvacrol was effective in maintaining firmness and cell wall components by inhibiting the activities of polygalacturonase, cellulase, pectin methyl esterase and β-galactosidase. CONCLUSION The current study demonstrates that carvacrol effectively delays the ripening and softening of mangoes by modulating energy metabolism and cell wall dynamics through the attenuation of oxidative stress. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaogang Wang
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Donglan Luo
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shenjie Ye
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Jiangkuo Li
- Institute of Agricultural Products Preservation and Processing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Liangjie Ba
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| | - Sen Cao
- School of Food Science and Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
2
|
Tópor A, Veras FF, Cacciatore FA, Hernandes KC, da Silva Malheiros P, Welke JE. Nanoencapsulation reduces the perception of carvacrol odor, enhances the control of Botrytis cinerea growth and preserves grape quality. Food Res Int 2025; 201:115589. [PMID: 39849722 DOI: 10.1016/j.foodres.2024.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Botrytis cinerea is the causal agent of gray mold, which is one of the most widespread and destructive fungal diseases that compromises the productivity and quality of grapes produced throughout the world. This work aimed to verify, for the first time, the impact of unencapsulated carvacrol and encapsulated in Eudragit® nanocapsules (Eud-Carv NCs) and chia mucilage (Chia-Carv NCs) on mycelial growth and spore germination of B. cinerea. The impact of these three forms of carvacrol on grape quality parameters, including texture, pH, color, volatile profile and odor perception were also evaluated. All three forms of carvacrol suppress spore germination and mycelial growth of B. cinerea. When used at sublethal levels, the encapsulated forms (Eud-Carv NCs and Chia-Carv NCs) were more effective by inhibiting up to 90 % of fungal growth, while unencapsulated carvacrol suppressed up to 67 %. Both nanocapsules showed no effect on the physicochemical characteristics and volatile profile of the grapes. Furthermore, the odor of carvacrol was not perceived in the grapes treated with both encapsulated forms, since the levels of this monoterpene (9.0 to 11.3 μg/L over 21 days of grape storage) were below the odor threshold (40 μg/L). Conversely, when grapes were treated with the unencapsulated form, carvacrol levels were about 10 times higher than the odor threshold, which negatively impacts the sensory perception of the grape. Therefore, the use of carvacrol encapsulated in Eudragit® and chia mucilage proved to be a promising alternative for preventing B. cinerea infections in grapes.
Collapse
Affiliation(s)
- Athos Tópor
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Karolina Cardoso Hernandes
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Rivera P, Torres A, Romero J, Rodríguez F, Arrieta MP, Olea F, Silva T, Maldonado P, Quijada-Maldonado E, Tapia A. Experimental and theoretical characterization of the release kinetic of carvacrol as inclusion complexes with β-cyclodextrin in poly(lactic acid) and Mater-Bi® processed by supercritical impregnation. Int J Biol Macromol 2024; 278:133946. [PMID: 39029825 DOI: 10.1016/j.ijbiomac.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The incorporation of active compounds into polymeric matrices using traditional methods has several drawbacks mainly due to the high volatility and thermal sensitivity of these substances. A solution to this problem could be the incorporation of bioactive compounds forming inclusion complexes as a strategy to improve the chemical stability, bioactivity and achieve controlled release. In this work, β-cyclodextrin/carvacrol inclusion complex was prepared by spray drying to be incorporated into poly(lactic acid) (PLA) and Mater-Bi® films by supercritical CO2 impregnation. The impregnation process was carried out at pressures of 10, 15 and 20 MPa and at 40 °C. Both polymers showed the highest amount of incorporated inclusion complex at 15 MPa, where the percentage of impregnation varied from 0.6 % to 7.1 % in Mater-Bi® and PLA, respectively. Release tests for PLA films impregnated with inclusion complex showed a slow release of the active compound, which did not reach equilibrium after 350 h under the experimental conditions. This prolonged release was not observed in Mater-Bi® due to the lower incorporation of the inclusion complex. The release rate was described herein by a comprehensive phenomenological model considering the decomplexation kinetics combined with the equilibrium and mass transfer expressions.
Collapse
Affiliation(s)
- Patricia Rivera
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocess, Engineering Faculty, University of Santiago de Chile, Santiago, Chile; Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocess, Engineering Faculty, University of Santiago de Chile, Santiago, Chile.
| | - Francisco Rodríguez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Marina P Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Felipe Olea
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile, Santiago, Chile
| | - Tannia Silva
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Paola Maldonado
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Esteban Quijada-Maldonado
- Laboratory of Separation Process Intensification (SPI), Department of Chemical Engineering and Bioprocess, University of Santiago de Chile, Santiago, Chile
| | - Andrea Tapia
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
4
|
Zheng H, Chen L, Liu T, Liu M, Yang Y, Liu G, Zhao H, Chen P, Fu S, Zhang Y, Shen J. Poly-(lactic acid) composite films comprising carvacrol and cellulose nanocrystal-zinc oxide with synergistic antibacterial effects. Int J Biol Macromol 2024; 266:130937. [PMID: 38521301 DOI: 10.1016/j.ijbiomac.2024.130937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Herein, carvacrol (CRV) and modified cellulose nanocrystal-zinc oxide (CNC-ZnO) were incorporated into a poly (lactic acid) (PLA) matrix to prepare a PLA-based composite film using a simple solution casting method to achieve antimicrobial effects for application in antimicrobial food packaging. Compared with films obtained from neat PLA, the PLA@CRV20%@CNC-ZnO3% composite film shows better performance in terms of mechanical properties, ultraviolet (UV) blocking, and antimicrobial effects. The PLA composites containing CRV and 3 wt% CNC-ZnO blends exhibit improved tensile strength (21.8 MPa) and elongation at break (403.1 %) as well as excellent UV resistance. In particular, CRV and the CNC-ZnO hybrid endow the obtained PLA composite films with a synergistic antibacterial effect, resulting in good antibacterial properties for microbes, such as Escherichia coli, Staphylococcus aureus and Aspergillus niger. The diameters of the inhibition zone of the PLA@CRV20%@CNC-ZnO3% composite films against E. coli, S. aureus, and A. niger were 4.9, 5.0, and 3.4 cm, respectively. Appling the PLA@CRV20%@CNC-ZnO3% composite film as an antibacterial food packaging material, the storage period for strawberries was considerably extended. This study provides a theoretical basis for developing new organic/inorganic composite antimicrobial film materials from PLA.
Collapse
Affiliation(s)
- Hao Zheng
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Lei Chen
- Hangzhou Hsinchu Culture and Creativity Co., Ltd, Hangzhou 310000, China
| | - Tianhao Liu
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Mengyao Liu
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Yueqiang Yang
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Guoying Liu
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Hangqi Zhao
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Pengrui Chen
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Shaotong Fu
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
| | - Yanhua Zhang
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China.
| | - Jun Shen
- Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
5
|
Imahori Y, Bai J. Postharvest Management of Fruits and Vegetables-Series II. Foods 2024; 13:1049. [PMID: 38611354 PMCID: PMC11011336 DOI: 10.3390/foods13071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Fruits and vegetables are crucial nutritional sources of carbohydrates, protein, minerals, vitamins, and dietary fiber, offering significant benefits to human health [...].
Collapse
Affiliation(s)
- Yoshihiro Imahori
- Graduate School of Agricultural, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Jinhe Bai
- Horticultural Research Laboratory (USDA-ARS), Fort Pierce, FL 34945, USA
| |
Collapse
|
6
|
Zeng L, Fan A, Yang G, Nong Y, Lu Y, Yang R. Nisin and ε-polylysine combined treatment enhances quality of fresh-cut jackfruit at refrigerated storage. Front Nutr 2024; 11:1299810. [PMID: 38419851 PMCID: PMC10899680 DOI: 10.3389/fnut.2024.1299810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
This study investigated the effects of nisin combined with ε-polylysine on microorganisms and the refrigerated quality of fresh-cut jackfruit. After being treated with distilled water (control), nisin (0.5 g/L), ε-polylysine (0.5 g/L), and the combination of nisin (0.1 g/L) and ε-polylysine (0.4 g/L), microporous modified atmosphere packaging (MMAP) was carried out and stored at 10 ± 1°C for 8 days. The microorganisms and physicochemical indexes were measured every 2 days during storage. The results indicated that combined treatment (0.1 g/L nisin, 0.4 g/L ε-polylysine) had the best preservation on fresh-cut jackfruit. Compared with the control, combined treatment inhibited microbial growth (total bacterial count, mold and yeast), reduced the weight loss rate, respiratory intensity, polyphenol oxidase and peroxidase activities, and maintained higher sugar acid content, firmness, and color. Furthermore, it preserved higher levels of antioxidant compounds, reduced the accumulation of malondialdehyde and hydrogen peroxide, thereby reducing oxidative damage and maintaining high nutritional and sensory qualities. As a safe application of natural preservatives, nisin combined with ε-polylysine treatment has great application potential in the fresh-cut jackfruit industry.
Collapse
Affiliation(s)
- Liping Zeng
- College of Chemistry and Resources Engineering, Honghe University, Mengzi, China
- Yunnan Province International Joint Laboratory of Green Food, College of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan, China
| | - Aiping Fan
- College of Chemistry and Resources Engineering, Honghe University, Mengzi, China
- Yunnan Province International Joint Laboratory of Green Food, College of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan, China
| | - Guangming Yang
- College of Chemistry and Resources Engineering, Honghe University, Mengzi, China
- Yunnan Province International Joint Laboratory of Green Food, College of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan, China
| | - Yuping Nong
- College of Chemistry and Resources Engineering, Honghe University, Mengzi, China
| | - Yifan Lu
- College of Chemistry and Resources Engineering, Honghe University, Mengzi, China
| | - Ruopeng Yang
- College of Chemistry and Resources Engineering, Honghe University, Mengzi, China
- Yunnan Province International Joint Laboratory of Green Food, College of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan, China
| |
Collapse
|
7
|
Zaharioudakis K, Kollia E, Leontiou A, Moschovas D, Karydis-Messinis A, Avgeropoulos A, Zafeiropoulos NE, Ragkava E, Kehayias G, Proestos C, Salmas CE, Giannakas AE. Carvacrol Microemulsion vs. Nanoemulsion as Novel Pork Minced Meat Active Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3161. [PMID: 38133058 PMCID: PMC10745327 DOI: 10.3390/nano13243161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Carvacrol is well documented for its antibacterial and antioxidant effects. However, its high volatility has directed researchers toward nanoencapsulation technology according to bioeconomy and sustainability trends. This study examined and compared free carvacrol (FC), carvacrol microemulsion (MC), carvacrol microemulsion busted with chitosan (MMC), and carvacrol nanoemulsions (NC) as active coatings on extending minced pork meat shelf life at 4 ± 1 °C for 9 days, focusing on microbiological, physiochemical, and sensory characteristics. The research involved pre-characterizing droplet sizes, evaluating antioxidants, and determining antibacterial efficacy. The results demonstrated that NC with a 21 nm droplet size exhibited the highest antioxidant and antibacterial activity. All coatings succeeded in extending the preservation of fresh minced pork meat in comparison to the free carvacrol sample (FC). The NC coating showed the highest extension of minced pork meat preservation and maintained meat freshness for 9 days, with a lower TBARs of 0.736 mg MDA/Kg, and effectively reduced mesophilic, lactic acid, and psychotrophic bacterial counts more significantly by 1.2, 2, and 1.3 log, respectively, as compared to FC. Sensory assessments confirmed the acceptability of NC and MCC coatings. Overall, the carvacrol-based nanoemulsion can be considered a novel antioxidant and antimicrobial active coating due to its demonstrated higher efficacy in all the examined tests performed.
Collapse
Affiliation(s)
- Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (C.P.)
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - Dimitrios Moschovas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Andreas Karydis-Messinis
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Apostolos Avgeropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Nikolaos E. Zafeiropoulos
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Efthymia Ragkava
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (C.P.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (A.K.-M.); (A.A.); (N.E.Z.)
| | - Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (A.L.); (E.R.); (G.K.)
| |
Collapse
|
8
|
Olmedo GM, Zhang J, Zhao W, Mattia M, Rosskopf EN, Ritenour M, Plotto A, Bai J. Application of Thymol Vapors to Control Postharvest Decay Caused by Penicillium digitatum and Lasiodiplodia theobromae in Grapefruit. Foods 2023; 12:3637. [PMID: 37835290 PMCID: PMC10572620 DOI: 10.3390/foods12193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Two of the major postharvest diseases impacting grapefruit shelf life and marketability in the state of Florida (USA) are stem-end rot (SER) caused by Lasiodiplodia theobromae and green mold (GM) caused by Penicillium digitatum. Here, we investigated the in vitro and in vivo efficacy of vapors of thymol, a natural compound found in the essential oil of various plants and the primary constituent of thyme (Thymus vulgaris) oil, as a potential solution for the management of GM and SER. Thymol vapors at concentrations lower than 10 mg L-1 significantly inhibited the mycelial growth of both pathogens, causing severe ultrastructural damage to P. digitatum conidia. In in vivo trials, the incidence and lesion area of GM and SER on inoculated grapefruit were significantly reduced after a 5 d exposure to 50 mg L-1 thymol vapors. In addition, the in vitro and in vivo sporulation of P. digitatum was suppressed by thymol. When applied in its vapor phase, thymol had no negative effect on the fruit, neither introducing perceivable off-flavor nor causing additional weight loss. Our findings support the pursuit of further studies on the use of thymol, recognized as safe for human health and the environment, as a promising strategy for grapefruit postharvest disease management.
Collapse
Affiliation(s)
- Gabriela M. Olmedo
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Jiuxu Zhang
- Indian River Research and Education Center, University of Florida, 2199 S. Rock Rd, Ft. Pierce, FL 34945, USA; (J.Z.); (M.R.)
| | - Wei Zhao
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Matthew Mattia
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Erin N. Rosskopf
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Mark Ritenour
- Indian River Research and Education Center, University of Florida, 2199 S. Rock Rd, Ft. Pierce, FL 34945, USA; (J.Z.); (M.R.)
| | - Anne Plotto
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Jinhe Bai
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| |
Collapse
|
9
|
Maleš I, Dobrinčić A, Zorić Z, Vladimir-Knežević S, Elez Garofulić I, Repajić M, Skroza D, Jerković I, Dragović-Uzelac V. Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages. Molecules 2023; 28:molecules28093656. [PMID: 37175066 PMCID: PMC10180401 DOI: 10.3390/molecules28093656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Since certain constituents are not naturally present in pure fruit juices, incorporating herbal extracts can provide specific sensory properties to the beverages and improve their biopotential. In our previous research, it was found that sage (Salvia officinalis L.), wild thyme (Thymus serpyllum L.), and combinations of their extracts had the highest total phenolic content and a unique composition of volatile compounds, which can contribute to the aromatic and antioxidant qualities of functional products. Therefore, this research aimed to investigate the potential of sage and wild thyme extracts, as well as their mixture (wild thyme:sage at 3:1, v/v), to enrich fruit juices (apple, pineapple, and orange). Obtained beverages were evaluated for sensory properties as well as phenolic and headspace composition (UPLC-MS/MS and HS-SPME/GC-MS analysis) and antioxidant capacity (ORAC assay). The incorporation of wild thyme extract in pineapple juice provided the most harmonious flavor and the highest content of volatile compounds (on PDMS/DVB fiber). The orange juice formulations were the most enriched with phenolic and volatile compounds (on DVB/CAR/PDMS fibers). The highest antioxidant capacity was observed in the formulation with orange juice and sage extract (22,925.39 ± 358.43 µM TE). This study demonstrated that enriching fruit juices with sage and wild thyme extracts could create functional beverages with improved sensory and health-promoting properties, providing valuable insights for the food and beverage industry to meet the growing demand of health-conscious consumers for natural and functional products.
Collapse
Affiliation(s)
- Ivanka Maleš
- Department of Pharmacy, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
11
|
Antimicrobial and physiochemical properties of films and coatings prepared from bio-fiber gum and whey protein isolate conjugates. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Li X, Li G, Shan Y, Zhu X. Preparation, characterization, and antifungal property of the inclusion complex of Litsea cubeba essential oil/hydroxypropyl-β-cyclodextrin and its application in preservation of Shatang mandarin. J Food Sci 2022; 87:4714-4724. [PMID: 36121061 DOI: 10.1111/1750-3841.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
To explore the potential application of plant essential oil in the postharvest preservation of fruits, the inclusion complex (IC) of Litsea cubeba essential oil (LCEO) with hydroxypropyl-β-cyclodextrin (HPβCD), prepared by the saturated aqueous solution method, was studied. LCEO/HPβCD-IC was characterized by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), particle size distribution, and thermogravimetric-differential scanning calorimetry (TG-DSC) analysis. The formation of LCEO/HPβCD-IC was confirmed, and the volume average particle diameter was 24.376 µm. Due to the inclusion of HPβCD, the volatility of LCEO was significantly reduced and the thermal stability was significantly improved. In addition, the antifungal activities of the LCEO ICs were compared, and LCEO/HPβCD-IC was more effective against the citrus postharvest pathogens (P. italicum and G. citri-aurantii). The effects of the LCEO ICs on the postharvest quality of Shatang mandarin were studied. Compared with the control group (CK) and LCEO/βCD-IC group, the LCEO/HPβCD-IC group showed a significant delay in the decrease of good fruit rate, hardness, total soluble solids (TSSs), and Vitamin C (Vc) content, with a lower weight loss rate of Shatang mandarin. Therefore, LCEO/HPβCD-IC is expected to be used as a green preservative for the storage and preservation of citrus fruits. PRACTICAL APPLICATION: In this study, LCEO was encapsulated in HPβCD by the saturated aqueous solution method and the prepared inclusion complex was characterized. The effects of LCEO/HPβCD-IC and LCEO/βCD-IC on postharvest preservation of Shatang mandarin were compared. This work offers valuable insights into the postharvest preservation of citrus fruit by essential oil inclusion complexes.
Collapse
Affiliation(s)
- Xiang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| | - Gaoyang Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| | - Yang Shan
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| | - Xiangrong Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China.,Longping Branch Graduate School, Hunan University, Changsha, China
| |
Collapse
|
13
|
Pacheappan GD, Samsudin NIP, Hasan H. The effects of different disinfectants and application conditions on microbial contaminants at dairy processing line. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganga Dewi Pacheappan
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
- Laboratory of Food Safety and Food Integrity Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia Serdang Malaysia
| | - Hanan Hasan
- Department of Food Science Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Malaysia
- Laboratory of Halal Science Research Halal Products Research Institute Universiti Putra Malaysia Serdang Malaysia
| |
Collapse
|
14
|
Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112356] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Yan J, Wu H, Chen K, Feng J, Zhang Y. Antifungal Activities and Mode of Action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum Essential Oil Vapors against Botrytis cinerea and Their Potential Application to Control Postharvest Strawberry Gray Mold. Foods 2021; 10:foods10102451. [PMID: 34681505 PMCID: PMC8536117 DOI: 10.3390/foods10102451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/06/2023] Open
Abstract
Gray mold caused by Botrytis cinerea is one of the most destructive postharvest decay of strawberry fruit. The present study aims to identify essential oils with antifungal activity against B. cinerea and the underlying mechanisms and their potential application in controlling postharvest decay. In the screening test, essential oils from Cymbopogon citratus (Cc), Thymus vulgraris (Tv), and Origanum heracleoticum (Oh) exhibited maximum inhibition of B. cinerea mycelial growth. The three essential oils altered the hyphal morphology and ultrastructure and resulted in many blebs around the hyphae. The essential oils damaged the plasma membrane of B. cinerea cells and resulted in the leakage of intercellular nucleic acids, proteins and soluble sugars. The exposure of strawberries to the vapors of these three essential oils in commercial package reduced gray mold, with Tv and Oh exhibiting strong efficiency and disease index reduction by 53.85% and 57.69%, respectively. Oh also inhibited postharvest decay and maintained fruit quality, preventing weight loss and soluble solid degradation. The study proposes using plant essential oils as an alternative to chemical fungicides in controlling the gray mold of strawberries.
Collapse
Affiliation(s)
- Jiaqi Yan
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.C.); (J.F.); (Y.Z.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China;
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
- Correspondence:
| | - Hua Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China;
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, China
| | - Keying Chen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.C.); (J.F.); (Y.Z.)
| | - Jiajun Feng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.C.); (J.F.); (Y.Z.)
| | - Yansong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.C.); (J.F.); (Y.Z.)
| |
Collapse
|