1
|
Ibrahim M, Bednarczyk M, Stadnicka K, Grochowska E. Inter- and Transgenerational Effects of In Ovo Stimulation with Bioactive Compounds on Cecal Tonsils and Cecal Mucosa Transcriptomes in a Chicken Model. Int J Mol Sci 2025; 26:1174. [PMID: 39940944 PMCID: PMC11817890 DOI: 10.3390/ijms26031174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Exploring how early-life nutritional interventions may impact future generations, this study examines the inter- and transgenerational effects of in ovo injection of bioactive compounds on gene expression in the cecal tonsils and cecal mucosa using a chicken model. Synbiotic PoultryStar® (Biomin) and choline were injected in ovo on the 12th day of egg incubation. Three experimental groups were established in the generation F1: (1) a control group (C) receiving 0.9% physiological saline (NaCl), (2) a synbiotic group (SYN) receiving 2 mg/embryo, and (3) a combined synbiotic and choline group (SYNCH) receiving 2 mg synbiotic and 0.25 mg choline per embryo. For the generations F2 and F3, the SYN and SYNCH groups were each divided into two subgroups: (A) those injected solely in F1 (SYNs and SYNCHs) and (B) those injected in each generation (SYNr and SYNCHr). At 21 weeks posthatching, cecal tonsil and cecal mucosa samples were collected from F1, F2, and F3 birds for transcriptomic analysis. Gene expression profiling revealed distinct intergenerational and transgenerational patterns in both tissues. In cecal tonsils, a significant transgenerational impact on gene expression was noted in the generation F3, following a drop in F2. In contrast, cecal mucosa showed more gene expression changes in F2, indicating intergenerational effects. While some effects carried into F3, they were less pronounced, except in the SYNs group, which experienced an increase compared to F2. The study highlights that transgenerational effects of epigenetic modifications are dynamic and unpredictable, with effects potentially re-emerging in later generations under certain conditions or fading or intensifying over time. This study provides valuable insights into how epigenetic nutritional stimulation during embryonic development may regulate processes in the cecal tonsils and cecal mucosa across multiple generations. Our findings provide evidence supporting the phenomenon of epigenetic dynamics in a chicken model.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.I.); (K.S.)
- PBS Doctoral School, Bydgoszcz University of Science and Technology, Aleje prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.I.); (K.S.)
| | - Ewa Grochowska
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland; (M.I.); (K.S.)
| |
Collapse
|
2
|
Mabrok HB, Ramadan AA, Hamed IM, Mohamed DA. Obesity as Inducer of Cognitive Function Decline via Dysbiosis of Gut Microbiota in Rats. Brain Sci 2024; 14:807. [PMID: 39199499 PMCID: PMC11353248 DOI: 10.3390/brainsci14080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Diet-induced obesity is a global phenomenon that affects the population worldwide with manifestations at both the phenotypic and genotypic levels. Cognitive function decline is a major global health challenge. The relation between obesity and cognitive function is a debatable issue. The main goal of the current research was to study the implications of obesity on cognitive function and gut microbiota diversity and its impact on plasma and brain metabolic parameters in rats. Obesity was induced in rats by feeding on a high-fat (HF) or a high-fat/high-sucrose (HFHS) diet. The results reveal that both the HF (0.683) and HFHS (0.688) diets were effective as obesity inducers, which was confirmed by a significant increase in the body mass index (BMI). Both diet groups showed dyslipidemia and elevation of oxidative stress, insulin resistance (IR), and inflammatory markers with alterations in liver and kidney functions. Obesity led to a reduction in cognitive function through a reduction in short-term memory by 23.8% and 30.7% in the rats fed HF and HFHS diets, respectively, and learning capacity and visuo-spatial memory reduced by 8.9 and 9.7 s in the rats fed an HF or HFHS diet, respectively. Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Spirochaetes phyla were detected. The Firmicutes/Bacteroidetes ratio (F/B) significantly decreased in the HF group, while it increased in the HFHS group compared to the normal control. The two species, Bacteroides acidifaciens and Bacteroides ovatus, which are associated with IR, were drastically compromised by the high-fat/high-sucrose diet. Some species that have been linked to reduced inflammation showed a sharp decrease in the HFHS group, while Prevotella copri, which is linked to carbohydrate metabolism, was highly enriched. In conclusion: Obesity led to cognitive impairment through changes in short-term and visuo-spatial memory. A metagenomic analysis revealed alterations in the abundance of some microbial taxa associated with obesity, inflammation, and insulin resistance in the HF and HFHS groups.
Collapse
Grants
- a626035bfd925943, 4c6c6a0dc9645904, 175e6bf937114ef5, 18dca4e8f29e587c, aaf09103eb8bd6ee, 3740a1d4a23d772f, 1b07773fd3c8c954, 4f8fa1a570a3a4b7, 490e7e4e51713e71, 1e87a07edec11a96, 7642f29d62c1068b, c06bc3bf279a8491, c78b30a55528e880, e160d996ffb69ed4, 133 Discount Vouchers
Collapse
Affiliation(s)
| | | | | | - Doha A. Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo 12622, Egypt; (H.B.M.); (A.A.R.); (I.M.H.)
| |
Collapse
|
3
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
5
|
DiMattia Z, Damani JJ, Van Syoc E, Rogers CJ. Effect of Probiotic Supplementation on Intestinal Permeability in Overweight and Obesity: A Systematic Review of Randomized Controlled Trials and Animal Studies. Adv Nutr 2024; 15:100162. [PMID: 38072119 PMCID: PMC10771892 DOI: 10.1016/j.advnut.2023.100162] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Overweight and obesity are associated with increased intestinal permeability, characterized by loss of gut epithelial integrity, resulting in unregulated passage of lipopolysaccharide (LPS) and other inflammatory triggers into circulation, i.e., metabolic endotoxemia. In obesity, shifts in the gut microbiome negatively impact intestinal permeability. Probiotics are an intervention that can target the gut microbiome by introducing beneficial microbial species, potentially restoring gut barrier integrity. Currently, the role of probiotic supplementation in ameliorating obesity- and overweight-associated increases in gut permeability has not been reviewed. This systematic review aimed to summarize findings from both animal and clinical studies that evaluated the effect of probiotic supplementation on obesity-induced impairment in intestinal permeability (International Prospective Register of Systematic Reviews, CRD42022363538). A literature search was conducted using PubMed (Medline), Web of Science, and CAB Direct from origin until August 2023 using keywords of intestinal permeability, overweight or obesity, and probiotic supplementation. Of 920 records, 26 eligible records were included, comprising 12 animal and 14 clinical studies. Clinical trials ranged from 3 to 26 wk and were mostly parallel-arm (n = 13) or crossover (n = 1) design. In both animal and clinical studies, plasma/serum LPS was the most common measure of intestinal permeability. Eleven of 12 animal studies reported a positive effect of probiotic supplementation in reducing intestinal permeability. However, results from clinical trials were inconsistent, with half reporting reductions in serum LPS and half reporting no differences after probiotic supplementation. Bifidobacterium, Lactobacillus, and Akkermansia emerged as the most common genera in probiotic formulations among the animal and clinical studies that yielded positive results, suggesting that specific bacteria may be more effective at reducing intestinal permeability and improving gut barrier function. However, better standardization of strain use, dosage, duration, and the delivery matrix is needed to fully understand the probiotic impact on intestinal permeability in individuals with overweight and obesity.
Collapse
Affiliation(s)
- Zachary DiMattia
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Janhavi J Damani
- The Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Emily Van Syoc
- Integrative and Biomedical Physiology and Clinical and Translational Science, The Pennsylvania State University, University Park, PA, United States; Department of Animal Science, The Pennsylvania State University, University Park, PA, United States; The Microbiome Center, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
6
|
Divyashri G, Karthik P, Murthy TPK, Priyadarshini D, Reddy KR, Raghu AV, Vaidyanathan VK. Non-digestible oligosaccharides-based prebiotics to ameliorate obesity: Overview of experimental evidence and future perspectives. Food Sci Biotechnol 2023; 32:1993-2011. [PMID: 37860742 PMCID: PMC10581984 DOI: 10.1007/s10068-023-01381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 10/21/2023] Open
Abstract
The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity. A limited number of prebiotic NDOs have demonstrated their ability as a convincing therapeutic solution to encounter obesity through various mechanisms, viz., stimulating beneficial microorganisms, reducing the population of pathogenic microorganisms, and also improving lipid metabolism and glucose homeostasis. NDOs include pectic-oligosaccharides, fructo-oligosaccharides, xylo-oligosaccharides, isomalto-oligosaccharides, manno-oligosaccharides and other oligosaccharides which significantly influence the overall human health by different mechanisms. This review provides the treatment of obesity benefits by incorporating these prebiotic NDOs, according to established scientific research, which shows their good effects extend beyond the colon.
Collapse
Affiliation(s)
- G. Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641 021 India
| | - T. P. Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Dey Priyadarshini
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006 Australia
| | - Anjanapura V. Raghu
- Faculty of Allied Health Sciences, BLDE (Deemed-to-Be University), Vijayapura, 586103 Karnataka India
| | - Vinoth Kumar Vaidyanathan
- Department of Biotechnology, School of Bioengineering, Integrated Bioprocessing Laboratory, SRM Institute of Science and Technology (SRM IST), 603 203 Kattankulathur, India
| |
Collapse
|
7
|
Saravanan D, Khatoon B S, Winner G J. Unraveling the Interplay: Exploring the Links Between Gut Microbiota, Obesity, and Psychological Outcomes. Cureus 2023; 15:e49271. [PMID: 38143611 PMCID: PMC10746887 DOI: 10.7759/cureus.49271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This narrative review delves into the complex and intricate mechanisms of the gut-brain axis. Gut microbiota has gained immense importance in the treatment of various diseases. The therapeutic potential of gut-microbial modulation is slowly coming to light. With good preclinical evidence, some human studies shed light on the translation potential of gut-microbial modulation. The concept of gut-microbial modulation has been studied for over a few decades. The relationship between gut microbiota and various homeostatic mechanisms is fascinating. Over the years, we have started understanding the immense role of gut microbiota in various homeostatic mechanisms. There are a good number of clinical studies that have shown the therapeutic potential of gut-microbial modulation in obesity and psychological diseases, especially depression and anxiety. The gut-microbial modulation can be achieved by dietary factors or supplementation. In this review, we explore the mechanisms by which prebiotics, probiotics, and synbiotics alter the gut-brain axis. The review limits its discussion to the most recent clinical studies that have shown promise as therapeutic strategies.
Collapse
Affiliation(s)
- Divya Saravanan
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Suhana Khatoon B
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Jefry Winner G
- Pharmacology and Therapeutics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| |
Collapse
|
8
|
Khongtan S, Sivamaruthi BS, Thangaleela S, Kesika P, Bharathi M, Sirilun S, Choeisoongnern T, Peerajan S, Sittiprapaporn P, Chaiyasut C. The Influence of Probiotic Supplementation on the Obesity Indexes, Neuroinflammatory and Oxidative Stress Markers, Gut Microbial Diversity, and Working Memory in Obese Thai Children. Foods 2023; 12:3890. [PMID: 37959009 PMCID: PMC10648263 DOI: 10.3390/foods12213890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is a worldwide health problem with a complex interaction between gut microbiota and cognition. Several studies have demonstrated that probiotic treatments improve characteristics linked to obesity. The present study aimed to evaluate the effects of probiotic supplementation on the obesity indexes, inflammatory and oxidative stress markers, gut microbiota, and working memory in obese children. Ten obese children were assigned to receive the probiotics (8 × 109 CFU of Lactobacillus paracasei HII01 and Bifidobacterium animalis subsp. lactis) for 12 weeks. Demographic data were recorded. Urine and fecal samples were collected to evaluate biomarkers related to obesity and cognition. Behavioral working memory was assessed using the visual n-back test. Electroencephalography was employed to measure electrical activity during the visual n-back test. All parameters were evaluated at the baseline and after 12 weeks. The results revealed that probiotic supplementation significantly altered some gut microbial metabolites, gut microbiota, total antioxidant capacity, and neuroinflammatory markers. However, no significant changes were observed in the visual n-back test or electroencephalographic recordings after 12 weeks. In conclusion, the use of probiotics might be an alternative treatment that could improve the gut microbial ecosystem and microbial metabolites, as well as host antioxidant and neuroinflammation levels. The preliminary results indicated that further detailed prolonged studies are needed in order to determine the beneficial effects of the studied probiotics.
Collapse
Affiliation(s)
- Suchanat Khongtan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thiwanya Choeisoongnern
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | | | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Neuroscience Research Center, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 10110, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand (B.S.S.); (P.K.)
| |
Collapse
|
9
|
Lauw S, Kei N, Chan PL, Yau TK, Ma KL, Szeto CYY, Lin JSC, Wong SH, Cheung PCK, Kwan HS. Effects of Synbiotic Supplementation on Metabolic Syndrome Traits and Gut Microbial Profile among Overweight and Obese Hong Kong Chinese Individuals: A Randomized Trial. Nutrients 2023; 15:4248. [PMID: 37836532 PMCID: PMC10574554 DOI: 10.3390/nu15194248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
In view of the limited evidence showing anti-obesity effects of synbiotics via modulation of the gut microbiota in humans, a randomized clinical trial was performed. Assessment of the metabolic syndrome traits and profiling of the fecal gut microbiota using 16S rRNA gene sequencing in overweight and obese Hong Kong Chinese individuals before and after dietary intervention with an 8-week increased consumption of fruits and vegetables and/or synbiotic supplementation was conducted. The selected synbiotic contained two probiotics (Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019) and a prebiotic (polydextrose). Fifty-five overweight or obese individuals were randomized and divided into a synbiotic group (SG; n = 19), a dietary intervention group (DG; n = 18), and a group receiving combined interventions (DSG; n = 18). DSG showed the greatest weight loss effects and number of significant differences in clinical parameters compared to its baseline values-notably, decreases in fasting glucose, insulin, HOMA-IR, and triglycerides and an increase in HDL-cholesterol. DSG lowered Megamonas abundance, which was positively associated with BMI, body fat mass, and trunk fat mass. The results suggested that increasing dietary fiber consumption from fruits and vegetables combined with synbiotic supplementation is more effective than either approach alone in tackling obesity.
Collapse
Affiliation(s)
- Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
| | - Po Lam Chan
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
- HSK GeneTech Limited, Hong Kong SAR, China;
| | - Tsz Kwan Yau
- Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Ka Lee Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
| | | | - Janice Su-Chuen Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Hoi Shan Kwan
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
- HSK GeneTech Limited, Hong Kong SAR, China;
- ProBioLife Limited, Hong Kong SAR, China
| |
Collapse
|
10
|
Xiao R, Wang L, Tian P, Jin X, Zhao J, Zhang H, Wang G, Zhu M. The Effect of Probiotic Supplementation on Glucolipid Metabolism in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3240. [PMID: 37513657 PMCID: PMC10383415 DOI: 10.3390/nu15143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition with an unknown pathophysiology. Moreover, T2DM remains a serious health risk despite advances in medication and preventive care. Randomised controlled trials (RCTs) have provided evidence that probiotics may have positive effects on glucolipid metabolism. Therefore, we performed a meta-analysis of RCTs to measure the effect of probiotic therapy on glucolipid metabolism in patients with T2DM. METHODS With no constraints on the language used in the literature, Excerpta Medica Database, PubMed, the Cochrane Library, and the Web of Science were searched for pertinent RCTs published between the date of creation and 18 August 2022. Stringent inclusion and exclusion criteria were applied by two reviewers to independently examine the literature. The risk of bias associated with the inclusion of the original studies was assessed using the Cochrane risk-of-bias tool, and Stata 15.0 was used to perform the meta-analysis. RESULTS Thirty-seven publications containing a total of 2502 research participants were included in the meta-analysis. The results showed that after a probiotic intervention, the experimental group showed a significant decrease in body mass index (standardised mean difference (SMD) = -0.42, 95% confidence interval (CI) [-0.76, -0.08]), fasting glucose concentration (SMD = -0.73, 95% CI [-0.97, -0.48]), fasting insulin concentration (SMD = -0.67, 95% CI [-0.99, -0.36]), glycated haemoglobin concentration (SMD = -0.55, 95% CI [-0.75, -0.35]), Homeostatic Model Assessment for Insulin Resistance score (SMD = -0.88, 95% CI [-1.17, -0.59]), triglyceride concentration (SMD = -0.30, 95% CI [-0.43, -0.17]), total cholesterol concentration (SMD = -0.27, 95% CI [-0.43, -0.11]), and low-density lipoprotein concentration (SMD = -0.20, 95% CI [-0.37, -0.04]), and an increase in high-density lipoprotein concentration (SMD = 0.31, 95% CI [0.08, 0.54]). Moreover, subgroup analyses showed that patients with a longer intervention time, or those who were treated with multiple strains of probiotics, may benefit more than those with a shorter intervention time or those who were treated with a single probiotic strain, respectively. CONCLUSION Probiotic supplementation improves glucolipid metabolism in patients with T2DM, offering an alternative approach for the treatment of these patients.
Collapse
Affiliation(s)
- Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
11
|
Mohamed EL Kafoury B, Ebrahim AT, Abd-El Hamid Ali MS, Shaker Mehanna N, Ibrahim Ramadan GES, Ezzat Morsy W. Short chain fatty acids and GIT hormones mitigate gut barrier disruption in high fat diet fed rats supplemented by synbiotics. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2023; 16:139-163. [DOI: 10.3233/mnm-230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
High fat diet (HFD) predisposes to many metabolic changes; it may disrupt gut barrier integrity and gut microbiota composition. Synbiotic supplementation may promote host’s metabolic health by selective activation of the healthy microorganisms. This study aimed to probe the interaction between synbiotic supplementation, gut microbiota and gut hormones in HFD states. Twenty-seven adult male albino rats, 3 groups, group I: control, group II: HFD received HFD for 12 weeks and group III: synbiotic-supplemented HFD received synbiotic in the last 6 weeks. The anthropometric measurments were measured. Liver transaminases, lipid profile, parameters of insulin resistance, serum serotonin, glucagon like polypeptide-1 (GLP-1), oxidant/antioxidant markers (MDA/GPx), zonulin levels and quantitative cecal short chain fatty acids (SCFA) were assessed. Samples of liver and colon were employed for histopathological studies. Compared to HFD group, synbiotic led to a significant reduction in anthropometric measurements, liver enzymes, atherogenic index, HOMA-IR and MDA denoting improved dyslipidemia, insulin resistance and oxidative state. Moreover, synbiotic supplementation decreased serum zonulin and increased both serum serotonin, GLP-1 and cecal SCFAs. Synbiotic supplementation ameliorated the metabolic derangements and the disturbed integrity of the intestinal barrier induced by HFD. As synbiotics can increase gut hormones (serum GLP-1&serotonin) and SCFAs.
Collapse
Affiliation(s)
| | - Asmaa Tarek Ebrahim
- Assistant Lecturer of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal Said Abd-El Hamid Ali
- Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Assistant Professor of Physiology, Armed Forces College of Medicine, Cairo, Egypt
| | - Nayra Shaker Mehanna
- Professor of Dairy and Food Microbiology, National Research Center, Cairo, Egypt
| | | | - Wessam Ezzat Morsy
- Assistant Professor of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Assistant Professor of Physiology, Armed Forces College of Medicine, Cairo, Egypt
| |
Collapse
|
12
|
Zhao Y, Xue L, Li S, Wu T, Liu R, Sui W, Zhang M. The Effects of Synbiotics on Dextran-Sodium-Sulfate-Induced Acute Colitis: The Impact of Chitosan Oligosaccharides on Endogenous/Exogenous Lactiplantibacillus plantarum. Foods 2023; 12:foods12112251. [PMID: 37297494 DOI: 10.3390/foods12112251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, Lactiplantibacillus plantarum (L. plantarum) isolated from mice feces (LP-M) and pickles (LP-P) were chosen as the endogenous and exogenous L. plantarum, respectively, which were separately combined with chitosan oligosaccharides (COS) to be synbiotics. The anti-inflammatory activity of LP-M, LP-P, COS, and the synbiotics was explored using dextran-sodium-sulfate (DSS)-induced acute colitis mice, as well as by comparing the synergistic effects of COS with LP-M or LP-P. The results revealed that L. plantarum, COS, and the synbiotics alleviated the symptoms of mice colitis and inhibited the changes in short-chain fatty acids (SCFAs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and myeloperoxidase (MPO) caused by DSS. In addition, the intervention of L. plantarum, COS, and the synbiotics increased the relative abundance of beneficial bacteria Muribaculaceae and Lactobacillus and suppressed the pathogenic bacteria Turicibacter and Escherichia-Shigella. There was no statistically difference between LP-M and the endogenous synbiotics on intestinal immunity and metabolism. However, the exogenous synbiotics improved SCFAs, inhibited the changes in cytokines and MPO activity, and restored the gut microbiota more effectively than exogenous L. plantarum LP-P. This indicated that the anti-inflammatory activity of exogenous LP-P can be increased by combining it with COS as a synbiotic.
Collapse
Affiliation(s)
- Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liangyu Xue
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
13
|
Oraphruek P, Chusak C, Ngamukote S, Sawaswong V, Chanchaem P, Payungporn S, Suantawee T, Adisakwattana S. Effect of a Multispecies Synbiotic Supplementation on Body Composition, Antioxidant Status, and Gut Microbiomes in Overweight and Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 15:nu15081863. [PMID: 37111082 PMCID: PMC10141052 DOI: 10.3390/nu15081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Studies investigating the effect of multispecies synbiotic supplementation in obesity management are limited. The current study was performed to evaluate the effects of multispecies probiotics mixed with fructooligosaccharides on body composition, antioxidant status, and gut microbiome composition in overweight and obese individuals. We employed a randomized, double-blind, placebo-controlled trial design, in which 63 individuals aged 18-45 years were assigned to receive either a synbiotic supplement or placebo for 12 weeks. The synbiotic group consumed a daily dose of 37 × 109 colony-forming units (CFU) of a unique blend of seven different probiotics, along with 2 g of fructooligosaccharides, while the placebo group consumed 2 g of maltodextrin daily. Assessments were performed at baseline, week 6, and the end of the study. The results of the study indicated that synbiotic supplementation resulted in a significant reduction in waist circumference and body fat percentage compared to the baseline measurements, as observed at 12 weeks. At the end of the study, there were no significant differences observed in body weight, BMI, waist circumference, or percentage of body fat between the synbiotic group and the placebo group. An analysis of plasma antioxidant capacity revealed that synbiotic supplementation caused a significant increase in Trolox equivalent antioxidant capacity (TEAC) and a concomitant decrease in malondialdehyde (MDA) in the test group when compared to the placebo. For the gut microbiota analysis, synbiotic supplementation significantly decreased Firmicutes abundance and the Firmicutes/Bacteroidetes (F/B) ratio at week 12 as compared to the placebo group. Nevertheless, the synbiotic group did not exhibit any substantial alterations in other biochemical blood parameters compared to the placebo group. These findings suggest that multispecies synbiotic supplementation could be a beneficial strategy to improve body composition, antioxidant status, and gut microbiome composition in overweight and obese subjects.
Collapse
Affiliation(s)
- Piyarat Oraphruek
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charoonsri Chusak
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sathaporn Ngamukote
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanyawan Suantawee
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Štšepetova J, Rätsep M, Gerulis O, Jõesaar A, Mikelsaar M, Songisepp E. Impact of Lactiplantibacillus plantarum Inducia on metabolic and antioxidative response in cholesterol and BMI variable indices: randomised, double-blind, placebo-controlled trials. Benef Microbes 2023; 14:1-16. [PMID: 36437811 DOI: 10.3920/bm2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Probiotics may have potential in reducing cardiovascular disease (CVD) risk in middle-aged persons with borderline metabolic indices. The ability of potential probiotic Lactiplantibacillus plantarum Inducia to reduce CVD risk factors in persons with variable cholesterol and body mass indices (BMI) was assessed. In two parallel-armed double-blind placebo-controlled interventions (n=136) and (n=104), participants daily received either test yoghurt (Inducia) or placebo yoghurt. BMI, blood pressure, plasma glucose, cholesterol, high-sensitivity C-reactive protein (hs-CRP), oxidative stress and immunological markers were measured. Total counts of lactobacilli and L. plantarum Inducia were evaluated using real-time PCR. Significant reduction of total cholesterol, low density lipoprotein cholesterol (LDL-c) and non-high-density cholesterol occurred in both trials. The change in cholesterol (P=0.023) in persons with normal BMI and borderline cholesterol levels after four weeks of yoghurt consumption was detected. A difference was also found between placebo and test yoghurt groups (P=0.042) in LDL-c with normal BMI. Blood glucose reduction (P=0.01) and antioxidative effect was detected in overweight volunteers of the test yoghurt group. The suppression of oxidised LDL was associated with lowered oxidative stress index and total peroxide concentration values and faecal recovery of Inducia. The Inducia strain expresses antioxidative effect on blood lipids and has anti-glycaemic impact that allow to apply it as dietary probiotic supplement for the management of CVD risks in humans.
Collapse
Affiliation(s)
- J Štšepetova
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Microbiology, University of Tartu, 19 Ravila, 50411 Tartu, Estonia
| | - M Rätsep
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| | - O Gerulis
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| | - A Jõesaar
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| | - M Mikelsaar
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
- Institute of Biomedicine and Translational Medicine, Department of Microbiology, University of Tartu, 19 Ravila, 50411 Tartu, Estonia
| | - E Songisepp
- BioCC OÜ, 1 Kreutzwaldi, 51006 Tartu, Estonia
| |
Collapse
|
15
|
Qin YQ, Wang LY, Yang XY, Xu YJ, Fan G, Fan YG, Ren JN, An Q, Li X. Inulin: properties and health benefits. Food Funct 2023; 14:2948-2968. [PMID: 36876591 DOI: 10.1039/d2fo01096h] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inulin, a soluble dietary fiber, is widely found in more than 36 000 plant species as a reserve polysaccharide. The primary sources of inulin, include Jerusalem artichoke, chicory, onion, garlic, barley, and dahlia, among which Jerusalem artichoke tubers and chicory roots are often used as raw materials for inulin production in the food industry. It is universally acknowledged that inulin as a prebiotic has an outstanding effect on the regulation of intestinal microbiota via stimulating the growth of beneficial bacteria. In addition, inulin also exhibits excellent health benefits in regulating lipid metabolism, weight loss, lowering blood sugar, inhibiting the expression of inflammatory factors, reducing the risk of colon cancer, enhancing mineral absorption, improving constipation, and relieving depression. In this review paper, we attempt to present an exhaustive overview of the function and health benefits of inulin.
Collapse
Affiliation(s)
- Yu-Qing Qin
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Liu-Yan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xin-Yu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yi-Jie Xu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yan-Ge Fan
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
16
|
Jamshidi S, Masoumi SJ, Abiri B, Sarbakhsh P, Sarrafzadeh J, Nasimi N, Vafa M. The effect of synbiotic and vitamin D co-supplementation on body composition and quality of life in middle-aged overweight and obese women: A randomized controlled trial. Clin Nutr ESPEN 2022; 52:270-276. [PMID: 36513465 DOI: 10.1016/j.clnesp.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Obesity is a worldwide problem which has involved large populations. Since some dietary factors might modify obesity through various signaling pathways, the aim of this study was to investigate the effect of synbiotic plus vitamin D co-supplementation on body composition parameters and quality of life, in middle-aged overweight and obese women. METHODS A randomized, controlled, double-blinded trial was performed and 88 overweight and obese women were assigned to 4 groups (22 per group), receiving synbiotic plus vitamin D, synbiotic, vitamin D and placebo for 8 weeks. At the beginning and at the end of the trial, anthropometric indices, body composition indicators, physical activity level, dietary intake, and quality of life score were measured by trained nutritionists. Statistical analysis was performed with SPSS version 22. RESULTS The results showed significant difference between 4 groups in waist circumference (WC), fat mass (FM), body fat percentage (BFP) and visceral fat area (VFA) values after 8 weeks of treatment (P = 0.005, P = 0.007, P = 0.003, and P = 0.009, respectively), with the greatest reduction in synbiotic plus vitamin D group compare to placebo. No significant results were demonstrated between groups in relation to other body composition variables. In addition, there were no significant differences between the 4 groups regarding physical, mental and total aspects of life quality over time. CONCLUSIONS Our study demonstrated that synbiotic and vitamin D co-supplementation for 8 weeks, had favorable effect on various anthropometric indices and body composition indicators, but no desirable change in life quality score. CLINICAL TRIAL REGISTRY IRCT (registration no. IRCT20090822002365N25).
Collapse
Affiliation(s)
- Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Sarrafzadeh
- Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Nasimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Sarmiento-Andrade Y, Suárez R, Quintero B, Garrochamba K, Chapela SP. Gut microbiota and obesity: New insights. Front Nutr 2022; 9:1018212. [PMID: 36313072 PMCID: PMC9614660 DOI: 10.3389/fnut.2022.1018212] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a pathology whose incidence is increasing throughout the world. There are many pathologies associated with obesity. In recent years, the influence of the microbiota on both health and pathological states has been known. There is growing information related to changes in the microbiome and obesity, as well as its associated pathologies. Changes associated with age, exercise, and weight changes have been described. In addition, metabolic changes associated with the microbiota, bariatric surgery, and fecal matter transplantation are described. In this review, we summarize the biology and physiology of microbiota in obese patients, its role in the pathophysiology of several disorders associated, and the emerging therapeutic applications of prebiotics, probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
| | - Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Beatriz Quintero
- School of Medicine, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Kleber Garrochamba
- Department of Health Sciences, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Sebastián Pablo Chapela
- Departamento de Bioquímica Humana, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Nutritional Support Team, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Wang C, Li S, Sun E, Xiao R, Wang R, Ren Y, He J, Zhang Q, Zhan J. Effects of Fermented Milk Containing Bifidobacterium animalis Subsp. lactis MN-Gup (MN-Gup) and MN-Gup-Based Synbiotics on Obesity Induced by High Fat Diet in Rats. Nutrients 2022; 14:2631. [PMID: 35807812 PMCID: PMC9268376 DOI: 10.3390/nu14132631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Given the probiotic effects previously found in Bifidobacterium animalis subsp. lactis MN-Gup (MN-Gup) and its great application potential in dairy products, this study aimed to investigate the effects of fermented milk containing MN-Gup or MN-Gup-based synbiotics on high fat diet (HFD)-induced obesity in rats. Galacto-oligosaccharides (GOS) and xylo-oligosaccharides (XOS) were selected as the tested prebiotics in MN-Gup-based synbiotics due to their promotion of MN-Gup growth in vitro. After nine weeks of HFD feeding, the obese rats were intervened with fermented milk containing MN-Gup (MN-Gup FM) or its synbiotics (MN-Gup + GOS FM, MN-Gup + XOS FM) for eight weeks. The results showed that the interventions could alleviate HFD-induced body weight gain, epididymal fat deposition, adipocyte hypertrophy, dyslipidemia and inflammation, but GOS and XOS did not exhibit significant synergies with MN-Gup on those alleviations. Furthermore, the interventions could regulate the HFD-affected gut microbiota and microbial metabolites, as shown by the increases in short chain fatty acids (SCFAs) and alterations in obesity-related bile acids (BAs), which may play important roles in the mechanism underlying the alleviation of obesity. This study revealed the probiotic effects of MN-Gup on alleviating obesity and provided the basis for MN-Gup applications in the future.
Collapse
Affiliation(s)
- Chenyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Shusen Li
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Erna Sun
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Ran Xiao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China; (S.L.); (E.S.)
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (C.W.); (R.X.); (Y.R.); (J.H.); (Q.Z.)
| |
Collapse
|
19
|
The Effects of Synbiotics Administration on Stress-Related Parameters in Thai Subjects-A Preliminary Study. Foods 2022; 11:foods11050759. [PMID: 35267392 PMCID: PMC8909555 DOI: 10.3390/foods11050759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Urbanization influences our lifestyle, especially in fast-paced environments where we are more prone to stress. Stress management is considered advantageous in terms of longevity. The use of probiotics for psychological treatment has a small amount of diverse proven evidence to support this. However, studies on stress management in stressed subjects using synbiotics are still limited. The present study aimed to investigate the effects of synbiotics on stress in the Thai population. A total of 32 volunteers were enrolled and screened using a Thai Stress Test (TST) to determine their stress status. Participants were divided into the stressed and the non-stressed groups. Synbiotics preparation comprised a mixture of probiotics strains in a total concentration of 1 × 1010 CFU/day (5.0 × 109 CFU of Lactobacillus paracasei HII01 and 5.0 × 109 CFU of Bifidobacterium animalis subsp. lactis) and 10 g prebiotics (5 g galacto-oligosaccharides (GOS), and 5 g oligofructose (FOS)). All parameters were measured at baseline and after the 12th week of the study. In the stressed group, the administration of synbiotics significantly (p < 0.05) reduced the negative scale scores of TST, and tryptophan. In the non-stressed group, the synbiotics administration decreased tryptophan significantly (p < 0.05), whereas dehydroepiandrosterone sulfate (DHEA-S), tumor necrosis factor-α (TNF-α), 5-hydroxyindoleacetic acid (5-HIAA), and short-chain fatty acids (SCFAs), acetate and propionate were increased significantly (p < 0.05). In both groups, cortisol, and lipopolysaccharide (LPS) were reduced, whereas anti-inflammatory mediator interleukin-10 (IL-10) and immunoglobulin A (IgA) levels were increased. In conclusion, synbiotics administration attenuated the negative feelings via the negative scale scores of TST in stressed participants by modulating the HPA-axis, IL-10, IgA, and LPS. In comparison, synbiotics administration for participants without stress did not benefit stress status but showed remodeling SCFAs components, HPA-axis, and tryptophan catabolism.
Collapse
|
20
|
Using Microbiome-Based Approaches to Deprogram Chronic Disorders and Extend the Healthspan following Adverse Childhood Experiences. Microorganisms 2022; 10:microorganisms10020229. [PMID: 35208684 PMCID: PMC8879770 DOI: 10.3390/microorganisms10020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse childhood experiences (ACEs), which can include child trafficking, are known to program children for disrupted biological cycles, premature aging, microbiome dysbiosis, immune-inflammatory misregulation, and chronic disease multimorbidity. To date, the microbiome has not been a major focus of deprogramming efforts despite its emerging role in every aspect of ACE-related dysbiosis and dysfunction. This article examines: (1) the utility of incorporating microorganism-based, anti-aging approaches to combat ACE-programmed chronic diseases (also known as noncommunicable diseases and conditions, NCDs) and (2) microbiome regulation of core systems biology cycles that affect NCD comorbid risk. In this review, microbiota influence over three key cyclic rhythms (circadian cycles, the sleep cycle, and the lifespan/longevity cycle) as well as tissue inflammation and oxidative stress are discussed as an opportunity to deprogram ACE-driven chronic disorders. Microbiota, particularly those in the gut, have been shown to affect host–microbe interactions regulating the circadian clock, sleep quality, as well as immune function/senescence, and regulation of tissue inflammation. The microimmunosome is one of several systems biology targets of gut microbiota regulation. Furthermore, correcting misregulated inflammation and increased oxidative stress is key to protecting telomere length and lifespan/longevity and extending what has become known as the healthspan. This review article concludes that to reverse the tragedy of ACE-programmed NCDs and premature aging, managing the human holobiont microbiome should become a routine part of healthcare and preventative medicine across the life course.
Collapse
|
21
|
Probiotics Supplementation Improves Intestinal Permeability, Obesity Index and Metabolic Biomarkers in Elderly Thai Subjects: A Randomized Controlled Trial. Foods 2022; 11:foods11030268. [PMID: 35159419 PMCID: PMC8834517 DOI: 10.3390/foods11030268] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Intestinal integrity prevents the diffusion of allergens, toxins, and pathogens from the gastrointestinal lumen into the tissue and the circulatory system. Damage in intestinal integrity may cause mild to serious health issues, such as inflammation, gastrointestinal disorders, neurological diseases, and neurodegenerative disorders. Thus, maintaining a healthy intestinal barrier function is essential to sustain health. Probiotics are known for their ability to protect and restore intestinal permeability in vitro and in vivo. The multi-strain probiotics are more efficient than that of a single strain in terms of their protective efficacy. Therefore, the present study was planned and implemented to study the supplementation of probiotic mix (Lactobacillus paracasei HII01, Bifidobacteriumbreve, and Bifidobacterium longum) on intestinal permeability, lipid profile, obesity index and metabolic biomarkers in elderly Thai subjects. The results revealed that the supplementation of studied probiotics improved the intestinal barrier function (up to 48%), significantly increasing the high-density lipoprotein (HDL)-cholesterol. Moreover, the intervention improved obesity-related anthropometric biomarkers and short-chain fatty acid levels in human subjects. The current study strongly recommends further extended research to confirm the beneficial effect of probiotics, which may pave the way to formulate probiotic-based health supplements to adjuvant the treatment of several metabolic diseases.
Collapse
|
22
|
Zhang C, Jiang J, Wang C, Li S, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Meta-analysis of randomized controlled trials of the effects of probiotics on type 2 diabetes in adults. Clin Nutr 2021; 41:365-373. [PMID: 34999331 DOI: 10.1016/j.clnu.2021.11.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Despite advancements in preventive medicine and pharmacotherapy, diabetes remains an overwhelming health problem. Evidence from randomized controlled trials (RCTs) suggests that probiotics may offer beneficial effects on glycemic control. Our objective was to perform a systematic review and meta-analysis of RCTs to quantify the effect of probiotic administration on glycemic homeostasis in type 2 diabetes. METHODS Medline, Web of Science, Google Scholar, and Cochrane Central Register of Controlled Trials were searched for relevant trials published until October 12, 2021. RCTs that lasted ≥3 weeks and assessed the effects of probiotics on the markers of glycemic homeostasis in type 2 diabetes were included. Data were pooled using the generic inverse variance method and expressed as mean differences (MDs) with 95% confidence intervals (CIs). Heterogeneity was assessed using Cochran's Q statistic and quantified using the I2 statistic. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the certainty of evidence. RESULTS A total of 33 eligible trial comparisons (n = 1927) were included in this meta-analysis. Our results revealed that compared with placebo, a median probiotic dose of ∼109 cfu/day significantly reduced the glycated hemoglobin (HbA1c) levels (MD: -0.19% [95% CI: -0.32, -0.07]; P = 0.003), fasting blood glucose levels (MD: -1.00 mmol/L [95% CI: -1.45, -0.56]; P < 0.0001), fasting insulin levels (MD: -5.73 pmol/L [95% CI: -12.17, 0.72]; P = 0.08), and HOMA-insulin resistance (IR) (MD: -1.00 [95% CI: -1.32, -0.68]; P < 0.00001). The certainty of evidence was graded low for HbA1c and fasting glucose, moderate for fasting insulin, and high for HOMA-IR. Probiotic supplements do not induce clinically significant reductions in HbA1c levels, but lead to marginally clinically significant reductions in fasting glucose and fasting insulin levels in patients with type 2 diabetes. Compared with single-strain and low-dose probiotics, multi-strain and high-dose probiotics have a greater beneficial effect on glycemic homeostasis. In addition, probiotic treatment may be more effective in patients with a high baseline body mass index and age.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jinchi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sijia Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|