1
|
Li Y, Li S, Lin L, Li D, Zhao J, Liu S, Ma Y, Ren D, Zhou H, Wang Q, He Y. In vitro simulated digestion and fermentation characteristics of polyphenol-polysaccharide complex from Hizikia fusiforme and its effects on the human gut microbiota. Int J Biol Macromol 2025; 302:140619. [PMID: 39904444 DOI: 10.1016/j.ijbiomac.2025.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
This study investigated the effects of the polyphenol-polysaccharide complex (HPC) and its purified components (PC1 and PC4), obtained from Hizikia fusiforme, on the human gut microbiota during in vitro simulated digestion and fecal fermentation. Results showed a gradual increase in reducing sugar content for HPC, PC1, and PC4 during simulated digestion, accompanied by a slight decrease in molecular weight, indicating that these complexes were not completely digested during oral-gastrointestinal digestion. However, following fermentation, the molecular weights of HPC, PC1, and PC4 decreased significantly, and the molar ratios of monosaccharide compositions changed considerably compared with prefermentation values. Thus, these complexes were degraded and used by the intestinal microbiota to produce short-chain fatty acids, which decreased the pH. In addition, after fecal fermentation, beneficial bacteria such as Bacteroides, Parabacteroides, and Bifidobacterium became more abundant, whereas the amount of harmful bacteria such as Fusobacterium and Escherichia/Shigella decreased, revealing the regulation by the complex on the intestinal microbiota. In conclusion, the polyphenol-polysaccharide complex improves the composition and abundance of the human gastrointestinal microbiota, thereby supporting gut health.
Collapse
Affiliation(s)
- Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Lidong Lin
- Dongtou District Marine Economic Science and Technology Innovation Center, Wenzhou 325700, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Jin Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
Ahn JW, Kim HS, Kim SH, Yang HS, Damodar K, Yoo YM, Hong JT, Joo SS. Amelioration of Particulate Matter-Induced Oxidative Stress by a Bioactive Hizikia fusiformis Extract: A Functional Biomaterial for Cosmeceutical Applications. Mar Drugs 2025; 23:135. [PMID: 40137321 PMCID: PMC11943920 DOI: 10.3390/md23030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
Air pollution-related skin damage has heightened the demand for natural protective agents. Hizikia fusiformis, a brown seaweed rich in fucoidan and bioactive fatty acids (α-linolenic acid, eicosatetraenoic acid, and palmitic acid), possesses antioxidant and anti-inflammatory properties. This study investigated the protective effects of H. fusiformis ethanol extract (HFE) against particulate matter (PM)-induced oxidative stress, inflammation, and apoptosis in human keratinocytes. Antioxidant activity was assessed using DPPH and hydroxyl radical scavenging assays, while PM-induced cytotoxicity, ROS generation, inflammatory markers, and apoptotic pathways were evaluated using the WST-8 assay, DCFH2-DA, qPCR, western blotting, and Hoechst staining. HFE significantly reduced ROS levels, enhanced antioxidant enzyme activity, and mitigated PM-induced cytotoxicity. These effects were mediated by fucoidan and fatty acids, which modulated inflammatory pathways (NF-κB and MAPK), stabilized membranes, and inhibited apoptosis (Bcl-2, Bax, and caspase-3). Collectively, these findings highlight HFE's potential as a natural anti-pollution skincare ingredient, supporting further in vivo studies and formulation development.
Collapse
Affiliation(s)
- Jeong Won Ahn
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea; (J.W.A.); (H.S.K.); (K.D.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea;
| | - Hyun Soo Kim
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea; (J.W.A.); (H.S.K.); (K.D.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea;
| | - So Hui Kim
- R&D Center, Happy L&B Co., Ltd., Icheon 17405, Gyeonggi-do, Republic of Korea; (S.H.K.); (H.S.Y.)
- College of Pharmacy, Chungbuk National University, Chungju 28644, Chungbuk-do, Republic of Korea;
| | - Hye Soo Yang
- R&D Center, Happy L&B Co., Ltd., Icheon 17405, Gyeonggi-do, Republic of Korea; (S.H.K.); (H.S.Y.)
| | - Kongara Damodar
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea; (J.W.A.); (H.S.K.); (K.D.)
- Huscion MAJIC R&D Center, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Yeong-Min Yoo
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea;
- Environmental Research Institute, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Chungbuk-do, Republic of Korea;
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon-do, Republic of Korea; (J.W.A.); (H.S.K.); (K.D.)
- Huscion MAJIC R&D Center, Seongnam 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Javed A, Alam MB, Naznin M, Shafique I, Kim S, Lee SH. Tyrosinase inhibitory activity of Sargassum fusiforme and characterisation of bioactive compounds. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:343-357. [PMID: 37183174 DOI: 10.1002/pca.3233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Sargassum fusiforme (Harvey) Setchell, also known as Tot (in Korean) and Hijiki (in Japanese), is widely consumed in Korea, Japan, and China due to its health promoting properties. However, the bioactive component behind the biological activity is still unknown. OBJECTIVES We aimed to optimise the extraction conditions for achieving maximum tyrosinase inhibition activity by using two sophisticated statistical tools, that is, response surface methodology (RSM) and artificial neural network (ANN). Moreover, high-resolution mass spectrometry (HRMS) was used to tentatively identify the components, which are then further studied for molecular docking study using 2Y9X protein. METHODOLOGY RSM central composite design was used to conduct extraction using microwave equipment, which was then compared to ANN. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was used to tentatively identify bioactive components, which were then docked to the 2Y9X protein using AutoDock Vina and MolDock software. RESULTS Maximum tyrosinase inhibition activity of 79.530% was achieved under optimised conditions of time: 3.27 min, temperature: 128.885°C, ethanol concentration: 42.13%, and microwave intensity: 577.84 W. Furthermore, 48 bioactive compounds were tentatively identified in optimised Sargassum fusiforme (OSF) extract, and among them, seven phenolics, five flavonoids, five lignans, six terpenes, and five sulfolipids and phospholipids were putatively reported for the first time in Sargassum fusiforme. Among 48 bioactive components, trifuhalol-A, diphlorethohydroxycarmalol, glycyrrhizin, and arctigenin exhibited higher binding energies for 2Y9X. CONCLUSION Taken together, these findings suggest that OSF extract can be used as an effective skin-whitening source on a commercial level and could be used in topical formulations by replacing conventional drugs.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Centre, Kyungpook National University, Daegu, Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Imran Shafique
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
- Mass Spectroscopy Converging Research Centre, Green Nano Materials Research Centre, Kyungpook National University, Daegu, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Centre, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Lv S, Hu B, Ran SZ, Zhang M, Chi CF, Wang B. Antioxidant Peptides from Hizikia fusiformis: A Study of the Preparation, Identification, Molecular Docking, and Cytoprotective Function of H 2O 2-Damaged A549 Cells by Regulating the Keap1/Nrf2 Pathway. Foods 2025; 14:400. [PMID: 39941997 PMCID: PMC11818036 DOI: 10.3390/foods14030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Hijiki (Hizikia fusiformis) is a seaweed native to warm-temperate and subtropical regions that has a high edible value and economic value, with a production of about 2 × 105 tons/year. Current research has clearly shown that the pharmacological activities of active ingredients from hijiki have covered a broad spectrum of areas, including antioxidant, hypoglycemic, antiviral, anticoagulant, anti-inflammatory, intestinal flora modulation, anti-aging, antineoplastic and antibacterial, and anti-Alzheimer's disease areas. However, no studies have reported on the production of antioxidant peptides from hijiki proteins. The objectives of this study were to optimize the preparation process and explore the cytoprotective function and mechanisms of antioxidant peptides from hijiki protein. The results indicated that papain is more suitable for hydrolyzing hijiki protein than pepsin, trypsin, alkaline protease, and neutral protease. Under the optimized parameters of an enzyme dosage of 3%, a material-liquid ratio of 1:30, and an enzyme digestion time of 5 h, hijiki hydrolysate with a high radical scavenging activity was generated. Using ultrafiltration and serial chromatographic methods, ten antioxidant oligopeptides were purified from the papain-prepared hydrolysate and identified as DGPD, TIPEE, TYRPG, YTPAP, MPW, YPSKPT, YGALT, YTLLQ, FGYGP, and FGYPA with molecular weights of 402.35, 587.61, 592.64, 547.60, 532.53, 691.77, 523.57, 636.73, 539.58, and 553.60 Da, respectively. Among them, tripeptide MPW could regulate the Keap1/Nrf2 pathway to significantly ameliorate H2O2-induced oxidative damage of A549 cells by increasing cell viability and antioxidant enzyme (SOD, CAT, and GSH-Px) activity, decreasing ROS and MDA levels, and reducing the apoptosis rate. Molecular docking experiments show that HFP5 (MPW) exerts its inhibitory effect mainly through hydrogen bonds and hydrophobic interactions with the Kelch domain of the Keap1 protein, eventually facilitating the translocation of Nrf2 to the nucleus. Therefore, antioxidant peptides from hijiki can be applied to develop algae-derived health foods for treating diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Shang Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Su-Zhen Ran
- School of Foundation Studies, Zhejiang Pharmaceutical University, Ningbo 316022, China
| | - Min Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
5
|
Zhang J, Wang S, Yang M, Ding J, Huang Y, Zhu Y, Zhou M, Yan B. Antiviral activity of a polysaccharide from Sargassum fusiforme against respiratory syncytial virus. Int J Biol Macromol 2024; 279:135267. [PMID: 39233150 DOI: 10.1016/j.ijbiomac.2024.135267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
This experiment examined the antiviral activity of polysaccharides from Sargassum fusiforme against respiratory syncytial virus (RSV) in vitro, including their mechanism of action and preliminary structural analysis. Four polysaccharides (SFP1, SFP2, SFP3, and SFP4) were purified from Sargassum fusiforme using a DEAE-52 cellulose column and an NW Super 150 gel column. CCK-8 and western blot were utilized to study the antiviral activities and mechanisms of the polysaccharides. Preliminary structural analysis was conducted using HPLC and NMR techniques. The findings suggest that SFP4 (120 kD) is an acidic chemical compound composed of 88.8 % total sugars, 0.13 % proteins, 10.8 % glucuronidic acids, and 21.1 % sulfates. It contains at least ten monosaccharides, primarily mannuronic acid and fucose. Among the four polysaccharides, SFP4 had the highest anti-RSV activity, with a therapeutic index (TI) exceeding 139. SFP4 exhibited noteworthy antiviral efficacy in both upper and lower respiratory cells that were infected, especially when administered as a prophylactic treatment 2 h in advance. Furthermore, SFP4 showed a dose-dependent antiviral effect, with the highest therapeutic index (TI > 320) observed at a concentration of 7.81 μg·mL-1 during the prophylactic phase. It was speculated that SFP4's antiviral effect is due to its ability to inhibit the attachment of G-proteins to cells.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangzhi Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mingrui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinming Ding
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yizhen Huang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yangdong Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ming Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bin Yan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
6
|
Li Y, Zhou L, Xia Q, Nie Y, Ma Z, Liu Y, Yang Z, Hong P, Zhang Y. The memory-improving effect of Hizikia forsiforme functional oil microcapsule (HFFOM) prepared by subcritical extraction and complex coacervational embedding. J Funct Foods 2024; 122:106532. [DOI: 10.1016/j.jff.2024.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
7
|
Li Y, Li S, Li D, Gao Y, Kong S, Liu J, Liu S, Ma Y, Zhou H, Ren D, Wang Q, He Y. In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol-Polysaccharide Complex in Mice. Foods 2024; 13:3019. [PMID: 39335947 PMCID: PMC11431462 DOI: 10.3390/foods13183019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled Hizikia fusiforme polyphenol-polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed that the FITC-labelled method had good linearity (R2 > 0.99), intra-day and inter-day precision (RSD, %) consistently lower than 15%, recovery (93.19-106.54%), and stability (RSD < 15%), which met the basic criteria for pharmacokinetic studies. The pharmacokinetic and tissue distribution results in mice after administration showed that all three sample groups could enter the blood circulation. and HPC-FITC had a longer half-life (T1/2: 26.92 ± 0.76 h) and mean retention time (MRT0-∞: 36.48 h) due to its larger molecular weight. The three groups of samples could be absorbed by the organism in a short time (0.5 h) mainly in the stomach and intestine; the samples could be detected in the urine after 2 h of administration indicating strong renal uptake, and faecal excretion reached its maximum at 12 h. The samples were also detected in the urine after 2 h of administration. This study provides some theoretical basis for the tissue distribution pattern of polyphenol-polysaccharide complex.
Collapse
Affiliation(s)
- Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Gao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shuhua Kong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Jingyi Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
8
|
Pereira L, Cotas J, Gonçalves AM. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024; 16:1123. [PMID: 38674814 PMCID: PMC11054349 DOI: 10.3390/nu16081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This review delves into the burgeoning field of seaweed proteins as promising alternative sources of protein. With global demand escalating and concerns over traditional protein sources' sustainability and ethics, seaweed emerges as a viable solution, offering a high protein content and minimal environmental impacts. Exploring the nutritional composition, extraction methods, functional properties, and potential health benefits of seaweed proteins, this review provides a comprehensive understanding. Seaweed contains essential amino acids, vitamins, minerals, and antioxidants. Its protein content ranges from 11% to 32% of dry weight, making it valuable for diverse dietary preferences, including vegetarian and vegan diets. Furthermore, this review underscores the sustainability and environmental advantages of seaweed protein production compared to traditional sources. Seaweed cultivation requires minimal resources, mitigating environmental issues like ocean acidification. As the review delves into specific seaweed types, extraction methodologies, and functional properties, it highlights the versatility of seaweed proteins in various food products, including plant-based meats, dairy alternatives, and nutritional supplements. Additionally, it discusses the potential health benefits associated with seaweed proteins, such as their unique amino acid profile and bioactive compounds. Overall, this review aims to provide insights into seaweed proteins' potential applications and their role in addressing global protein needs sustainably.
Collapse
Affiliation(s)
- Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
| | - Ana Marta Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Laboratory, Centre for Functional Ecology—Science for People & the Planet (CFE), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (A.M.G.)
- Department of Biology and CESAM—Centro de Estudos do Ambiente e do Mar, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Fu Y, Du H, Wang P, Yin N, Cai X, Geng Z, Li Y, Cui Y. Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165775. [PMID: 37499825 DOI: 10.1016/j.scitotenv.2023.165775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.
Collapse
Affiliation(s)
- Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China.
| |
Collapse
|
10
|
Jannat K, Balakrishnan R, Han JH, Yu YJ, Kim GW, Choi DK. The Neuropharmacological Evaluation of Seaweed: A Potential Therapeutic Source. Cells 2023; 12:2652. [PMID: 37998387 PMCID: PMC10670678 DOI: 10.3390/cells12222652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.
Collapse
Affiliation(s)
- Khoshnur Jannat
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Rengasamy Balakrishnan
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| | - Jun-Hyuk Han
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ye-Ji Yu
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Ga-Won Kim
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Republic of Korea; (K.J.); (J.-H.H.); (Y.-J.Y.); (G.-W.K.)
- Department of Biotechnology, Research Institute of Inflammatory Disease (RID), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
| |
Collapse
|
11
|
Li S, He Y, Zhong S, Li Y, Di Y, Wang Q, Ren D, Liu S, Li D, Cao F. Antioxidant and Anti-Aging Properties of Polyphenol-Polysaccharide Complex Extract from Hizikia fusiforme. Foods 2023; 12:3725. [PMID: 37893618 PMCID: PMC10606324 DOI: 10.3390/foods12203725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol-polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two kinds of polyphenol-polysaccharide complexes (PPC), PPC1 and PPC2, were initially obtained from Hizikia fusiforme, while the dephenolization of PPC1 and PPC2 produced PPC3 and PPC4. Through in vitro assays, PPC2 and PPC4 were found to have higher antioxidant activity, and thus were selected for testing the PPCs' anti-aging activity in a subsequent in vivo experiment with D-gal-induced aging in mice. The results indicated that PPCs could regulate the expressions of antioxidant enzymes and products of oxidation, elevate the expressions of genes and proteins related to the Nrf2 pathway in the mouse brain, enrich the gut microbiota species and increase the Bacteroidota-Firmicute (B/F) ratio. Above all, the Hizikia fusiforme polyphenol-polysaccharide complex has potential in the development of natural anti-aging drugs.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Di
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Fangjie Cao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
12
|
Jung JW, Kim YJ, Choi JS, Goto Y, Lee YA. Dopamine and serotonin alterations by Hizikia fusiformis extracts under in vitro cortical primary neuronal cell cultures. Nutr Res Pract 2023; 17:408-420. [PMID: 37266125 PMCID: PMC10232209 DOI: 10.4162/nrp.2023.17.3.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 01/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Hizikia fusiformis (HF) is a class of brown seaweeds whose active ingredients exert central nervous system protective effects, such as neuroprotection; however, the underlying mechanisms remain unknown. Given that dopamine (DA) and serotonin (5HT) are two major neurotransmitters involved in various psychiatric disorders and neuronal growth in early neurodevelopmental processes, we investigated whether HF extract could modulate the molecular expression associated with DA and 5HT transmission as well as the structural formation of neurons. MATERIALS/METHODS In vitro cell cultures were prepared from cerebral cortical neurons obtained from CD-1 mice on embryonic day 14. Cultured cells were treated with 0.1, 1.0, or 10.0 μg/mL of HT extract for 24 h, followed by fluorescence immunostaining for DA and 5HT-related receptors and transporters and some neuronal structural formation-associated molecules. RESULTS HF extract dose-dependently upregulated the expression levels of selective DA and 5HT receptors, and downregulated the levels of DA and 5HT transporters. Moreover, HF extract increased the neurofilament light chain expression. CONCLUSION These results suggest that HF may modulate DA and 5HT transmission, thereby affecting neurodevelopment.
Collapse
Affiliation(s)
- Jae-Won Jung
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Ye-Jin Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Jae Sue Choi
- Department of Food and Life Sciences, Pukyoung National University, Busan 48513, Korea
| | - Yukiori Goto
- Department of Artificial Intelligence and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|
13
|
Rajan P, Natraj P, Kim NH, Kim JH, Choi HJ, Han CH. Effects of Cudrania tricuspidata and Sargassum fusiforme extracts on hair growth in C57BL/6 mice. Lab Anim Res 2023; 39:4. [PMID: 36800993 PMCID: PMC9936642 DOI: 10.1186/s42826-023-00154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Cudrania tricuspidata is a perennial plant, and Sargassum fusiforme is a brown seaweed with numerous potential benefits, including anticancer, anti-inflammatory, and antioxidant activities. However, the efficacies of C. tricuspidata and S. fusiforme on hair growth have not yet been elucidated. Therefore, the present study examined the effects of C. tricuspidata and S. fusiforme extracts on hair growth in C57BL/6 mice. RESULTS ImageJ demonstrated that drinking and skin application of C. tricuspidata and/or S. fusiforme extracts significantly increased the hair growth rate in the dorsal skin of C57BL/6 mice compared to the control group. Histological analysis confirmed that drinking and skin application of C. tricuspidata and/or S. fusiforme extracts for 21 days significantly increased the length of hair follicles on the dorsal skin of treated C57BL/6 mice compared to that in the control mice. RNA sequencing analysis revealed that hair growth cycle-related factors (anagen factors) such as Catenin Beta 1 (Ctnnb1) and platelet-derived growth factor (Pdgf) were upregulated (> twofold) only by C. tricuspidate extracts, whereas vascular endothelial growth factor (Vegf) and Wnts were upregulated by both C. tricuspidata or S. fusiforme applications in treated mice (compared to the control mice). In addition, oncostatin M (Osm, a catagen-telogen factor) was downregulated (< 0.5 fold) by C. tricuspidata when administered via both skin and drinking mode in treated mice compared to that in control mice. CONCLUSIONS Our results suggest that C. tricuspidata and/or S. fusiforme extracts show potential hair growth efficacy by upregulating anagen factor genes, including β-catenin, Pdgf, Vegf, and Wnts, and downregulating catagen-telogen factor genes, including Osm, in C57BL/6 mice. The findings suggest that C. tricuspidata and/or S. fusiforme extracts are potential drug candidates to treat alopecia.
Collapse
Affiliation(s)
- Priyanka Rajan
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - Premkumar Natraj
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - Nak Hyoung Kim
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - Jae-Hoon Kim
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | | | - Chang-Hoon Han
- Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
14
|
Nie YY, Zhou LJ, Li YM, Yang WC, Liu YY, Yang ZY, Ma XX, Zhang YP, Hong PZ, Zhang Y. Hizikia fusiforme functional oil (HFFO) prevents neuroinflammation and memory deficits evoked by lipopolysaccharide/aluminum trichloride in zebrafish. Front Aging Neurosci 2022; 14:941994. [PMID: 36158548 PMCID: PMC9500236 DOI: 10.3389/fnagi.2022.941994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundOxidative stress, cholinergic deficiency, and neuroinflammation are hallmarks of most neurodegenerative disorders (NDs). Lipids play an important role in brain development and proper functioning. Marine-derived lipids have shown good memory-improving potentials, especially those from fish and microalgae. The cultivated macroalga Hizikia fusiforme is healthy food and shows benefits to memory, but the study is rare on the brain healthy value of its oil. Previously, we had reported that the Hizikia fusiforme functional oil (HFFO) contains arachidonic acid, 11,14,17-eicosatrienoic acid, phytol, and other molecules displaying in vitro acetylcholinesterase inhibitory and nitroxide scavenging activity; however, the in vivo effect remains unclear. In this study, we further investigated its potential effects against lipopolysaccharides (LPS)- or aluminum trichloride (AlCl3)-induced memory deficiency in zebrafish and its drug-related properties in silica.MethodsWe established memory deficit models in zebrafish by intraperitoneal (i.p.) injection of lipopolysaccharides (LPS) (75 ng) or aluminum trichloride (AlCl3) (21 μg), and assessed their behaviors in the T-maze test. The interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), acetylcholine (ACh), and malondialdehyde (MDA) levels were measured 24 h after the LPS/AlCl3 injection as markers of inflammation, cholinergic activity, and oxidative stress. Furthermore, the interaction of two main components, 11,14,17-eicosatrienoic acid and phytol, was investigated by molecular docking, with the important anti-inflammatory targets nuclear factor kappa B (NF-κB) and cyclooxygenase 2 (COX-2). Specifically, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of HFFO were studied by ADMETlab.ResultsThe results showed that HFFO reduced cognitive deficits in zebrafish T-maze induced by LPS/AlCl3. While the LPS/AlCl3 treatment increased MDA content, lowered ACh levels in the zebrafish brain, and elevated levels of central and peripheral proinflammatory cytokines, these effects were reversed by 100 mg/kg HFFO except for MDA. Moreover, 11,14,17-eicosatrienoic acid and phytol showed a good affinity with NF-κB, COX-2, and HFFO exhibited acceptable drug-likeness and ADMET profiles in general.ConclusionCollectively, this study's findings suggest HFFO as a potent neuroprotectant, potentially valuable for the prevention of memory impairment caused by cholinergic deficiency and neuroinflammation.
Collapse
Affiliation(s)
- Ying-Ying Nie
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Long-Jian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yan-Mei Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Wen-Cong Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Ya-Yue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Xiao-Xiang Ma
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Yong-Ping Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
| | - Peng-Zhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Yi Zhang ;
| |
Collapse
|
15
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
16
|
Fucosterol of Marine Macroalgae: Bioactivity, Safety and Toxicity on Organism. Mar Drugs 2021; 19:md19100545. [PMID: 34677444 PMCID: PMC8539623 DOI: 10.3390/md19100545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Fucosterol (24-ethylidene cholesterol) is a bioactive compound belonging to the sterol group that can be isolated from marine algae. Fucosterol of marine algae exhibits various biological activities including anti-osteoarthritic, anticancer, anti-inflammatory, anti-photoaging, immunomodulatory, hepatoprotective, anti-neurological, antioxidant, algicidal, anti-obesity, and antimicrobial. Numerous studies on fucosterol, mainly focusing on the quantification and characterization of the chemical structure, bioactivities, and health benefits of fucosterol, have been published. However, there is no comprehensive review on safety and toxicity levels of fucosterol of marine algae. This review aims to discuss the bioactivities, safety, and toxicity of fucosterol comprehensively, which is important for the application and development of fucosterol as a bioactive compound in nutraceutical and pharmaceutical industries. We used four online databases to search for literature on fucosterol published between 2002 and 2020. We identified, screened, selected, and analyzed the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method and identified 43 studies for review. Despite the potential applications of fucosterol, we identified the need to fill certain related research gaps. Fucosterol exhibited low toxicity in animal cell lines, human cell lines, and animals. However, studies on the safety and toxicity of fucosterol at the clinical stage, which are required before fucosterol is developed for the industry, are lacking.
Collapse
|