1
|
Makhathini N, Kumar N, Fawole OA. Enhancing circular bioeconomy: Alginate-cellulose nanofibre films/coatings functionalized with encapsulated pomegranate peel extract for postharvest preservation of pomegranate arils. Int J Biol Macromol 2025; 309:142848. [PMID: 40188910 DOI: 10.1016/j.ijbiomac.2025.142848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/09/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
This study investigated the properties of alginate-cellulose nanofiber (AL-CNF) bio-composite coatings functionalized with pomegranate peel extract powder (PPEP) at 0.1, 0.3, and 0.5 % (w/v) and their effects on the postharvest shelf life of pomegranate arils stored at 5 °C and 95 ± 2 % RH for 15 days. The results demonstrated that PPEP incorporation enhanced the physical, functional, and antioxidant properties of the coatings while reducing their mechanical strength. Microstructural analysis revealed that CNF contributed to a rougher surface, whereas PPEP addition improved homogeneity and smoothness. The 0.5 % PPEP concentration exhibited the highest thickness, antioxidant activity, and phenolic content. Application of AL-CNF bio-composite coatings significantly (p < 0.05) reduced weight loss, delayed respiration, and maintained firmness compared to the control. PPEP incorporation increased total soluble solids (TSS) and preserved the visual quality of arils. Additionally, 0.5 % PPEP retained higher phenolic content, anthocyanin levels, and DPPH activity while reducing microbial growth. These findings suggest that AL-CNF nanocomposite coatings enriched with PPEP (0.1-0.5 %) effectively preserve quality and extend the shelf life of minimally processed pomegranate arils, offering a sustainable postharvest preservation strategy.
Collapse
Affiliation(s)
- Noluthando Makhathini
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa; Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Nishant Kumar
- National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028, India
| | - Olaniyi A Fawole
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa; Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
2
|
Zhang ZH, Wang H, Han X, Huang X, Zeng Q, Li X, Gao X. The effect of different wall materials on the physicochemical properties and antioxidant activity of pomegranate peel polyphenols (PPP) microcapsules. Int J Biol Macromol 2025; 298:139958. [PMID: 39824411 DOI: 10.1016/j.ijbiomac.2025.139958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity. Remarkable results indicated that β-CD-PPP exhibited the lowest moisture content (3.68 %), the highest thermal decomposition temperature (306.03 °C), and the strongest antioxidant activity (IC50 = 0.26 mg/mL for DPPH, 96.57 % for ABTS). In contrast, CMC-Na-PPP demonstrated the highest encapsulation efficiency (97.94 %) and the largest particle size (9895.63 nm). Moreover, the molecular docking results revealed that all wall materials formed intermolecular interactions with PPP components, with notable differences in binding energies; CMC-Na-PPP had the highest binding energy at -4.38 kcal/mol. These variations are attributed to factors such as molecular weight, free active groups, and spatial conformation of the wall materials. Therefore, in order to fully utilize the biological activity of PPP in food processing, microcapsules formed with β-CD as the wall material are more valuable compared to those formed with other wall materials.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huiyue Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyang Han
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Huang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Lab Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Sekhavatizadeh SS, Ganje M, Hashemi SS, Mozafarian MR. Encapsulation of bioactive compounds from Sargassum ilicifolium: Influence of wall material type and loading content on the physicochemical and structural properties of microparticles. Heliyon 2025; 11:e41652. [PMID: 39866408 PMCID: PMC11760310 DOI: 10.1016/j.heliyon.2025.e41652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Sargassum brown seaweed (Sargassum ilicifolium) is reported to exhibit several biological activities that promote human health, but it does not have the ability to withstand harsh environmental conditions, such as high temperatures and oxygen exposure. Encapsulation of Sargassum ilicifolium extraction through different techniques is known to, optimize physicochemical properties, biological activities, maintain stability, and is an effective way to improve the shelf life of different foods. In the present study, the encapsulation of SIE was carried out by the freeze-drying method using maltodextrin, whey protein isolate (WPI), and chitosan. The bioactive compound of SIE, encapsulation efficiency, and the structural properties of microparticles were analyzed. The evaluations indicated carotenoid (0.77 ± 0.22 mg/g), phenol (0.12 ± 0.02 mg/mL), and flavonoid compounds (4.03 ± 0.28 mg GA/Eg) in the extract, respectively. According to the results, the mixtures of algae extracts prepared with the combination of WPI and MD were more stable and had a lower viscosity than the other treatments. The highest (99.26 %) and lowest (13.41 %) encapsulation efficiencies were obtained for WPI (30 %), MD (70 %), with a 1:12 ratio of SI to wall, and chitosan, with a 1:8 ratio of SI to wall, respectively. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) confirmed the entrapment of the SIE in the beads. Finally, the improved stability and solubility characteristics of the SIE powder, which is based on WPI and maltodextin, indicate its potential for use as a potent functional food additive.
Collapse
Affiliation(s)
- Seyed Saeed Sekhavatizadeh
- Department of Food Science and Technology, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Fars, Iran
| | - Mohammad Ganje
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
- Department of Food Science and Technology, Kherad Institute of Higher Education, Bushehr, Iran
| | | | | |
Collapse
|
4
|
Zhang ZH, Li X, Ma A, Gao X, Zhu S, Li B. Characteristics of pomegranate (Punica granatum L.) peel polyphenols encapsulated with whey protein isolate and β-cyclodextrin by spray-drying. Int J Biol Macromol 2024; 278:135279. [PMID: 39256130 DOI: 10.1016/j.ijbiomac.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Pomegranate peel polyphenols (PPPs) are recognized as promising food additives due to their diverse bioactivities; however, their application is limited by poor stability. To address this critical issue, three types of PPPs microcapsules were prepared using β-cyclodextrin (CD), whey protein isolate (WPI), and a composite material of CD-WPI through ultrasound treatment (US). Results revealed that ultrasound treatment can enhance the PPPs-wall material interaction, as evidenced by MD simulations. The encapsulation efficiency of CD-WPI-PPPs was 93.73 %, which was significantly higher than that of CD-PPPs and WPI-PPPs (p < 0.05). The degradation rate constant of CD-WPI-PPPs was reduced by 95.83 %, and its t1/2 was extended by 23-fold compared to that of unencapsulated PPPs. Furthermore, CD-WPI-PPPs exhibited greater DPPH scavenging activity and inhibited polyphenol release during oral and gastric digestion while promoting release during intestinal digestion. These outcomes were attributed to enhanced integrity and interactions between PPPs and composite materials in the microcapsules formed through ultrasound treatment, as supported by SEM images and FT-IR spectra. Consequently, the application of US in the preparation of PPPs microcapsules presents a promising strategy for developing natural nutrient additives for food applications, thereby enhancing the functional properties of food products.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China; School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Aijuan Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siming Zhu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Ćujić Nikolić N, Jovanović M, Radan M, Lazarević Z, Bigović D, Marković S, Jovanović Lješković N, Šavikin K. Development of Cyclodextrin-Based Mono and Dual Encapsulated Powders by Spray Drying for Successful Preservation of Everlasting Flower Extract. Pharmaceutics 2024; 16:861. [PMID: 39065558 PMCID: PMC11279902 DOI: 10.3390/pharmaceutics16070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The study aimed to develop encapsulation systems to maintain the preservation of everlasting (Helichrysum plicatum) flower extract polyphenols. Spray-dried encapsulates were formulated using β-cyclodextrin (BCD) and 2-hydroxypropyl-β-cyclodextrin (HPBCD) as supramolecular hosts, and their macromolecule mixtures with the conventional carriers, maltodextrin (MD) and whey protein (WP). The obtained microparticles were comparatively assessed regarding technological, physicochemical, and phytochemical properties. The highest yields were achieved by combining cyclodextrins with whey protein (73.96% for WP+BCD and 75.50% for WP+HPBCD compared to 62.48% of pure extract). The extract-carrier interactions and thermal stability were evaluated by FTIR and DSC analysis, suggesting successful entrapment within the carriers. Carriers reduced the particle diameter (3.99 to 4.86 μm compared to 6.49 μm of pure extract), classifying all encapsulates as microsystems. Carrier blends made the particle size distribution uniform, while SEM analysis revealed the production of more spherical and less aggregated particles. The HPBCD provided the highest encapsulation efficiency, with the highest content of detected aglycones and slightly lower values of their glycosylated forms. An analysis of the dual macromolecule encapsulation systems revealed the highest bioactive preservation potential for SHE+MD+BCD and SHE+WP+HPBCD. Overall, macromolecule combinations of cyclodextrins and conventional biopolymers in the spray-drying process can enhance the functional properties of H. plicatum extract.
Collapse
Affiliation(s)
- Nada Ćujić Nikolić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.R.); (Z.L.); (D.B.); (K.Š.)
| | - Miloš Jovanović
- Faculty of Medicine, Department of Pharmacy, University of Niš, Boulevard Dr. Zorana Đinđića 81, 18000 Niš, Serbia;
| | - Milica Radan
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.R.); (Z.L.); (D.B.); (K.Š.)
| | - Zorica Lazarević
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.R.); (Z.L.); (D.B.); (K.Š.)
| | - Dubravka Bigović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.R.); (Z.L.); (D.B.); (K.Š.)
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | | | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (M.R.); (Z.L.); (D.B.); (K.Š.)
| |
Collapse
|
6
|
Bernini R, Campo M, Cassiani C, Fochetti A, Ieri F, Lombardi A, Urciuoli S, Vignolini P, Villanova N, Vita C. Polyphenol-Rich Extracts from Agroindustrial Waste and Byproducts: Results and Perspectives According to the Green Chemistry and Circular Economy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12871-12895. [PMID: 38829927 DOI: 10.1021/acs.jafc.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polyphenols are natural secondary metabolites found in plants endowed with multiple biological activities (antioxidant, anti-inflammatory, antimicrobial, cardioprotective, and anticancer). In view of these properties, they find many applications and are used as active ingredients in nutraceutical, food, pharmaceutical, and cosmetic formulations. In accordance with green chemistry and circular economy strategies, they can also be recovered from agroindustrial waste and reused in various sectors, promoting sustainable processes. This review described structural characteristics, methods for extraction, biological properties, and applications of polyphenolic extracts obtained from two selected plant materials of the Mediterranean area as olive (Olea europaea L.) and pomegranate (Punica granatum L.) based on recent literature, highlighting future research perspectives.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Margherita Campo
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Cassiani
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Fochetti
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Ieri
- Institute of Bioscience and BioResources (IBBR), National Research Council of Italy (CNR), 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Lombardi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Urciuoli
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Pamela Vignolini
- Department of Statistics, Informatics, Applications "G. Parenti" (DiSIA), PHYTOLAB Laboratory, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Vita
- QuMAP - PIN, University Center "Città di Prato" Educational and Scientific Services for the University of Florence, 59100 Prato, Italy
| |
Collapse
|
7
|
Radan M, Ćujić Nikolić N, Kuzmanović Nedeljković S, Mutavski Z, Krgović N, Stević T, Marković S, Jovanović A, Živković J, Šavikin K. Multifunctional Pomegranate Peel Microparticles with Health-Promoting Effects for the Sustainable Development of Novel Nutraceuticals and Pharmaceuticals. PLANTS (BASEL, SWITZERLAND) 2024; 13:281. [PMID: 38256834 PMCID: PMC10821027 DOI: 10.3390/plants13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Recovering the bioactive components from pomegranate peel (PP) in the fruit-processing industry has attracted great attention in terms of minimizing the waste burden, as well as providing a new source of a multitude of functional compounds. The present study aimed to develop a feasible microencapsulation process of PP extract by using pectin and a pectin/2-hydroxypropyl-β-cyclodextrin (HP-β-CD) blend as coating materials. Microsized powders obtained by a spray drying technique were examined in terms of technological characteristics, exhibiting high powder yield and desirable moisture content, flowability, and cohesive properties. Assuming that the interactions with the used biopolymers occur on the surface hydrophobic domain, their presence significantly improved the thermal stability of the microencapsulated powders up to 200 °C. The health-promoting effects of PP have been associated with its high content in ellagitannins, particularly punicalagin. The obtained PP powders exhibited strong antioxidant and hypoglycemic potential, while an antimicrobial assay revealed their potent activity against Gram-positive bacteria. Additionally, an in vitro release study suggested that the used biopolymers can modify the release of target bioactive compounds, thus establishing a basis for developing an oral-controlled release system. Altogether, biowaste valorization from PP by the production of effective multifunctional microsized powders represents a sustainable way to obtain novel nutraceuticals and/or pharmaceuticals.
Collapse
Affiliation(s)
- Milica Radan
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | | | - Zorana Mutavski
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Nemanja Krgović
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Tatjana Stević
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia (T.S.)
| |
Collapse
|
8
|
Silva-Jara JM, Angulo C, Velazquez-Carriles C, Martinez-Preciado AH, Reyes-Becerril M. Development, characterization, and immunomodulation performance of spray-dried Moringa oleifera seed extract in Longfin yellowtail Seriola rivoliana. Vet Res Commun 2023; 47:2041-2053. [PMID: 37420134 DOI: 10.1007/s11259-023-10156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Moringa oleifera is one of the most promising plants in aquaculture because it improves the health status, zootechnical parameters and resistance against diseases. This research evaluates the physicochemical, antioxidant values of spray-dried Moringa oleifera seed extract microencapsulates obtained at 140 and 180 °C with whey protein concentrate (WPC) and maltodextrin (MD) as wall materials in two different proportions: WPC 100% and WPC-MD (3:1). Also, immune response of peripheral blood leukocytes (PBL) of Longfin yellowtail Seriola rivoliana stimulated with spray-dried Moringa oleifera seed for 24 h was assessed. The physicochemical parameters show that the recovery yield for all the treatments was of 65% and microencapsulates demonstrated to be stable in the physicochemical tests with low solubilization times and protection against humidity. For WPC-MD (3:1)/140 °C, bioactive compound retention and antioxidant potential were higher than in other combinations. The immunological test show that any treatments was non-cytotoxic against peripheral blood leukocytes. WPC-MD (3:1)/140 °C treatment enhanced immune parameters as phagocytosis, respiratory burst, myeloperoxidase activities and nitric oxide production. Immune related genes as IL-1β and TNF-α were up-regulated in those stimulated leukocytes with WPC-MD (3:1)/140 °C. The results suggest that this combination may be a good alternative for animal health as a medicinal and immunostimulant additive.
Collapse
Affiliation(s)
- Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Universidad de Guadalajara, Centro Universitario de Ciencias Exactas E Ingenierías (CUCEI), Blvd. Marcelino García Barragán 1421, CP 44430, Guadalajara, Jalisco, México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur , La Paz, BCS, 23096, México
| | - Carlos Velazquez-Carriles
- Departamento de Farmacobiología, Universidad de Guadalajara, Centro Universitario de Ciencias Exactas E Ingenierías (CUCEI), Blvd. Marcelino García Barragán 1421, CP 44430, Guadalajara, Jalisco, México
- Departamento de Ingeniería Biológica, Sintética y de Materiales, Universidad de Guadalajara, Centro Universitario de Tlajomulco (CUTLAJO), Carretera Tlajomulco, Santa Fé, Km 3.5, 595, CP 45641, Tlajomulco de Zúñiga, Jalisco, México
| | - Alma H Martinez-Preciado
- Departamento de Ingeniería Química, Universidad de Guadalajara, Centro Universitario de Ciencias Exactas E Ingenierías (CUCEI), Blvd. Marcelino García Barragán 1421, CP 44430, Guadalajara, Jalisco, México
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur , La Paz, BCS, 23096, México.
| |
Collapse
|
9
|
Kuzmanović Nedeljković S, Radan M, Ćujić Nikolić N, Mutavski Z, Krgović N, Marković S, Stević T, Živković J, Šavikin K. Microencapsulated Bilberry and Chokeberry Leaf Extracts with Potential Health Benefits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3979. [PMID: 38068615 PMCID: PMC10707773 DOI: 10.3390/plants12233979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/12/2024]
Abstract
The aim of the research was to develop microencapsulated powders of bilberry and chokeberry extracts via the spray drying technique. Two biopolymers, pectin alone and in combination with HP-β-CD, were used to preserve the antioxidant, hypoglycemic, photoprotective, and antimicrobial bioactivity of the berry leaf extracts. Moreover, the formed powders were characterized in terms of technological, chemical, and several biological properties. The obtained micro-sized powders (mean average particle diameter from 3.83 to 5.94 µm) demonstrated a process yield of up to 73%. The added biopolymers improved the flowability and cohesive properties of the powders and increased their thermal stability to 170 °C. The total content of polyphenolics in the powders ranged from 323.35 to 367.76 mg GAE/g DW for bilberry and from 186.85 to 227.59 mg GAE/g DW for chokeberry powders; meanwhile, chlorogenic acid was the predominant compound in powders. All samples showed stronger α-glucosidase inhibitory activity (IC50 values ranged from 5.00 to 19.59 µg/mL) compared with the reference standard. The study confirmed that spray drying is a suitable method for the preservation of the polyphenolic-rich extracts, while the addition of carriers has a positive effect on the improvement of microencapsulated powders' properties.
Collapse
Affiliation(s)
| | - Milica Radan
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Zorana Mutavski
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nemanja Krgović
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Tatjana Stević
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Cortés Rodríguez M, Gil G JH, Ortega-Toro R. Optimization of fluidized bed agglomeration process for developing a blackberry powder mixture. Heliyon 2023; 9:e19577. [PMID: 37809402 PMCID: PMC10558842 DOI: 10.1016/j.heliyon.2023.e19577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
The research objective was to experimentally optimize the fluidized bed agglomeration process of an agglomerated blackberry powder mixture (ABPM) using the response surface methodology. As a raw material, a powdered mixture of blackberry from Castile (Rubus glaucus Benth) obtained by spray drying (SD) was used. In the evaluation of the agglomeration process, the response surface methodology was applied using a central design with a face-centered composition (α = 1), considering the independent variables: fluidisation air inlet temperature (T) (50-70 °C), the binder solution atomization air pressure (P) (1-2 bar) and process time (t) (20-35 min); and the dependent variable: moisture content (Xw), solubility (S), wettability (We), apparent density (ρa), total phenols (TP), radical scavenging (ABTS·+ and DPPH· methods), anthocyanins (Ant) (cyanidin-3-glucoside (C3G)), ellagic acid (EA) and vitamin C (Vit. C). In general, the ABPM exhibited higher porosity and particle size, which generated changes in S, We and ρa, and a better rehydration capacity of the ABPM. The optimal process conditions (T = 70 °C, P = 1.7 bar and t = 21.7 min) defined the most favourable attributes of the ABPM (Xw = 9.7 ± 0.1%, S = 74.9 ± 4.9%, We = 13.7 ± 3.6 min, ρa = 0.312 ± 0.009 g/mL, TP = 4084.6 ± 30.6 mg AGE/100g dry base (db), ABTS·+ = 4511.4 ± 124.5 mg TE/100 g db, DPPH· = 4182.7 ± 66.4 mg TE/100 g db, Ant = 213.6 ± 15.9 mg C3G/100 g db, EA = 1878.2 ± 45.9 mg/100 g db and Vit. C = 29.8 ± 7.4 mg/100 g db. The agglomeration process improved the instantaneous properties and the flow behaviour of the ABPM. Additionally, it offers significant nutritional value with potential use as an instant drink and raw material for the food industry.
Collapse
Affiliation(s)
- Misael Cortés Rodríguez
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A – 110, Medellín, CP 050034, Antioquia, Colombia
| | - Jesús Humberto Gil G
- Universidad Nacional de Colombia sede Medellín, Facultad Ciencias Agrarias, Departamento Ingeniería Agrícola y Alimentos, Cra. 65 No. 59A – 110, Medellín, CP 050034, Antioquia, Colombia
| | - Rodrigo Ortega-Toro
- Universidad de Cartagena, Programa de Ingeniería de Alimentos, Food Packaging and Shelf Life Research Group (FP&SL), Avenida del Consulado Calle 30 No. 48 – 152, Cartagena de Indias D.T. y C., Colombia
| |
Collapse
|
11
|
Hadree J, Shahidi F, Mohebbi M, Abbaspour M. Evaluation of Effects of Spray Drying Conditions on Physicochemical Properties of Pomegranate Juice Powder Enriched with Pomegranate Peel Phenolic Compounds: Modeling and Optimization by RSM. Foods 2023; 12:foods12102066. [PMID: 37238883 DOI: 10.3390/foods12102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, the effects of pomegranate peel extract concentration (2.5-10%), drying temperature (160-190 °C), and feed flow rate (0.6-1 mL/s) on the properties of pomegranate juice powder enriched with pomegranate peel phenolic compounds and produced by spray drying were investigated. The moisture content, water activity (aw), solubility, water absorption capacity (WAC), hygroscopicity, dissolution time, total phenolic content (TPC), Carr index (CI), Hausner ratio (HR), and brightness (L*) of the samples were evaluated, and the optimal powder production conditions were obtained using response surface methodology (RSM). The results showed that the optimal conditions were found to be the phenolic extract concentration of 10%, the drying temperature of 189.9 °C, and the feed flow rate of 0.63 mL/s, considering the minimization of the moisture content, aw, hygroscopicity, dissolution time, CI, HR, and L*, as well as the maximization of solubility, WAC, and TPC. The effect of the phenolic extract concentration was very significant (p < 0.01) on the WAC, hygroscopicity, dissolution time, TPC, CI, HR, and L* of the powder. Moreover, the effect of the drying temperature was very significant (p < 0.01) on the aw, hygroscopicity, dissolution time, CI, and HR of the powder and significant (p < 0.05) on its moisture content. The effect of the feed flow rate was very significant (p < 0.01) on the solubility, hygroscopicity, and dissolution time of the powder and significant (p < 0.05) on its moisture content. Therefore, we found that the spray drying conditions, such as high temperature, did not negatively affect the content of phenolic compounds in pomegranate powder, and the physical properties of the resulting powder were acceptable. Thus, pomegranate powder enriched with phenolic compounds can be used as a food additive or as a dietary supplement for medicinal use.
Collapse
Affiliation(s)
- Jouhaina Hadree
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
- Department of Food Science, Faculty of Agriculture, University of Aleppo, Aleppo 12212, Syria
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| |
Collapse
|
12
|
Ćujić Nikolić N, Žilić S, Simić M, Nikolić V, Živković J, Marković S, Šavikin K. Microencapsulates of Blue Maize Polyphenolics as a Promising Ingredient in the Food and Pharmaceutical Industry: Characterization, Antioxidant Properties, and In Vitro-Simulated Digestion. Foods 2023; 12:foods12091870. [PMID: 37174408 PMCID: PMC10178619 DOI: 10.3390/foods12091870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
An anthocyanin-rich blue maize waste product was used for anthocyanin extraction. To preserve bioactive phenolic compounds, a spray-drying technique was employed using conventional wall material maltodextrin (MD), with novel one, hydroxypropyl-β-cyclodextrin (HPBCD). The obtained spray-dried maize extract (SME) and microencapsulates were analyzed based on physicochemical powder properties, chemical analysis, antioxidant activity, and digestibility. The examined microencapsulates demonstrated good powder properties, exhibited a high powder yield (up to 83%), and had a low moisture content (less than 5%). HPBCD and MD + HPBCD combinations demonstrated superior powder properties in the terms of decreasing the time necessary for rehydration (133.25 and 153.8 s, respectively). The mean average particle diameter ranged from 4.72 to 21.33 µm. DSC analyses signified high powder thermal stability, around 200 °C, related to the increasing preservation with biopolymer addition. The total phenolic and anthocyanin compounds ranged from 30,622 to 32,211 mg CE/kg (CE-catechin equivalents) and from 9642 to 12,182 mg CGE/kg (CGE-cyanidin 3-glucoside equivalents), respectively, associated with good bioactive compound protection. Microencapsulates with both carriers (15% MD and 15% HPBCD) had the highest digestibility (73.63%). Our results indicated that the microencapsulates created with the active ingredient and the wall materials (MD and HPBCD) could protect phenolic compounds/anthocyanins against ABTS radicals (63.53 and 62.47 mmol Trolox Eq/kg, respectively).
Collapse
Affiliation(s)
- Nada Ćujić Nikolić
- Department for Pharmaceutical Research and Development, Institute of Medicinal Plants Research "Dr Josif Pančić", Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Slađana Žilić
- Laboratory of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrad-Zemun, Serbia
| | - Marijana Simić
- Laboratory of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrad-Zemun, Serbia
| | - Valentina Nikolić
- Laboratory of Food Technology and Biochemistry, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11185 Belgrad-Zemun, Serbia
| | - Jelena Živković
- Department for Pharmaceutical Research and Development, Institute of Medicinal Plants Research "Dr Josif Pančić", Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Department for Pharmaceutical Research and Development, Institute of Medicinal Plants Research "Dr Josif Pančić", Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Afshari K, Javanmard Dakheli M, Ramezan Y, Bassiri A, Ahmadi Chenarbon H. Physicochemical and control releasing properties of date pit ( Phoenix dactylifera L.) phenolic compounds microencapsulated through fluidized-bed method. Food Sci Nutr 2023; 11:1367-1382. [PMID: 36911813 PMCID: PMC10003029 DOI: 10.1002/fsn3.3173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the effect of different ethanol/water solvents on phenolic compound extraction and microencapsulated extract of date pit powder. The highest and the lowest amounts of total phenolic compounds were 742.37 and 236.07 mg GAE/g dm, respectively, observed in water-ethanol composite solvent (25% W: 75% E) and water solvent (100% W). In this regard, the highest and lowest values of IC50 were 6.83 and 0.90 μg/ml, measured in water solvent (100% W) and water-ethanol solvent (25% W: 75% E), respectively. In the second phase, using maltodextrin (10%, 20%, and 30% W/V) as the first layer, date pit extract was microencapsulated. Alhagi maurorum gum (10%, 20%, and 30% W/V) as the second layer and medium-chain triglycerides (MCT oil) (15% W/W) as the third layer were used by a fluidized-bed drying technique. By increasing temperature, the microencapsulated extract powder solubility was increased as well. In contrast, the moisture content, bulk density, tapped density, and compressibility index decreased. By increasing temperature, the maltodextrin and A. maurorum gum concentration, the coating efficiency, and the loading capacity of the samples increased initially and decreased eventually. Moisture content, powder solubility, bulk density, and compressibility index increased, with increasing maltodextrin concentration, however, tapped density decreased. The optimal physicochemical properties of the phenolic compounds' microcapsules were determined at 45°C and at a concentration of 20% of each of the maltodextrin and A. maurorum gum. According to scanning electron images, the powder particles were spherical and had a relatively smooth surface. Notably, the release rate of phenolic compounds reached its maximum (64%) after 24 h.
Collapse
Affiliation(s)
- Kasra Afshari
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Majid Javanmard Dakheli
- Food Technologies Group, Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Alireza Bassiri
- Food Technologies Group, Department of Chemical TechnologiesIranian Research Organization for Science and Technology (IROST)TehranIran
| | - Hossein Ahmadi Chenarbon
- Department of Agronomy, College of Agriculture, Varamin ‐ Pishva BranchIslamic Azad UniversityVaraminIran
| |
Collapse
|
14
|
Estupiñan‐Amaya M, Fuenmayor CA, López‐Córdoba A. Evaluation of mixtures of maltodextrin and gum Arabic for the encapsulation of Andean blueberry (
Vaccinium meridionale
) juice by freeze–drying. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mauren Estupiñan‐Amaya
- Facultad Seccional Duitama, Escuela de Administración de Empresas Agropecuarias Universidad Pedagógica y Tecnológica de Colombia Carrera 18 con Calle 22 Duitama, Boyacá 150461 Colombia
- Instituto de Ciencia y Tecnología de Alimentos (ICTA) Universidad Nacional de Colombia Av. Carrera 30 # 45‐03 Bogotá 111321 Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA) Universidad Nacional de Colombia Av. Carrera 30 # 45‐03 Bogotá 111321 Colombia
| | - Alex López‐Córdoba
- Facultad Seccional Duitama, Escuela de Administración de Empresas Agropecuarias Universidad Pedagógica y Tecnológica de Colombia Carrera 18 con Calle 22 Duitama, Boyacá 150461 Colombia
| |
Collapse
|
15
|
Cano-Lamadrid M, Martínez-Zamora L, Castillejo N, Artés-Hernández F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022; 11:foods11172596. [PMID: 36076782 PMCID: PMC9455765 DOI: 10.3390/foods11172596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry is quite interested in the use of (techno)-functional bioactive compounds from byproducts to develop ‘clean label’ foods in a circular economy. The aim of this review is to evaluate the state of the knowledge and scientific evidence on the use of green extraction technologies (ultrasound-, microwave-, and enzymatic-assisted) of bioactive compounds from pomegranate peel byproducts, and their potential application via the supplementation/fortification of vegetal matrixes to improve their quality, functional properties, and safety. Most studies are mainly focused on ultrasound extraction, which has been widely developed compared to microwave or enzymatic extractions, which should be studied in depth, including their combinations. After extraction, pomegranate peel byproducts (in the form of powders, liquid extracts, and/or encapsulated, among others) have been incorporated into several food matrixes, as a good tool to preserve ‘clean label’ foods without altering their composition and improving their functional properties. Future studies must clearly evaluate the energy efficiency/consumption, the cost, and the environmental impact leading to the sustainable extraction of the key bio-compounds. Moreover, predictive models are needed to optimize the phytochemical extraction and to help in decision-making along the supply chain.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Correspondence: ; Tel.: +34-968325509
| |
Collapse
|
16
|
Kobo GK, Kaseke T, Fawole OA. Micro-Encapsulation of Phytochemicals in Passion Fruit Peel Waste Generated on an Organic Farm: Effect of Carriers on the Quality of Encapsulated Powders and Potential for Value-Addition. Antioxidants (Basel) 2022; 11:antiox11081579. [PMID: 36009296 PMCID: PMC9404774 DOI: 10.3390/antiox11081579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
The passion (Passiflora edulis Sims) fruit peel is rich in phenolics and other bioactive compounds and has great potential as a natural food preservative. The present study investigated the value-adding potential of passion fruit peel waste generated on an organic farm. The effect of carriers in encapsulating the peel extract to develop a polyphenolic-rich powder was investigated. The passion fruit peel extracts were prepared using 70% ethanol (1:10 w/v), and encapsulated using waxy starch (WS), gum arabic (GA), and maltodextrin (MT) before freeze-drying. The effects of carriers on the passion fruit peel powder (PFPP) production yield, physicochemical, rheological, phytochemical, and antioxidant properties were investigated. GA-and MT-encapsulated powders had better physical, phytochemical, and antioxidant properties, including yield, total soluble solids, solubility, bulk density, total phenolic content, and ferric reducing antioxidant powder. A total of 18 metabolites, including phenolic acids (10), flavonoids (6), and stilbenes (2), were tentatively identified in all the PFPP samples, with WS exhibiting a higher concentration of the compounds compared to GA and MT. Our results indicated that no single carrier was associated with all the quality attributes; therefore, better results could be produced by compositing these carriers. Nonetheless, our results highlight the potential of passion fruit peels as a source of polyphenols and functional ingredient in formulating natural food additives.
Collapse
Affiliation(s)
- Gift Kabelo Kobo
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
| | - Tafadzwa Kaseke
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Johannesburg 2006, South Africa
- SARChI Postharvest Technology Research Laboratory, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Correspondence:
| |
Collapse
|
17
|
Šubarić D, Jokić S. Food Industry By-Products as a Sources of Phytochemical Compounds. Foods 2022; 11:foods11121724. [PMID: 35741922 PMCID: PMC9223085 DOI: 10.3390/foods11121724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
|
18
|
Micro-Encapsulation and Characterization of Anthocyanin-Rich Raspberry Juice Powder for Potential Applications in the Food Industry. Processes (Basel) 2022. [DOI: 10.3390/pr10051038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Raspberry juice obtained from fresh raspberry fruits was encapsulated separately using gum Arabic (GA), maltodextrin (MT), and waxy starch (WS) (1:10, w/v) and freeze-dried to develop raspberry juice powders (RBJP). The powders were characterised based on their physicochemical and phytochemical composition and their rheological and antioxidative properties, which significantly varied among the carriers. GA- and MT-encapsulated RBJP exhibited a better colour, higher yield, oil holding capacity, total anthocyanin content, and antioxidant properties. WS-encapsulated powder showed a better water holding capacity and total phenolic content; however, the powder was characterised by low solubility, total soluble solids, and redness. Hygroscopicity and titratable acidity did not significantly (p > 0.05) vary among the powders. Cyanidin diglucoside, the main anthocyanin compound identified in the RBJP, was significantly higher in MT (2549.89 µg/g) compared to GA (1935.45 µg/g) and WS (1458.81 µg/g). The RBJP produced using MT and GA showed irregular-shaped and non-spherical particles, which were less agglomerated and relatively larger, while the WS powder exhibited more uniform, spherical particles, which agglomerated together. An X-ray diffraction analysis showed that GA and MT powders had an amorphous structure with minimum crystallinity, while RBJP from WS was crystalline. It can be concluded that GA and MT produced RBJP with quality attributes relevant to the food industry.
Collapse
|
19
|
Magangana TP, Makunga NP, Fawole OA, Stander MA, Opara UL. Antioxidant, Antimicrobial, and Metabolomic Characterization of Blanched Pomegranate Peel Extracts: Effect of Cultivar. Molecules 2022; 27:2979. [PMID: 35566329 PMCID: PMC9101763 DOI: 10.3390/molecules27092979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hot water blanching at 80 °C for 3 min can be used as a novel pre-treatment step in pomegranate peel to preserve the integrity of the phytochemical content within the peel extracts by lowering or inactivating enzymes such as polyphenol (PPO) oxidase and peroxidase (POD) that are responsible for the break-down of phytochemicals within the peel. The aim of this study was to investigate the effect of hot water blanching pre-treatment on yield, bioactive compounds, antioxidants, enzyme inactivation, and antibacterial activity of ‘Wonderful’, ‘Acco’, and ‘Herskawitz’ pomegranate peel extracts. We used a variety of spectrophotometric-based assays and liquid chromatography mass spectrometry (LC-MS)-based approach to characterize and quantify metabolites within the peel extracts. Blanching significantly (p < 0.05) reduced PPO activity in all peel extracts, with the highest PPO reduction in ‘Herskawitz’ peel extracts at 0.25 U/mL. Furthermore, higher antioxidant activity in ‘Herskawitz’ blanched peel extracts using 2,2-diphenyl-1-picryl hydrazyl (DPPH) antioxidant activity, ferric ion reducing antioxidant power (FRAP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity at 567.78 ± 9.47 µmol Trolox/g DM, 800.05 ± 1.60 µmol Trolox/g DM, and 915.27 ± 0.61 µmol Trolox/g DM, respectively, was noted. ‘Herskawitz’ blanched peel extracts were recorded with the lowest minimum inhibitory concentration (MIC) value of 80 µg/mL for Gram-positive Bacillus subtilis and Gram-negative Klebsiella pneumoniae bacteria strains. A total of 30 metabolites were present in ‘Acco’ and ‘Herskawitz’ peel extracts and were tentatively identified after LC-MS profiling. This study demonstrates that blanched peel extracts from ‘Herskawitz’ cultivar have great potential for commercial use in value-added products in the nutraceutical, cosmeceutical, and pharmacological industries.
Collapse
Affiliation(s)
- Tandokazi Pamela Magangana
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
- SARChI Postharvest Technology Research Laboratory, Faculty of AgriSciences, Africa Institute for Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Olaniyi Amos Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Maria A. Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Umezuruike Linus Opara
- SARChI Postharvest Technology Research Laboratory, Faculty of AgriSciences, Africa Institute for Postharvest Technology, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
- UNESCO International Centre for Biotechnology, Nsukka 410001, Nigeria
| |
Collapse
|