1
|
Petrović TŽ, Tomović VM, Marković KG, Semedo-Lemsaddek T, Grujović MŽ. Probiotics and Honey: Boosting Functional Properties in Dry Fermented Sausages. Microorganisms 2025; 13:349. [PMID: 40005716 PMCID: PMC11858503 DOI: 10.3390/microorganisms13020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Dry-fermented sausages, particularly traditional varieties like Sokobanja sausage from Serbia, are highly valued for their unique sensory attributes. This study aimed to evaluate the effects of adding starter cultures (lactic acid bacteria, LAB, and coagulase-negative staphylococci, CNS) and organic sunflower honey (at concentrations of 0.2% and 0.4%) on the physicochemical, microbiological, and sensory properties of Sokobanja sausage. The primary objective was to enhance the sausage's quality while accelerating the ripening process. The methodology involved enriching the sausage mixture with starter cultures and honey, followed by sensory evaluation, microbiological analyses, and physicochemical measurements over a 28-day ripening period. Results showed that the addition of starter cultures and 0.2% honey significantly improved texture parameters such as hardness, cohesiveness, and chewiness compared to the control. Consumer acceptance was also high for these sausages. Microbiological analysis revealed that honey supported the growth of LAB and CNS, which facilitated lactic acid production and resulted in a rapid decline in undesirable microorganisms, such as enterobacteria, yeasts, and molds, particularly after 7-14 days. This led to a reduction in pH and an accelerated ripening process, typically lasting 25-28 days. The findings suggest that incorporating starter cultures and sunflower honey enhances both the functional and sensory properties of Sokobanja sausage, offering a promising approach for improving quality and safety. Future research should explore the use of targeted delivery mechanisms for probiotic bacteria in the gastrointestinal tract and further investigate the potential health benefits of these sausages as functional foods.
Collapse
Affiliation(s)
| | - Vladimir M. Tomović
- Faculty of Technology, University in Novi Sad, Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Katarina G. Marković
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia;
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Mirjana Ž. Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia;
| |
Collapse
|
2
|
Zhang H, Liang L, Sun B, Yang R, Liu Z, Mao X, Zhang Y. ACE inhibitory effect and saltiness-enhancing properties of chicken-derived umami peptides: Digestive stability, inhibition kinetics, multiple ligand docking and central composite design. Food Chem 2025; 464:141634. [PMID: 39437530 DOI: 10.1016/j.foodchem.2024.141634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory activity and saltiness-enhancing properties of chicken-derived umami peptides were investigated. DGGRYY and NEFGYSNR were screened and the IC50 values were 28.71 μM and 283.24 μM, indicating their potential as novel ACE inhibitors. DGGRYY and NEFGYSNR have good pH and thermal stability. After gastrointestinal digestion, the ACE-inhibitory activity of DGGRYY retained about 53 %, whereas NEFGYSNR retained about 57 %. The inhibition pattern of both peptides was determined to be uncompetitive, consisting with the result of multiple ligand docking that the binding sites were outside the ACE active pocket. Trp59, Tyr62, Asp121, Arg124, and Ser516 were the key binding sites that contributed to the total binding energy. In addition, saltiness and palatability models were established according to sensory analysis and central composite design. In 0.1 % ∼ 0.3 % NaCl solutions, the addition of DGGRYY and NEFGYSNR could enhance the salty intensity and compensate for the palatability loss caused by salt reduction.
Collapse
Affiliation(s)
- Haotong Zhang
- College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rui Yang
- College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Massomian A, Rashidimehr A, Mohammadi‐Nasrabadi F, Khoshtinat K, Esfarjani F. Salt Contents in Fermented Dairy Products: A Strategic Blueprint for Healthier Intake. Food Sci Nutr 2025; 13:e4762. [PMID: 39816482 PMCID: PMC11733677 DOI: 10.1002/fsn3.4762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/15/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
This study aimed to estimate the quantity and trends of salt intake from industrial fermented dairy products, develop strategies to reduce salt content, and inform policymakers on promoting public health through healthier dairy options. A cross-sectional study was conducted on fermented dairy products. Seventy-nine random samples were selected, and the salt (NaCl %) content was determined by potentiometric titration after sample preparation and homogenization; also samples were analyzed for their moisture (oven drying method). Data analysis involved descriptive statistics and one-sample t-test. A comprehensive literature review on salt reduction strategies was also performed proposing a model for an optimized low-salt fermented dairy product. This study found high salt content in many fermented dairy products. Brined cheese had the highest salt level (7.57 g/100 g), while pizza processed cheese had the lowest (1.03 g/100 g). Probiotic yogurts contained less salt (0.29 g/100 g) than regular ones. Other products like doogh (1.04 g/100 g), kefir (0.63 g/100 g), and kashk (2.78 g/100 g) also contributed significantly to salt intake. Most products exceeded recommended salt limits. Consuming just one serving of these products often accounted for a substantial portion of the daily recommended salt intake (WHO: 5 g/day). This research emphasizes the need for reducing salt in fermented dairy products to improve public health. This study highlights the excessive salt content in many fermented dairy products, surpassing recommended daily intake levels. Therefore, to address this public health concern, a multi-faceted approach is necessary. For this purpose, Policymakers should implement stringent monitoring, enforce food labeling, and develop legislation to reduce salt content. Furthermore, the food industry must innovate to reduce salt while maintaining product quality and taste. On the other hand, consumer education and awareness campaigns are crucial for informed choices. Additionally, further research is needed to understand consumer perceptions and the long-term impact of salt-sustainable reduction strategies on dietary habits and public health.
Collapse
Affiliation(s)
- Ali Massomian
- Department of Microbiology and Food Hygiene, Faculty of Veterinary MedicineLorestan UniversityKhorramabadIran
| | - Azadeh Rashidimehr
- Department of Microbiology and Food Hygiene, Faculty of Veterinary MedicineLorestan UniversityKhorramabadIran
| | - Fatemeh Mohammadi‐Nasrabadi
- Food and Nutrition Policy and Planning Research Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Khadijeh Khoshtinat
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Esfarjani
- Food and Nutrition Policy and Planning Research Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Kovačević Z, Čabarkapa I, Šarić L, Pajić M, Tomanić D, Kokić B, Božić DD. Natural Solutions to Antimicrobial Resistance: The Role of Essential Oils in Poultry Meat Preservation with Focus on Gram-Negative Bacteria. Foods 2024; 13:3905. [PMID: 39682977 DOI: 10.3390/foods13233905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
The increase in antimicrobial resistance (AMR) is a major global health problem with implications on human and veterinary medicine, as well as food production. In the poultry industry, the overuse and misuse of antimicrobials has led to the development of resistant or multi-drug resistant (MDR) strains of bacteria such as Salmonella spp., Escherichia coli and Campylobacter spp., which pose a serious risk to meat safety and public health. The genetic transfer of resistance elements between poultry MDR bacteria and human pathogens further exacerbates the AMR crisis and highlights the urgent need for action. Traditional methods of preserving poultry meat, often based on synthetic chemicals, are increasingly being questioned due to their potential impact on human health and the environment. This situation has led to a shift towards natural, sustainable alternatives, such as plant-derived compounds, for meat preservation. Essential oils (EOs) have emerged as promising natural preservatives in the poultry meat industry offering a potential solution to the growing AMR problem by possessing inherent antimicrobial properties making them effective against a broad spectrum of pathogens. Their use in the preservation of poultry meat not only extends shelf life, but also reduces reliance on synthetic preservatives and antibiotics, which contribute significantly to AMR. The unique chemical composition of EOs, that contains a large number of different active compounds, minimizes the risk of bacteria developing resistance. Recent advances in nano-encapsulation technology have further improved the stability, bioavailability and efficacy of EOs, making them more suitable for commercial use. Hence, in this manuscript, the recent literature on the mechanisms of AMR in the most important Gram-negative poultry pathogens and antimicrobial properties of EOs on these meat isolates was reviewed. Additionally, chemical composition, extraction methods of EOs were discussed, as well as future directions of EOs as natural food preservatives. In conclusion, by integrating EOs into poultry meat preservation strategies, the industry can adopt more sustainable and health-conscious practices and ultimately contribute to global efforts to combat AMR.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivana Čabarkapa
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marko Pajić
- Department for Epizootiology, Clinical Diagnostic, Pathology and DDD, Scientific Veterinary Institute Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana D Božić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
5
|
Qian X, Lin S, Chen T, Li S, Wang S, Li C, Wang R, Sun N. Evaluation of the texture characteristics and taste of shrimp surimi with partial replacement of NaCl by non‑sodium metal salts. Food Chem 2024; 459:140403. [PMID: 39024873 DOI: 10.1016/j.foodchem.2024.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/07/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Ionic strength plays a significant role in the aggregation behavior of myofibrillar proteins. The study investigated the effects of KCl or CaCl2 as substitutes for NaCl on the gel properties and taste of shrimp surimi at a constant ionic strength (IS = 0.51). Increased KCl substitution ratio resulted in a reduction in α-helix content and an increase in β-sheet content of myofibrillar proteins, thereby enhancing water holding capacity. Optimal KCl substitutions (1.5% NaCl +1.94% KCl) contributed to maintaining the desired taste and improving gel properties. CaCl2 facilitates the extraction and dissolution of myofibrillar proteins, resulting in an organized and dense gel network with significant water-holding capacity. However, excessive additions (>1.27%) resulted in a notable decrease in taste and gel strength due to excessive aggregation and precipitation of myofibrillar proteins. These findings provide a solid theoretical foundation for production of high-quality, low-salt shrimp surimi.
Collapse
Affiliation(s)
- Xixin Qian
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, PR China
| | - Tingjia Chen
- Dalian Salt Chemical Group Co., Ltd., Dalian 116034, China
| | - Shuang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuo Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chenqi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruming Wang
- Dalian Salt Chemical Group Co., Ltd., Dalian 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
6
|
Martini D, Angelino D, Tucci M, La Bruna E, Pellegrini N, Del Bo’ C, Riso P. Can Front-of-Pack Labeling Encourage Food Reformulation? A Cross-Sectional Study on Packaged Bread. Foods 2024; 13:3535. [PMID: 39593951 PMCID: PMC11593041 DOI: 10.3390/foods13223535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Front-of-pack labeling (FOPL) may represent an important instrument for the food industry in the promotion of food product reformulation. The present cross-sectional study used salt reduction in packaged breads as a case study, aiming to investigate whether two different types of FOPL (i.e., Nutri-Score (NS) and NutrInform battery (NIB)) can capture food reformulation and thus be effective tools for encouraging reformulation. The Nutri-Score and NIB were calculated by consulting the nutritional declarations and ingredient lists of 527 packaged breads currently sold in Italy before and after applying three different theoretical reformulation strategies: (i) a 25% salt decrease from the current median salt content in bread; (ii) a reduction of up to 0.825 g/100 g of salt, corresponding to the sodium benchmark of 330 mg/100 g set by the World Health Organization (WHO); and (iii) the minimum salt reduction needed to improve the NS by one grade. The results show that only ~44% of breads had improved NSs when the sodium was lowered to reach the WHO benchmark or when salt was reduced by 25%, whereas large variability was observed in the minimum salt reduction needed to improve the NS. Regarding the NIB, the battery for salt improved when both strategies of reformulation were applied. FOPL is not always effective in capturing food reformulation in terms of salt reduction, possibly discouraging the efforts of food companies to improve the nutritional quality of foods.
Collapse
Affiliation(s)
- Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Donato Angelino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Massimiliano Tucci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Edoardo La Bruna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
7
|
Li K, Liu X, Jiang F, Zhang B, Qiao D, Xie F. In the process of polysaccharide gel formation: A review of the role of competitive relationship between water and alcohol molecules. Int J Biol Macromol 2024; 281:136398. [PMID: 39389491 DOI: 10.1016/j.ijbiomac.2024.136398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Polysaccharides have emerged as versatile materials capable of forming gels through diverse induction methods, with alcohol-induced polysaccharide gels demonstrating significant potential across food, medicinal, and other domains. The existing research mainly focused on the phenomena and mechanisms of alcohol-induced gel formation in specific polysaccharides. Therefore, this review provides a comprehensive overview of the intricate mechanisms underpinning alcohol-triggered gelation of different polysaccharides and surveys their prominent application potentials through rheological, mechanical, and other characterizations. The mechanism underlying the enhancement of polysaccharide network structures by alcohol is elucidated, where alcohol displaces water to establish hydrogen bonding and hydrophobic interactions with polysaccharide chains. Specifically, alcohols change the arrangement of water molecules, and the partial hydration shell surrounding polysaccharide molecules is disrupted, exposing polysaccharides' hydrophobic groups and enhancing hydrophobic interactions. Moreover, the pivotal influences of alcohol concentration and addition method on polysaccharide gelation kinetics are scrutinized, revealing nuanced dependencies such as the different gel-promoting capabilities of polyols versus monohydric alcohols and the critical threshold concentrations dictating gel formation. Notably, immersion of polysaccharide gels in alcohol augments gel strength, while direct alcohol addition to polysaccharide solutions precipitates gel formation. Future investigations are urged to unravel the intricate nexus between the mechanisms underpinning alcohol-induced polysaccharide gelation and their practical utility, thereby paving the path for tailored manipulation of environmental conditions to engineer bespoke alcohol-induced polysaccharide gels.
Collapse
Affiliation(s)
- Kexin Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xizhong Liu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
8
|
Ma F, Li Y, Zhang Y, Zhang Q, Li X, Cao Q, Ma H, Xie D, Zhang B, Yu J, Li X, Xie Q, Wan G, Guo M, Guo J, Yin J, Liu G. Effects of umami substances as taste enhancers on salt reduction in meat products: A review. Food Res Int 2024; 185:114248. [PMID: 38658067 DOI: 10.1016/j.foodres.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.
Collapse
Affiliation(s)
- Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jia Yu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guoling Wan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
9
|
Seibt ACMD, Nerhing P, Pinton MB, Santos SP, Leães YSV, De Oliveira FDC, Robalo SS, Casarin BC, Dos Santos BA, Barin JS, Wagner R, De Menezes CR, Campagnol PCB, Cichoski AJ. Green technologies applied to low-NaCl fresh sausages production: Impact on oxidative stability, color formation, microbiological properties, volatile compounds, and sensory profile. Meat Sci 2024; 209:109418. [PMID: 38113656 DOI: 10.1016/j.meatsci.2023.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
The influence of different concentrations of NaCl (2.5% and 1.75%), basic electrolyzed water (BEW), and ultrasound (US, 25 kHz, 159 W) on the quality of fresh sausages was studied. During storage at 5 °C, TBARS, pH, Eh, aw, nitrous pigments, and bacterial evolution were evaluated at three specific time intervals: 1d, 15d, and 30d. At the same time, the volatile compounds and sensory profile were specifically assessed on both the 1d and 30d. Notably, sausages with 1.75% NaCl and BEW displayed higher pH values (up to 6.30) and nitrous pigment formation, alongside reduced Eh (as low as 40.55 mV) and TBARS values (ranging from 0.016 to 0.134 mg MDA/kg sample), compared to the 2.5% NaCl variants. Protein content ranged between 13.01% and 13.75%, while lipid content was between 18.23% and 18.86%, consistent across all treatments. Psychrotrophic lactic bacteria showed a significant increase in low-NaCl sausages, ranging from 5.77 to 7.59 log CFU/g, indicative of potential preservative benefits. The sensory analysis favored the TUSBEW70 treatment for its salty flavor on the 30th day, reflecting a positive sensory acceptance. The study highlights that employing US and BEW in sausage preparation with reduced NaCl content (1.75%) maintains quality comparable to higher salt (2.5%) counterparts. These findings are crucial for meat processing, presenting a viable approach to producing healthier sausages with reduced sodium content without compromising quality, aligning with consumer health preferences and industry standards.
Collapse
Affiliation(s)
| | - Priscila Nerhing
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Mariana Basso Pinton
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Priscila Santos
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Yasmim Sena Vaz Leães
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | - Silvino Sasso Robalo
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Bianca Campos Casarin
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | - Juliano Smanioto Barin
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Roger Wagner
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
10
|
Vici G, Rosi A, Angelino D, Polzonetti V, Scazzina F, Pellegrini N, Martini D. Salt content of prepacked cereal-based products and their potential contribution to salt intake of the Italian adult population: Results from a simulation study. Nutr Metab Cardiovasc Dis 2024; 34:436-444. [PMID: 37788951 DOI: 10.1016/j.numecd.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND AIMS High sodium intake is one of the main risk factors for noncommunicable diseases, and its consumption should be reduced. This study aimed to simulate changes in the daily salt intake of the Italian adult population based on consumption scenarios of prepacked cereal-based foods sold in Italy. METHODS AND RESULTS Information on food packages was retrieved from 2893 cereal-based products. Potential changes in salt intake were simulated based on food consumption scenarios that consider the daily consumption of cereal-based products suggested in the Italian Dietary Guidelines and their current daily consumption by Italian adults. The highest salt content was retrieved in bread (median, 25th-75th percentile: 1.3, 1.1-1.4 g/100 g) and bread substitutes (1.8, 1.0-2.2 g/100 g). If the suggested daily amounts were consumed, bread would contribute to 44% of the 5 g salt/day target, whereas bread substitutes, breakfast cereals, biscuits and sweet snacks would marginally contribute (1-2%). Compared to bread with median salt content, a -44% and +10% salt intake would be observed if products within the first and the last quartile of salt content were chosen, respectively. However, considering the actual intake of Italian consumers, bread would cover 25% and bread substitutes 7% of the daily salt target. CONCLUSION Food labels have a pivotal role and efforts are required to encourage consumers to use them to make healthy choices. Moreover, these results may contribute to setting sodium benchmarks in cereal-based products and encourage the food industry to reduce the salt content in the products.
Collapse
Affiliation(s)
- Giorgia Vici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Alice Rosi
- Department of Food and Drug, University of Parma, Parma, 43124, Italy.
| | - Donato Angelino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, 64100, Italy.
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| | | | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Italy.
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
11
|
Hashemi H, Eskandari MH, Hosseini SMH. A novel strategy for simultaneous reduction of salt and animal fat in burger using a taste contrast system based on double emulsion. Curr Res Food Sci 2023; 7:100644. [PMID: 38115893 PMCID: PMC10728326 DOI: 10.1016/j.crfs.2023.100644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
The work investigated a taste contrast strategy to reduce the salt content in burgers by a novel design of water in gelled oil in water double emulsion (DE) as an animal fat replacer. Oleogelation reduced the particle size and improved emulsion viscosity, resulting in more emulsion stability than conventional DE. Moreover, oil gelation enhanced the encapsulation efficiency of salt. The partial substitution of the optimized DE incorporating salt within the W1 and cinnamaldehyde within the oil phase with animal fat in the burger successfully reduced salt content by up to 25% while maintaining the desired level of saltiness. The presence of cinnamaldehyde also increased oxidative stability and decreased color changes during storage. The replacement of DE and oleogel in burgers diminished cooking loss, while negatively affected the textural properties. Therefore, further optimization of this strategy could lead to healthier food formulations with reduced fat and salt content.
Collapse
Affiliation(s)
- Hadi Hashemi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
12
|
Lee SH, Kim HY. Effect of Seawater Curing Agent on the Flavor Profile of Dry-Cured Bacon Determined by Sensory Evaluation, Electronic Nose, and Fatty Composition Analysis. Foods 2023; 12:foods12101974. [PMID: 37238794 DOI: 10.3390/foods12101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this study was to check the applicability of seawater as a natural curing agent by analyzing the difference it causes in the flavor of dry-aged bacon. Pork belly was cured for seven days, and dried and aged for twenty-one days. The curing methods included the following: wet curing with salt in water, dry curing with sea salt, brine curing with brine solution, and bittern curing with bittern solution. The seawater-treated groups showed a lower volatile basic nitrogen value than the sea-salt-treated groups (p < 0.05); dry curing showed a higher thiobarbituric acid reactive substance value than other treatments (p < 0.05). Methyl- and butane- volatile compounds and polyunsaturated fatty acids such as g-linolenic and eicosapentaenoic were the highest in the bittern-cured group, lending it superior results compared to those of the control and other treatments in sensory flavor analyses (cheesy and milky). Therefore, bittern is considered to have significant potential as a food-curing agent.
Collapse
Affiliation(s)
- Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, ChungNam-Do, Republic of Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, ChungNam-Do, Republic of Korea
| |
Collapse
|
13
|
Ercoşkun H. Impurities of natural salts of the earth. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:24-31. [PMID: 36053003 DOI: 10.1080/19393210.2022.2114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In this study, 18 different samples of unrefined coarse food salt were examined using inductively coupled plasma mass spectrometry and Fourier transform infrared spectroscopy. Additionally, microphotographs were taken to determine the visual distribution of the impurities in the salt samples. None of the salt samples analysed contained arsenic, mercury, tin, and antimony. Cadmium, chromium, nickel, lead, barium, lithium, aluminium, titanium, vanadium, cobalt, cupper, iron, zinc, manganese, magnesium, and calcium were determined in some salt samples. According to the results of FTIR analysis mainly polyamide polymer derivatives were found in Himalaya White, Himalaya, Klodawa, Nakhchivan, Delice, Guérande Flake, Guérande Celtic, Maldon, Havaii Black, Havaii Green, Havaii Red, Maras, and İzmir salts.
Collapse
Affiliation(s)
- Hüdayi Ercoşkun
- Food Engineering Department, Engineering Faculty, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
14
|
Lorén N, Niimi J, Höglund E, Albin R, Rytter E, Bjerre K, Nielsen T. Sodium reduction in foods: Challenges and strategies for technical solutions. J Food Sci 2023; 88:885-900. [PMID: 36658676 DOI: 10.1111/1750-3841.16433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/02/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
In many parts of the world, sodium consumption is higher than recommended levels, representing one of the most important food-related health challenges and leading to considerable economical costs for society. Therefore, there is a need to find technical solutions for sodium reduction that can be implemented by food producers and within food services. The aims of this review are to discuss the barriers related to sodium reduction and to highlight a variety of technical solutions. The barriers relate to consumer perception, microbiology, processing, and physicochemistry. Existing technical solutions include inhomogeneous salt distribution, coated salt particles, changing particle sizes and forms, surface coating, multisensory combinations, sodium replacements, double emulsions, adapted serum release by microstructure design, and adapted brittleness by microstructure design. These solutions, their implementation and the associated challenges, and applicable product categories are described. Some of these solutions are ready for use or are in their early development stages. Many solutions are promising, but in most cases, some form of adaptation or optimization is needed before application in specific products, and care must always be taken to ensure food safety. For instance, further research and innovation are required in the dynamic evolution of saltiness perception, consumer acceptance, the binding and migration of sodium, juiciness, microbiological safety, and the timing of salt addition during processing. Once implemented, these solutions will undoubtedly support food producers and food services in reducing sodium content and extend the application of the solutions to different foods.
Collapse
Affiliation(s)
- Niklas Lorén
- RISE Agriculture and Food, Göteborg, Sweden.,Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Jun Niimi
- RISE Material and Surface Design, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
ZHANG Y, SUN M, HUANG Y. Effects of different cold sterilization techniques on physicochemical and flavor quality of low salt sliced bacon. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Yunqi ZHANG
- Southwest University of Science and Technology, China
| | - Meng SUN
- Southwest University of Science and Technology, China
| | | |
Collapse
|
16
|
The Disposition of Bioactive Compounds from Fruit Waste, Their Extraction, and Analysis Using Novel Technologies: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fruit waste contains several bioactive components such as polyphenols, polysaccharides, and numerous other phytochemicals, including pigments. Furthermore, new financial opportunities are created by using fruit ‘leftovers’ as a basis for bioactivities that may serve as new foods or food ingredients, strengthening the circular economy’s properties. From a technical standpoint, organic phenolic substances have become more appealing to industry, in addition to their application as nutritional supplements or functional meals. Several extraction methods for recovering phenolic compounds from fruit waste have already been published, most of which involve using different organic solvents. However, there is a growing demand for eco-friendly and sustainable techniques that result in phenolic-rich extracts with little ecological impact. Utilizing these new and advanced green extraction techniques will reduce the global crisis caused by fruit waste management. Using modern techniques, fruit residue is degraded to sub-zero scales, yielding bio-based commodities such as bioactive elements. This review highlights the most favorable and creative methods of separating bioactive materials from fruit residue. Extraction techniques based on environmentally friendly technologies such as bioreactors, enzyme-assisted extraction, ultrasound-assisted extraction, and their combination are specifically covered.
Collapse
|
17
|
Rosa A, Pinna I, Piras A, Porcedda S, Masala C. Flavoring of sea salt with Mediterranean aromatic plants affects salty taste perception. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6005-6013. [PMID: 35446446 PMCID: PMC9540657 DOI: 10.1002/jsfa.11953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Salt (sodium chloride) is an essential component of daily food, crucial for many physiological processes. Due to health risks related to salt over consumption, considerable interest is devoted to strategies to reduce dietary salt intake. In this work we evaluated the sensory dimensions of sea salts flavored with Mediterranean aromatic plants with the aim to confirm the role of herbs/spices in the enhancement of salty perception and to validate the use of flavored salts as a strategy to reduce salt intake. To this goal we compared taste dimensions (pleasantness, intensity, and familiarity) of solutions obtained with salt and sea salts flavored with Mediterranean herbs, spices, and fruits. Sensorial differences were analyzed using a seven-point hedonic Likert-type scale on 58 non-trained judges. RESULTS Main flavor compounds, identified by gas chromatography-flame ionization detection-mass spectrometry (GC-FID-MS) analysis, were α-pinene and 1,8-cineole in myrtle salt (FS 1), verbenone, α-pinene, 1,8-cineole, and rosifoliol in herbs/plants salt (FS 2), and limonene in orange fruits/saffron salt (FS 3). At the dose of 0.04 g mL-1 , saline solutions obtained with flavored salt (containing approximately 6-30% less sodium chloride) were perceived as more intense, less familiar, but equally pleasant than pure salt solution. In particular, sea salt flavored with orange fruits/saffron emerged as the most interesting in potentiating saltiness perception. CONCLUSION Our study confirmed the important role of Mediterranean aromatic plants in the enhancement of saltiness perception and qualified the use of flavored sea salt during food preparation/cooking instead of normal salt as a potential strategy to reduce the daily salt intake. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonella Rosa
- Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Ilenia Pinna
- Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Alessandra Piras
- Department of Chemical and Geological SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Silvia Porcedda
- Department of Chemical and Geological SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| | - Carla Masala
- Department of Biomedical SciencesUniversity of Cagliari, Cittadella UniversitariaMonserratoItaly
| |
Collapse
|
18
|
Xia X, Fu Y, Ma L, Zhu H, Yu Y, Dai H, Han J, Liu X, Liu Z, Zhang Y. Protein Hydrolysates from Pleurotus geesteranus Modified by Bacillus amyloliquefaciens γ-Glutamyl Transpeptidase Exhibit a Remarkable Taste-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12143-12155. [PMID: 36094421 DOI: 10.1021/acs.jafc.2c03941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Long-term high salt intake exerts a negative impact on human health. The excessive use of sodium substitutes in the food industry can lead to decreased sensory quality of food. γ-Glutamyl peptides with pronounced taste-enhancing effects can offer an alternative approach to salt reduction. However, the content and yield of γ-glutamyl peptides in natural foods are relatively low. Enzyme-catalyzed synthesis of γ-glutamyl peptides provides a feasible solution. In this study, Pleurotus geesteranus was hydrolyzed by Flavourzyme to generate protein hydrolysates. Subsequently, they were modified by Bacillus amyloliquefaciens γ-glutamyl transpeptidase to generate γ-glutamyl peptides. The reaction conditions were optimized and their taste-enhancing effects were evaluated. Their peptide sequences were identified by parallel reaction monitoring with liquid chromatography-tandem mass spectrometry and analyzed using molecular docking. The optimal conditions for generation of γ-glutamyl peptides were a pH of 10.0, an enzyme condition of 1.2 U/g, and a reaction time of 2 h, which can elicit a strong kokumi taste. Notably, it exhibited a remarkable taste-enhancing effect for umami intensity (76.07%) and saltiness intensity (1.23-fold). Several novel γ-glutamyl peptide sequences were found by liquid chromatography-tandem mass spectrometry, whereas the binding to the calcium-sensing receptor was confirmed by molecular docking analysis. Overall, γ-glutamyl peptides from P. geesteranus could significantly enhance the umami and salt tastes, which can serve as promising taste enhancers.
Collapse
Affiliation(s)
- Xiaozhou Xia
- College of Food Science, Southwest University, Chongqing400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, P. R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing400715, P. R. China
| | - Hankun Zhu
- College of Food Science, Southwest University, Chongqing400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, P. R. China
| | - Yong Yu
- College of Food Science, Southwest University, Chongqing400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, P. R. China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, P. R. China
| | - Jiadong Han
- Chongqing Jiaxian Jiuqi Food Co. Ltd., Chongqing400715, China
| | - Xin Liu
- Angel Yeast Co.Ltd., Yichang443003, Hubei, China
| | | | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, P. R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing400715, P. R. China
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing400715, P. R. China
| |
Collapse
|
19
|
Comparative Metabolomic Analysis of Moromi Fermented Using Different Aspergillus oryzae Strains. Molecules 2022; 27:molecules27196182. [PMID: 36234719 PMCID: PMC9573031 DOI: 10.3390/molecules27196182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Aspergillus oryzae (A. oryzae) is an important starter in the fermentation of koji and moromi. However, the effect of different A. oryzae strains on the quality of moromi has rarely been studied. For this reason, this study analyzed the physicochemical properties, enzyme activity, sensory quality, and metabolite profiles of moromi samples fermented using two strains (A. oryzae KCCM12012P (moromi-1) and KCCM12804P (moromi-2)), which were newly isolated from fermented soy foods, and compared them to those of a commercialized A. oryzae strain (control). Amino-type nitrogen contents of moromi-1 and moromi-2 samples were higher than that of control moromi, and their amylase and protease activities were also higher. Moreover, metabolite profiles of moromi were significantly altered according to strains. In particular, the levels of many amino acids, peptides, nucleotides, and acidic compounds were altered, which resulted in changes in the sensory quality of moromi. Although volatile compounds were not investigated, the results suggested that the quality of moromi was significantly different for newly isolated strains, especially A. oryzae KCCM12804P, and they were superior to the commercial strain in terms of taste-related substances. Therefore, these strains could be used as good starters to produce moromi and soy sauce with good sensory quality.
Collapse
|
20
|
|
21
|
Houška M, Silva FVM. The Effect of Processing Methods on Food Quality and Human Health: Latest Advances and Prospects. Foods 2022; 11:foods11040611. [PMID: 35206086 PMCID: PMC8870817 DOI: 10.3390/foods11040611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Milan Houška
- Food Research Institute Prague, 102 00 Prague, Czech Republic
- Correspondence:
| | - Filipa Vinagre Marques Silva
- LEAF, Linking Landscape, Environment, Agriculture and Food, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| |
Collapse
|
22
|
Muchaamba F, Eshwar AK, Stevens MJA, Stephan R, Tasara T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front Microbiol 2022; 12:792162. [PMID: 35058906 PMCID: PMC8764371 DOI: 10.3389/fmicb.2021.792162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
| |
Collapse
|