1
|
Moonsub K, Seesuriyachan P, Boonyawan D, Rachtanapun P, Sawangrat C, Opassuwan T, Wattanutchariya W. Combating foodborne pathogens: Efficacy of plasma-activated water with supplementary methods for Staphylococcus aureus eradication on chicken, and beef. Food Chem X 2024; 24:101890. [PMID: 39498257 PMCID: PMC11533612 DOI: 10.1016/j.fochx.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
The research study suggested using plasma-activated water (PAW) along with auxiliary technologies, such as micro/nanobubbles (MNB), ultraviolet (UV) photolysis, and ultrasonication (US), to increase the effectiveness of sterilization. By using Factorial Design of Experiments (DOE) techniques, the characteristics and optimal production that contributed to disinfecting pathogens were assessed. Analysis revealed that Staphylococcus aureus (S. aureus) infection rate was most significantly influenced by factors including duration of MNB, UV, and the interaction term between MNB*UV. The optimal conditions for S. aureus reduction in chicken and beef of 8.41 and 8.20 log10 CFU/ml, respectively, which were found when PAW was combined with UV and US for 20 min of treatment. This study arrives to the conclusion that combining PAW with appropriate supplementary technologies increased efficiency and enhance disinfection effectiveness in chicken and beef which could be implemented for another alternative pathogen inactivation in food industry. © 2017 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Kochakon Moonsub
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Chiang Mai University, Chiang Mai, Thailand
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Chiang Mai University, Chiang Mai, Thailand
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University, Chiang Mai, Thailand
| | - Takron Opassuwan
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Agriculture and Bio Plasma Technology Center (ABPlas), Science and Technology Park, Chiang Mai University, Chiang Mai, Thailand
| | - Wassanai Wattanutchariya
- Advanced Technology and Innovation Management for Creative Economy Research Group (AIMCE), Chiang Mai University, Chiang Mai, Thailand
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Plasma Innovation for Sustainable Quality of Life, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Lai H, Liu M, Tang Y, Ren F, Xu M, Guo C, Jiao XA, Huang J. Microbiological safety assessment of restaurants and HACCP-certified kitchens in hotels: A study in eastern China. Int J Food Microbiol 2024; 425:110868. [PMID: 39154568 DOI: 10.1016/j.ijfoodmicro.2024.110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/25/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The Hazard Analysis and Critical Control Point (HACCP) system plays a crucial role in ensuring food safety within food service establishments, effectively reducing the risk of foodborne diseases. This study focused on assessing the risk of microbe contamination in poultry-based cook-served food during meal preparation in four restaurants and five selected HACCP-certified hotels in eastern China. We examined samples collected from 26 poultry-based cooked dishes, 248 food contact surfaces, 252 non-food contact surfaces, and 121 hand swabs. Our findings indicated a favorable trend of compliance with Chinese national standards, as Escherichia coli and Campylobacter were not detected in any cooked food samples. However, the microbiological assessments revealed non-compliance with total plate count standards in 7 % of the cooked samples from restaurants. In contrast, both dine-in hotels and restaurants exhibited significant non-compliance with guidance concerning food and non-food contact surfaces. Furthermore, our study found that chefs' hand hygiene did not meet microbiological reference standards, even after washing. Notably, Campylobacter persisted at 27 % and 30 % on chefs' hands, posing a significant risk of cross-contamination and foodborne diseases. These findings emphasize the urgent necessity for enhanced supervision of hygiene procedures and process monitoring in the HACCP-certified establishments engaged in the preparation and serving of food. Targeted interventions and food safety education for different chef subgroups can enhance food handling practices and reduce the risk of foodborne diseases in independent food establishments.
Collapse
Affiliation(s)
- Honggang Lai
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225009, China; Zhejiang Meat Processing and Quality Control Engineering Technology Research Center, China
| | - Minjun Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225001, China
| | - Yuanyue Tang
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Fangzhe Ren
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingshu Xu
- Zhejiang Meat Processing and Quality Control Engineering Technology Research Center, China
| | - Changbin Guo
- Yangzhou Chengju Agricultural Products Processing Co., Ltd., China
| | - Xin-An Jiao
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jinlin Huang
- Jiangsu Key Lab of Zoonosis, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Ren X, Yang D, Yang Z, Li Y, Yang S, Li W, Qiao X, Xue C, Chen M, Zhang L, Yan L, Peng Z. Prevalence and Antimicrobial Susceptibility of Foodborne Pathogens from Raw Livestock Meat in China, 2021. Microorganisms 2024; 12:2157. [PMID: 39597545 PMCID: PMC11596567 DOI: 10.3390/microorganisms12112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The rising prevalence of pathogenic bacteria in livestock meat poses a growing public health concern in China. The determination of antimicrobial resistance (AMR) is critical for the clinical management of foodborne infections stemming from livestock meat consumption. This study aimed to assess the prevalence of pathogenic bacteria in livestock meat (pork, beef, and mutton) sampled in China in 2021 and to identify the most common AMR patterns among the isolated pathogens. A total of 2515 raw livestock meat samples were collected across 15 provinces in China during 2021. Pathogen detection, including Listeria monocytogenes, Salmonella, and diarrheagenic Escherichia coli (DEC), followed China's national food safety standards. All Salmonella isolates underwent serotyping via slide agglutination. Antimicrobial susceptibility of Salmonella and DEC isolates was assessed using the broth dilution method. The detection rates for L. monocytogenes, Salmonella, and DEC in raw livestock meat were 9.06% (228/2, 515), 10.54% (265/2, 515), and 6.16% (155/2, 515), respectively. Pork showed the highest contamination rates for Salmonella and DEC, with prevalence rates of 17.60% (214/1, 216, χ2 = 124.62, p < 0.05) and 7.89% (96/1, 216, χ2 = 14.466, p < 0.05), respectively. L. monocytogenes contamination was notably higher in chilled (14.43%, 84/582) and frozen (12.39%, 55/444) meat than in fresh meat (χ2 = 43.510, p < 0.05). In contrast, Salmonella (12.09%, 180/1489, χ2 = 15.173, p < 0.05) and DEC (7.25%, 108/1489, χ2 = 12.275, p < 0.05) were more prevalent in fresh meat than in chilled or frozen samples. The predominant Salmonella serotypes identified were Salmonella enterica subsp. enterica serovar Typhimurium, followed by Salmonella enterica serovar Derby, Salmonella enterica serovar Rissen, Salmonella enterica serovar London, and Salmonella enterica serotype Enteritidis. Enteroaggregative E. coli was the most frequent pathotype among DEC (84.7%, 133/157), followed by enteropathogenic E. coli (8.3%, 13/157) and enterohemorrhagic E. coli (5.1%, 8/157). Among the 14 tested antimicrobial agents, Salmonella isolates demonstrated an overall resistance rate of 87.50%, while DEC exhibited a resistance rate of 84.70%. Ampicillin and tetracycline showed the highest resistance rates in both pathogens. Multi-drug resistance (MDR) was observed in 67.53% of Salmonella isolates (183 isolates) and 57.96% of DEC isolates (91 isolates). This study highlights the significant contamination of retail raw livestock meat in China by L. monocytogenes, Salmonella, and DEC. The high resistance of MDR in both pathogens poses serious public health risks. Chinese food safety and veterinary authorities should implement stricter measures to control pathogen contamination and regulate the use of antimicrobials in livestock to mitigate these risks.
Collapse
Affiliation(s)
- Xiang Ren
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Zushun Yang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Ying Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Weiwei Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Xin Qiao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China;
| | - Chengyu Xue
- Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China;
| | - Min Chen
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Limin Zhang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650000, China; (Z.Y.); (M.C.); (L.Z.)
| | - Lin Yan
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China; (X.R.); (D.Y.); (Y.L.); (S.Y.); (W.L.)
| |
Collapse
|
4
|
Mansour AM, Nossair MA, Soliman FS, Tawfik RG, Elekhnawy E, Al-Kuraishy HM, Batiha GES, Mahmoud MH, Alexiou A, Shawky MM. Escherichia coli isolates from meat and abattoirs environment in Egypt: molecular characterization and control by nanosilver particles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1751-1762. [PMID: 37535931 DOI: 10.1080/09603123.2023.2243828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Three hundred samples, including meat from the slaughtered carcass and water, air samples, and swabs from the floor, wall, and employees' hands, were collected from five municipal abattoirs spread across several Egyptian provinces. The Escherichia coli was isolated from floor swabs, meat, air, wall, hand, and water samples. Serotyping of the recovered isolates clarified the presence of various serotypes, including enterohemorrhagic serotypes (O111: H4, O128: H2, and O127: H6) and enterotoxigenic serotypes (O44: H18 and O125: H21). The isolates were resistant to cefotaxime (100%), amoxiclav (80%), then rifampin (66.7%). The stx1 gene, stx2 gene, eaeA gene, blaCMY2 gene and iss gene were detected in 10-80 % of the isolates. Nanosilver (AgNPs) showed that 12.5 ppm was the lowest concentration that prevented bacterial growth. It was observed that 12% of workers wore a clean white coat, only 24% washed their hands between activities during work, only 14% used soap for hand washing, and 42% utilized the same knife for meat and its offal.
Collapse
Affiliation(s)
- Alaa M Mansour
- Department of Animal Hygiene and Zoonosis, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A Nossair
- Department of Animal Hygiene and Zoonosis, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Faten S Soliman
- Department of Animal Hygiene and Zoonosis, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Gomaa Tawfik
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, M.B.ch.b, FRCP, Bagdad, Iraq
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| | - Michael M Shawky
- Department of Food Hygiene, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Warmate D, Onarinde BA. Food safety incidents in the red meat industry: A review of foodborne disease outbreaks linked to the consumption of red meat and its products, 1991 to 2021. Int J Food Microbiol 2023; 398:110240. [PMID: 37167789 DOI: 10.1016/j.ijfoodmicro.2023.110240] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Red meat is a significant source of human nutrition, and the red meat industry contributes to the economy of nations. Nonetheless, there is a widespread global concern about public health issues posed by severe food safety incidents within the red meat industry. Most of these incidents are associated with foodborne disease outbreaks that impact individual consumers, food businesses and society. This study adopts a systematic search and review approach to identify three decades of published investigation reports of global foodborne disease outbreaks linked with the consumption of red meat and products made from them. The review aims to evaluate the critical features of these outbreak incidents to get insight into their contributing factors and root causes. In particular, this review discusses the transmission setting (origin of pathogenic agents), the food vehicles mostly incriminated, the causative pathogens (bacteria, viruses, and parasites) causing the most illnesses, and the most commonly reported contributing factors to the outbreaks. This information can help researchers and food business operators (FBOs) inform future risk assessment studies and support risk management activities in developing risk-mitigating strategies for the industry. Findings from this study suggest that implementing food safety management strategies which include adequate control measures at all stages of the food chain, from farm to fork, is imperative in preventing outbreak incidents. Of equal importance is the need for enhanced and sustained public education about the risk of foodborne illnesses associated with meat and its products whilst discouraging the consumption of raw meat products, especially by high-risk groups.
Collapse
Affiliation(s)
- Dein Warmate
- National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK.
| | - Bukola A Onarinde
- National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK
| |
Collapse
|
6
|
Chen X, Xu L, Ren Z, Jia F, Yu Y. Sustainable supply chain management in the leather industry: a systematic literature review. INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS 2022. [DOI: 10.1080/13675567.2022.2104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Xiaowei Chen
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Linqi Xu
- The York Management School, University of York, Heslington, York, UK
| | - Zhou Ren
- Architectural Design Department, Zhejiang Province Institute of Architectural Design and Research, ZIAD, Hangzhou, China
| | - Fu Jia
- The York Management School, University of York, Heslington, York, UK
| | - Yiqi Yu
- Straights Institute, Minjiang Unveristy, Fuzhou, China
| |
Collapse
|
7
|
Atambayeva Z, Nurgazezova A, Rebezov M, Kazhibayeva G, Kassymov S, Sviderskaya D, Toleubekova S, Assirzhanova Z, Ashakayeva R, Apsalikova Z. A Risk and Hazard Analysis Model for the Production Process of a New Meat Product Blended With Germinated Green Buckwheat and Food Safety Awareness. Front Nutr 2022; 9:902760. [PMID: 35811973 PMCID: PMC9258911 DOI: 10.3389/fnut.2022.902760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
This study was specifically designed for a small-scale meat processing enterprise “DARIYA” to set up a specific HACCP plan for the new product (patties) made from mixed horsemeat with vegetable components developed in the Department of Technology of Food Production and Biotechnology, Shakarim University of Semey. Critical control points (CCPs) were identified and applied in the HACCP plan. The different hazards were detected at each processing step, whereas each CCP in the HACCP plan was identified and accompanied with the appropriate significant hazard, critical limit, monitoring of the CCP, and corrective actions, confirming that the enterprise has fully employed the HACCP methodology and ISO 22000:2018. Our results indicate that during almost 1 year following the implementation of ISO 22000:2018, the coliform level of tested patties significantly dropped (p < 0.05) after 6 months of implementation (coliform count dropped from 4.4 MPN/g to 1.8 MPN/g). The rapid screening of the bacterial count, heavy metals, pesticide residue, and physical contamination levels also improved monitoring assertiveness, allowing them to deal with foreseeable issues linking to resources and guarantee product quality. Cesium-137 was recorded as 5.4 ± 2.9627 Bq/kg in horsemeat and 6.7 ± 2.7045 in poultry. The activity of cesium-137 did not exceed the MAC. This result discloses that prompt screening is the foremost and necessary step for small enterprises. According to this study, the “acceptance of raw materials” is the most important CCP, and their control, particularly in small-scale meat processing enterprises, can actually prevent many negative outcomes. The implementation of both standards improved food quality by declining the flaw rates for patties, and the number of flow inconsistencies needed for correction in the process also dropped significantly (p < 0.05), demonstrating that safety and quality points were improving. If the application of the HACCP plan were to continue over an extended period of time, the Food Safety Management System's (FSMS) benefits would be more substantial improvements to a greater number of items being monitored. The process of implementing HACCP principles and ISO 22000:2018 could be arduous but achievable enough to be used in small industries with significant outcomes.
Collapse
Affiliation(s)
- Zhibek Atambayeva
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
- *Correspondence: Zhibek Atambayeva
| | - Almagul Nurgazezova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Galiya Kazhibayeva
- Department of Biotechnology, S. Toraighyrov Pavlodar State University, Pavlodar, Kazakhstan
| | - Samat Kassymov
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Diana Sviderskaya
- Faculty of Foundation, Innovative University of Eurasia, Pavlodar, Kazakhstan
| | - Sandugash Toleubekova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zhanna Assirzhanova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Rysqul Ashakayeva
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zukhra Apsalikova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| |
Collapse
|
8
|
Analysis of the most frequent nonconformance aspects related to Good Manufacturing Practices (GMP) among small and medium enterprises (SMEs) in the food industry and their main factors. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Adamchick J, Rich KM, Perez AM. Self-Reporting of Risk Pathways and Parameter Values for Foot-and-Mouth Disease in Slaughter Cattle from Alternative Production Systems by Kenyan and Ugandan Veterinarians. Viruses 2021; 13:v13112112. [PMID: 34834919 PMCID: PMC8621966 DOI: 10.3390/v13112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Countries in which foot-and-mouth disease (FMD) is endemic may face bans on the export of FMD-susceptible livestock and products because of the associated risk for transmission of FMD virus. Risk assessment is an essential tool for demonstrating the fitness of one’s goods for the international marketplace and for improving animal health. However, it is difficult to obtain the necessary data for such risk assessments in many countries where FMD is present. This study bridged the gaps of traditional participatory and expert elicitation approaches by partnering with veterinarians from the National Veterinary Services of Kenya (n = 13) and Uganda (n = 10) enrolled in an extended capacity-building program to systematically collect rich, local knowledge in a format appropriate for formal quantitative analysis. Participants mapped risk pathways and quantified variables that determine the risk of infection among cattle at slaughter originating from each of four beef production systems in each country. Findings highlighted that risk processes differ between management systems, that disease and sale are not always independent events, and that events on the risk pathway are influenced by the actions and motivations of value chain actors. The results provide necessary information for evaluating the risk of FMD among cattle pre-harvest in Kenya and Uganda and provide a framework for similar evaluation in other endemic settings.
Collapse
Affiliation(s)
- Julie Adamchick
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
- Correspondence:
| | - Karl M. Rich
- Department of Agricultural Economics, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
| |
Collapse
|