1
|
Xu H, Chen X, Zhang Q, Yang Z, Tian J, Chen Q, Chen J. Effects of phenolic acids on tetramethylpyrazine formation via room temperature spontaneous ammoniation of acetoin. Food Chem X 2025; 25:102173. [PMID: 39897975 PMCID: PMC11783383 DOI: 10.1016/j.fochx.2025.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
In this study, we aim to investigate the effects of phenolic acids on tetramethylpyrazine (TTMP) formation in low-temperature environments and discuss its possible mechanism. The results demonstrate that TTMP formation kinetics via acetoin (ACT) ammonification was determined to be pseudo-zero-order reaction, which transitions to a pseudo-first-order kinetic model upon high gallic acid concentrations. The TTMP formation in samples spiked with phenolic acids was significantly higher than the control group. The response surface results that the production of TTMP increases with the extension of time align with the TTMP content trend in vinegar aging. At pH 7.0, TTMP formation was 56 and 70 times higher than at pH 3.0 and pH 11.0, respectively. The findings indicate that phenolic acids can alter reactive imine intermediates associated with the formation of pyrazinyl radicals. This study provides valuable insights into enhancing the characteristic pyrazine flavor and improving quality control in fermented foods.
Collapse
Affiliation(s)
- Hui Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Xuanrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianqian Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jingjing Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, PR China
| | - Jicheng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
2
|
Ren A, Zhang Y, Bian Y, Liu YJ, Zhang YX, Ren CJ, Zhou Y, Zhang T, Feng XS. Pyrazines in food samples: Recent update on occurrence, formation, sampling, pretreatment and analysis methods. Food Chem 2024; 430:137086. [PMID: 37566982 DOI: 10.1016/j.foodchem.2023.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Pyrazines are a class of active aromatic substances existing in various foods. The accumulation of pyrazines has an impact on flavor and quality of food products. This review encompasses the formation mechanisms and control strategies of pyrazines via Maillard reaction (MR), including the new reactants and emerging techniques. Pyrazines characteristics are better understood through the developed sample pretreatments and detection methods. Herein, an in-depth review of pretreatments and analysis methods since 2010 is presented to explore the simple, fast, green, and effective strategies. Sample preparation methods include liquid phase extraction, solid phase extraction, supercritical fluid extraction, and microextraction methods such as liquid phase microextraction, and solid phase microextraction, etc. Detections are made by chromatographic methods, and sensors, etc. Advantages and limitations are discussed and compared for providing insights to further studies.
Collapse
Affiliation(s)
- Ai Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Chen-Jie Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
4
|
Effect of Oil Type Used in Neapolitan Pizza TSG Topping on Its Physical, Chemical, and Sensory Properties. Foods 2022; 12:foods12010041. [PMID: 36613257 PMCID: PMC9818686 DOI: 10.3390/foods12010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND According to the regulations of the Neapolitan Pizza TSG, extra virgin olive oil must be exclusively used as topping ingredient, together with tomato for pizza marinara-type production. As, often deliberately, other oils are replaced by pizza makers for economical and organoleptic purposes, the present study was conducted to analyze the quality of pizza depending on the oil typology used. METHODS Chemical and sensory analyses were performed on olive oils and on pizza topping mix samples after cooking to detect changes due to the applied cooking processing. RESULTS The results revealed the best quality of a monovarietal olive oil (Ottobratica cv.) for their peculiar phenolic content related to the best oxidation stability after pizza's cooking, expressed as bioactive amounts and lower presence of undesired volatile compounds. CONCLUSIONS The use of an extra virgin monovarietal olive oil, such as Ottobratica cv., in the topping of pizza is preferable to other oils, also EVOO, because of its higher quality, which is reflected in greater health and pleasant characteristics from a sensorial point of view.
Collapse
|
5
|
Bartkiene E, Starkute V, Zokaityte E, Klupsaite D, Mockus E, Ruzauskas M, Bartkevics V, Borisova A, Rocha JM, Ozogul F, Liatukas Z, Ruzgas V. Changes in the physicochemical parameters and microbial community of a new cultivar blue wheat cereal wholemeal during sourdough production. Front Microbiol 2022; 13:1031273. [PMID: 36569101 PMCID: PMC9773212 DOI: 10.3389/fmicb.2022.1031273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Changes in the characteristics of a new cultivar (DS8472-5) of blue wheat during wholemeal fermentation with Pediococcus acidilactici (LUHS29), Liquorilactobacillus uvarum (LUHS245), and Lactiplantibacillus plantarum (LUHS122), including acidity, microbiological and chromaticity parameters, free amino acid (FAA), gamma-aminobutyric acid (GABA), and biogenic amine (BA) contents, macro- and micro-element concentrations and fatty acid (FA) and volatile compounds (VC), were evaluated. In addition, a metagenomic analysis was performed. The lactic acid bacteria (LAB) strains used for fermentation was a significant factor in wholemeal fermentation sample pH, redness (a*) and LAB counts (p ≤ 0.05). In most of the samples, fermentation increased the FAA content in wheat wholemeal, and the highest concentration of GABA was found in DS8472-5 LUHS122 samples. Phenylethylamine (PHE) was found in all wheat wholemeal samples; however, spermidine was only detected in fermented samples and cadaverine only in DS8472-5 LUHS122. Fermented samples showed higher omega-3 and omega-6 contents and a higher number and variety of VC. Analysis of the microbial profile showed that LAB as part of the natural microbiota present in cereal grains also actively participates in fermentation processes induced by industrial bacterial cultures. Finally, all the tested LAB were suitable for DS8472-5 wheat wholemeal fermentation, and the DS8472-5 LUHS122 samples showed the lowest pH and the highest LAB viable counts (3.94, 5.80°N, and 8.92 log10 CFU/g, respectively).
Collapse
Affiliation(s)
- Elena Bartkiene
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Faculty of Veterinary Medicine, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment (BIOR), Riga, Latvia
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment (BIOR), Riga, Latvia
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Çukurova University, Adana, Turkey
| | - Zilvinas Liatukas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Vytautas Ruzgas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| |
Collapse
|
6
|
Bartkiene E, Starkute V, Katuskevicius K, Laukyte N, Fomkinas M, Vysniauskas E, Kasciukaityte P, Radvilavicius E, Rokaite S, Medonas D, Valantinaviciute E, Mockus E, Zokaityte E. The contribution of edible cricket flour to quality parameters and sensory characteristics of wheat bread. Food Sci Nutr 2022; 10:4319-4330. [PMID: 36514776 PMCID: PMC9731535 DOI: 10.1002/fsn3.3024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022] Open
Abstract
This study evaluated the influence of edible cricket flour (ECF) on the quality parameters and sensory characteristics of wheat bread (WB), including the formation of volatile compounds (VC) and their relationship with emotions (EM) induced for consumers. ECF reduced dough pH, redness, and yellowness. At 5%, ECF increased the porosity of WB (by 7.87%). The quantity of ECF significantly affected WB's specific volume (p = .030), porosity (p = .0001), shape coefficient (p = .0001), and mass loss (p = .023). All WB with ECF had a more intense color and additive odor. Bread samples with 10% and 15% ECF had more intense overall, additive, acidity, and bitterness flavors. However, all WB had similar overall acceptability (OA) and no correlations were found between OA and VC. The EM "happy" and "sad" were expressed more intensely for WB with 15% ECF, and significant correlations were established between the EM "happy" and separate VC. The main VC in WB were ethanol; 1-butanol and 3-methyl; 1-hexanol; estragole; and hexanoic acid. Finally, 5% ECF could be incorporated into the main WB formula without having a negative impact on bread quality. Also, ECF influences VC formation, and separate VC could be related to emotions induced for consumers.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | - Vytaute Starkute
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | | | - Neringa Laukyte
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Markas Fomkinas
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Edikas Vysniauskas
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Paulina Kasciukaityte
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Emilis Radvilavicius
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Skaiste Rokaite
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | - Domantas Medonas
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
| | | | - Ernestas Mockus
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| | - Egle Zokaityte
- Department of Food Safety and QualityLithuanian University of Health SciencesKaunasLithuania
- Institute of Animal Rearing TechnologiesLithuanian University of Health SciencesKaunasLithuania
| |
Collapse
|