1
|
Tuesta T, Castillo-Barzola A, Linares H, Ruiz-Pacco G, Baena-Moncada AM, Valderrama-Negrón AC. Chitosan-based materials for food preservation: Enhancing shelf life and safety through sustainable nanoparticles and films. Food Chem 2025; 486:144589. [PMID: 40345029 DOI: 10.1016/j.foodchem.2025.144589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
This review provides a comprehensive overview of chitosan-based films and nanoparticles loaded with bioactive compounds, focusing on their role in extending the shelf life of meat products. Chitosan, a biodegradable and non-toxic polysaccharide, is valued for its antimicrobial, antioxidant, and bioactive properties, positioning it as a promising alternative to synthetic preservatives and packaging. Chitosan nanoparticles, often prepared by ionic gelation, offer high encapsulation efficiency for bioactive compounds, such as essential oils, to control microbial growth and oxidative processes. While chitosan-based films serve as effective edible coatings, they face challenges in mechanical strength and water vapor permeability. The incorporation of and natural compounds enhances these properties, supporting real-world use. Additionally, chitosan films with pH indicators have emerged as innovative tools for monitoring food freshness. Despite these advances, further research is required to improve mechanical and barrier properties, enable large-scale scale industrial production, and explore new bioactive compounds.
Collapse
Affiliation(s)
- Tarsila Tuesta
- Grupo de Investigación en Alimentos, Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería (GIA-FIQT-UNI), Av. Túpac Amaru 210, Rímac, Lima, Peru
| | - Angie Castillo-Barzola
- Grupo de Investigación en Alimentos, Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería (GIA-FIQT-UNI), Av. Túpac Amaru 210, Rímac, Lima, Peru
| | - Henry Linares
- Grupo de Investigación en Alimentos, Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingeniería (GIA-FIQT-UNI), Av. Túpac Amaru 210, Rímac, Lima, Peru; Laboratorio de Investigación en Biopolímeros y Metalofármacos (LIBIPMET), Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rímac, Lima, Peru
| | - Gustavo Ruiz-Pacco
- Laboratorio de Investigación en Biopolímeros y Metalofármacos (LIBIPMET), Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rímac, Lima, Peru
| | - Angélica M Baena-Moncada
- Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias de la Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Rímac, Lima, Peru.
| | - A C Valderrama-Negrón
- Laboratorio de Investigación en Biopolímeros y Metalofármacos (LIBIPMET), Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rímac, Lima, Peru
| |
Collapse
|
2
|
Mahboub N, Cherfi I, Laouini SE, Bouafia A, Benaissa A, Alia K, Alharthi F, Al-Essa K, Menaa F. GC/MS and LC Composition Analysis of Essential Oil and Extracts From Wild Rosemary: Evaluation of Their Antioxidant, Antimicrobial, and Anti-Inflammatory Activities. Biomed Chromatogr 2025; 39:e70084. [PMID: 40207578 DOI: 10.1002/bmc.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Rosmarinus officinalis L. (rosemary) is a widely used medicinal plant known for its antioxidant, antimicrobial, and anti-inflammatory properties. This study evaluates the bioactive potential of its essential oil (EO), methanolic (ME), and aqueous (AE) extracts. GC-MS analysis identified α-pinene (21.37%), bornanone (12.73%), and eucalyptol (8.28%) as major EO components, while HPLC revealed ME's richness in salicylic acid (5.11 μg/mg) and rutin (0.43 μg/mg). Antioxidant activity, assessed via DPPH and FRAP assays, showed ME with the strongest radical scavenging capacity (IC50 = 27.30 ± 2.4%) and reducing power (IC50 = 90.88 ± 6.7%). Antimicrobial testing revealed EO as the most effective, particularly against Staphylococcus aureus (33 mm inhibition zone) and Bacillus subtilis (32 mm), while AE and ME exhibited moderate activity. Pseudomonas aeruginosa was resistant to all extracts. Additionally, AE demonstrated notable anti-inflammatory activity (IC50 = 55.88 ± 1.02%). These findings highlight rosemary as a rich source of bioactive compounds with strong pharmacological potential, positioning ME as the best antioxidant, EO as the most potent antimicrobial, and AE as an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- Nasma Mahboub
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, El-Oued, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, El-Oued, Algeria
| | - Inasse Cherfi
- Faculty of Natural Science and Life, Department of Molecular and Cellular Biology, El Oued University, El-Oued, Algeria
- Laboratory Biology, Environment, and Health, Faculty of Natural Sciences and Life, El-Oued University, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Abir Benaissa
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Khaoula Alia
- BBCM Laboratory, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), California Innovations Corporation, San Diego, California, USA
| |
Collapse
|
3
|
Gharzouli M, Aouf AH, Moawad S, Ali H, Alsulami T, Farouk A, Hoppe K, Badr AN. Bio-preservative potential of marjoram and fennel essential oil nano-emulsions against toxigenic fungi in citrus: integrating in-vitro, in- vivo, and in- silico approaches. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:632-650. [PMID: 40073209 DOI: 10.1080/19440049.2025.2473551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic Penicillium fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated. A simulated medium with fungal spores was used to assess anti-toxigenic activity, and a simulated infection experiment was conducted with orange and lemon fruits. The capacity and mechanisms of aromatic constituents were analysed through molecular docking assays targeting enzymes involved in fungal growth and mycotoxin production. The nanoparticles exhibited good stability (89.17%-92.41%) and compact formulation (density of 0.92-0.96 g/mL). Results demonstrated substantial effectiveness of nano-emulsions against toxigenic fungi, with major aromatic compounds identified as terpinene-4-ol (18%) and γ-terpinene (11%) in marjoram and estragole (38%) and anethole (29%) in fennel oil. Diffusion assays revealed significant anti-pathogen effects (8.33-11 mm) and antifungal activity (33.33 ± 2.88-89.33 ± 1.15 mm) of marjoram and fennel nano-emulsions. Results regarding simulated infected fruit reflect spoilage delay without impacting fruit quality or sensory. The interactions between oil or nano-emulsions and fungal enzymes showed strong binding-free energy values, with significant docking scores (-6.6 to -7.0 kcal/mol) for aromatic constituents. In conclusion, aromatic antifungals offer a promising strategy for controlling Penicillium, enhancing the safety and quality of oranges and lemons, with oil nanoparticles improving antifungal efficacy by significantly reducing mycelium weight and spore germination.
Collapse
Affiliation(s)
- Merihane Gharzouli
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, Setif, Algeria
| | - Abdel Hakim Aouf
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, Setif, Algeria
| | - Shimaa Moawad
- Flavor and Aroma Chemistry Department, National Research Center, Giza, Egypt
| | - Hatem Ali
- Food Technology Department, National Research Center, Giza, Egypt
| | - Tawfiq Alsulami
- Food Science & Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Center, Giza, Egypt
| | - Karolina Hoppe
- Department of Chemistry, Poznan University of Life Science, Poznań, Poland
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Kushwaha P, Usmani S, Sufiyan M, Singh P. Innovating alopecia treatment: nanostructured lipid carriers as advanced delivery platforms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03784-x. [PMID: 39825967 DOI: 10.1007/s00210-025-03784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025]
Abstract
Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release. This manuscript explores the potential of Nanostructured lipid carriers as innovative delivery platforms for alopecia therapeutics, focusing on their formulation, characterization, and application in topical treatments. The unique properties of Nanostructured lipid carriers, including their small size, biocompatibility, and ability to target specific skin layers, are discussed in relation to improving the penetration and therapeutic efficacy of active ingredients such as minoxidil, finasteride, and plant-derived compounds. Additionally, we highlight the role of Nanostructured lipid carriers in improving scalp penetration, reducing side effects, and offering a more efficient alternative to conventional treatments. The manuscript concludes with insights into future trends, challenges, and the clinical potential of Nanostructured lipid carriers-based formulations in revolutionizing alopecia treatment.
Collapse
Affiliation(s)
- Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Priyanka Singh
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
5
|
Guzmán-Pincheira C, Moeini A, Oliveira PE, Abril D, Paredes-Padilla YA, Benavides-Valenzuela S. Development of Alginate-Chitosan Bioactive Films Containing Essential Oils for Use in Food Packaging. Foods 2025; 14:256. [PMID: 39856921 PMCID: PMC11764708 DOI: 10.3390/foods14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The effect on the physical, mechanical, and antibacterial properties of films composed of alginate-chitosan with the incorporation of oregano (EOO) or thyme (EOT) essential oils was evaluated. These films showed a thickness between 37.7 and 38.2 µm, with no significant differences for essential oil content. Water vapor permeability decreased from 4.03 (oil-free film) to 1.65 (g/msPa) × 10-9 in 3% EO. Mechanical properties reflected a reduction in tensile strength (TS) from 73 (oil-free films) to values between 34 and 38 MPa with 3% EO, while elongation (E%) increased from 4.8% to 10.4-11.8%. Regarding antibacterial capacity, as the concentration of essential oil increases, the antibacterial capacity also increases. On average, the increase from 1.0% to 3.0% of EOO increased the antimicrobial capacity against Gram-negative and Gram-positive bacteria. EOO outperformed EOT against E. coli and L. monocytogenes. In addition, films with 2-3% EOT showed a significant dark yellow color compared to the control. These results suggest that films with the addition of oregano and thyme essential oils can be promising for food packaging applications with the ability to improve food safety and increase product shelf life by achieving functional packaging characteristics.
Collapse
Affiliation(s)
- Carla Guzmán-Pincheira
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| | - Arash Moeini
- Research Group of Fluid Dynamics, Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Patricia E. Oliveira
- Departamento de Ingeniería de Procesos Industriales, Núcleo de Investigación en Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Temuco 4810399, Chile;
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad del Maule, Talca 3460000, Chile;
| | - Yeni A. Paredes-Padilla
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| | - Sergio Benavides-Valenzuela
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción 4030000, Chile; (C.G.-P.); (Y.A.P.-P.)
| |
Collapse
|
6
|
Bejenaru LE, Segneanu AE, Bejenaru C, Bradu IA, Vlase T, Herea DD, Văruţ MC, Bălăşoiu RM, Biţă A, Radu A, Mogoşanu GD, Ciocîlteu MV. Thermoresponsive Gels with Rosemary Essential Oil: A Novel Topical Carrier for Antimicrobial Therapy and Drug Delivery Applications. Gels 2025; 11:61. [PMID: 39852032 PMCID: PMC11765333 DOI: 10.3390/gels11010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
This study investigates the development and comprehensive characterization of innovative thermoresponsive gels incorporating rosemary essential oil (RoEO) encapsulated in poly(lactic-co-glycolic acid) (PLGA) microparticles, with a focus on their potential applications in topical antimicrobial and wound healing therapies. RoEO, renowned for its robust antimicrobial, antioxidant, and wound-healing properties, was subjected to detailed chemical profiling using gas chromatography-mass spectrometry (GC-MS), which identified oxygenated monoterpenes as its dominant constituents. PLGA microparticles were synthesized through an optimized oil-in-water emulsion technique, ensuring high encapsulation efficiency and structural integrity. These microparticles were thoroughly characterized using Fourier-transform infrared (FTIR) spectroscopy to confirm functional group interactions, scanning electron microscopy (SEM) for surface morphology, X-ray diffraction (XRD) for crystalline properties, and thermal analysis for stability assessment. The synthesized microparticles displayed uniform size distribution and efficient encapsulation, demonstrating compatibility with the gel matrix. Two distinct thermoresponsive gel formulations were developed using varying ratios of Poloxamer 407 and Poloxamer 188 to achieve optimal performance. The gels were evaluated for key physicochemical properties, including pH, gelation temperature, viscosity, and rheological behavior. Both formulations exhibited thermoresponsive gelation at skin-compatible temperatures (27.6 °C and 32.9 °C), favorable pH levels (6.63 and 6.40), and shear-thinning behavior suitable for topical application. Antimicrobial efficacy was assessed against common pathogens associated with skin infections, including Staphylococcus aureus, Escherichia coli, and Candida albicans. The RoEO-PLGA-loaded gels demonstrated significant inhibitory effects, confirming their potential as effective carriers for controlled and localized drug delivery. These findings underscore the promising application of RoEO-PLGA-loaded thermoresponsive gels in addressing challenges associated with topical antimicrobial therapies and wound care, offering an innovative approach to enhancing therapeutic outcomes. By integrating the bioactive potential of RoEO with the advanced delivery capabilities of PLGA microparticles and thermoresponsive gels, this study paves the way for the development of next-generation formulations tailored to meet the specific needs of localized drug delivery in skin health management.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara, 4 Oituz Street, 300086 Timişoara, Romania; (A.-E.S.); (I.A.B.); (T.V.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara, 4 Oituz Street, 300086 Timişoara, Romania; (A.-E.S.); (I.A.B.); (T.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara, 4 Oituz Street, 300086 Timişoara, Romania; (A.-E.S.); (I.A.B.); (T.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Romania
| | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050 Iaşi, Romania;
| | - Marius Ciprian Văruţ
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Roxana Maria Bălăşoiu
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Maria Viorica Ciocîlteu
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| |
Collapse
|
7
|
Olewnik-Kruszkowska E, Vishwakarma A, Wrona M, Bertella A, Rudawska A, Gierszewska M, Schmidt B. Comparative Study of Crucial Properties of Packaging Based on Polylactide and Selected Essential Oils. Foods 2025; 14:204. [PMID: 39856870 PMCID: PMC11764739 DOI: 10.3390/foods14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In order to establish the differences in packaging containing various essential oils, polylactide (PLA)-based polymeric films incorporating poly(ethylene glycol) (PEG), clove (C), grapefruit (G), rosemary (R), and tea tree (T) essential oils were obtained and subsequently analyzed. In addition to examining structure and morphology, the polymer films underwent analyses that are particularly important with regard to contact with food. Mechanical and antioxidant properties, water vapor transmission rate (WVTR), and analysis of barrier properties against ultraviolet (UV) radiation, as well as the migration of ingredients into food simulants such as 10% v/v solutions of ethanol, 3% w/v acetic acid solution, and isooctane, were among the critical studies conducted. A comparison of the properties of the obtained materials allowed us to establish that the incorporation of essential oils significantly increases elongation at break and enhances UV barrier properties. In the case of materials containing clove oil and tea tree oil, a reduction in WVTR of about 1 g/m2/h was observed. The migration of the ingredients present in the films filled with clove oil, grapefruit oil, and tea tree oil into the acetic acid solution did not exceed 10 mg/kg, which is an acceptable value according to the European Union restrictions. Taking into account all of the studied properties, it should be stressed that the most promising packaging material is the film filled with clove oil.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland;
| | - Astha Vishwakarma
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), Centre National de la Recherche Scientifique (CNRS), Universite Paris-Est Creteil, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France;
| | - Magdalena Wrona
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences 2, 52428 Jülich, Germany;
| | - Anis Bertella
- Department of Molecular and Cellular Biology, Faculty of Life and Nature Sciences, Abbes Laghrour University Khenchela, BP 1252 Road of Batna, Khenchela 40004, Algeria;
| | - Anna Rudawska
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36 St., 20-618 Lublin, Poland;
| | - Magdalena Gierszewska
- Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7 Street, 87-100 Toruń, Poland;
| | - Beata Schmidt
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
8
|
Chen F, Su X, Yan T, Fu X, Wang Y, Luo D, Zhang Q. Homogenate-ultrasonic pretreatment followed by microwave hydrodistillation of essential oil from rosemary (Rosmarinus officinalis L.) leaves: Kinetic, chemical composition, and biological activity. SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 42:101744. [DOI: 10.1016/j.scp.2024.101744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Gharzouli M, Aouf A, Mahmoud E, Ali H, Alsulami T, Badr AN, Ban Z, Farouk A. Antifungal effect of Algerian essential oil nanoemulsions to control Penicillium digitatum and Penicillium expansum in Thomson Navel oranges ( Citrus sinensis L. Osbeck). FRONTIERS IN PLANT SCIENCE 2024; 15:1491491. [PMID: 39640995 PMCID: PMC11617202 DOI: 10.3389/fpls.2024.1491491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Fungal infection is a potential issue in citrus fruits, while essential oils from Cymbopogon citratus and Citrus limon could be better alternatives to synthetic fungicides in orange preservation. The nanoparticles produced during ultrasonication exhibited a monomodal distribution of particle sizes with a mean zeta potential and a polydispersity index mean value of 74.12 nm, -38.4 mV, and 0.19 for C. citratus and 103 nm, -28.4 mV, and 0.22 for C. limon. The micrographs of the nanoemulsions exhibited spherical morphology with diverse nanometer-scale sizes. Nanoemulsification enhances the levels of neral and geranial in both oils while reducing the levels of limonene, γ-terpinene, and β-myrcene. The essential oils and their nanoemulsions exhibited good MIC values against Gram-positive and Gram-negative bacteria, ranging from 2% to 0.12%, while MBC was 4% to 0.25% (v/v) for both. The extended genetic investigation of the isolated fungal strains from Thomson Navel oranges through analysis of the ITS sequences and BLAST indicated 100% homology to those of Penicillium digitatum and Penicillium expansum. Both oils' MIC and MFC values and nanoemulsions ranged from 0.12% to 0.06% and 2% to 0.03% against P. expansum and P. digitatum, respectively. Applying nanoemulsified C. limon and C. citratus as a coating on orange fruits significantly reduced the spread of P. expansum and P. digitatum fungi compared to the control. Coating with nanoemulsions reduced the negative changes in quality parameters during storage, such as weight loss, firmness, TSS, TA, pH, and ascorbic acid content. Citrus limon nanoemulsion did not alter the coated fruits' sensory attributes compared to C. citratus nanoemulsion.
Collapse
Affiliation(s)
- Merihane Gharzouli
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif1, Setif, Algeria
| | - Abdelhakim Aouf
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif1, Setif, Algeria
| | - Engy Mahmoud
- Flavor and Aroma Chemistry Department, National Research Centre, Cairo, Egypt
| | - Hatem Ali
- Food Technology Department, National Research Center, Cairo, Egypt
| | - Tawfiq Alsulami
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Barboucha G, Rahim N, Boulebd H, Bramki A, Andolfi A, Salvatore MM, Masi M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. PLANTS (BASEL, SWITZERLAND) 2024; 13:3229. [PMID: 39599438 PMCID: PMC11598024 DOI: 10.3390/plants13223229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study investigated the phytochemical profile and evaluated the antimicrobial and insecticidal properties of Eucalyptus camaldulensis Dehn. essential oil (EC-EO) from Algeria, using in vitro and in silico approaches. The yield of EC-EO was 0.27%, with gas chromatography-mass spectrometry (GC-MS) revealing spathulenol (58.24%), cryptone (17.22%), and o-cymene (15.53%) as the major compounds. EC-EO exhibited notable antibacterial activity, particularly against Salmonella typhimurium (14 ± 1.00 mm) and Staphylococcus aureus (14.5 ± 0.50 mm). It also showed effective antifungal activity against Penicillium sp. (11.5 ± 0.49 mm), Candida albicans (11.2 ± 0.29 mm), and Aspergillus fumigatus (9.8 ± 0.27 mm). Insecticidal assays against Tribolium castaneum were conducted using contact toxicity, fumigation toxicity, and repellent activity methods. The median lethal concentration (LC50) for contact toxicity was 0.011 μL/insect after 72 h, while the fumigation test had an LC50 of 122.29 μL/L air. Repellent activity tests showed percentage repellency (PR) values exceeding 80% after 6 h. The molecular geometry and electronic properties of the main compounds were studied using density functional theory (DFT) calculations. In addition, the interaction mode and binding affinity of these molecules with three key enzymes involved in antimicrobial activity, DNA gyrase, dihydrofolate reductase (DHFR) and Tyrosyl-tRNA synthetase (TyrRS), were explored by molecular docking.
Collapse
Affiliation(s)
- Ghozlane Barboucha
- Biotechnologies Laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, Constantine 25100, Algeria; (G.B.); (N.R.)
| | - Noureddine Rahim
- Biotechnologies Laboratory, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, Constantine 25100, Algeria; (G.B.); (N.R.)
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria;
| | - Amina Bramki
- Laboratory of Bio Engineering, Higher National School of Biotechnology Taoufik Khaznadar, Nouveau Pôle Universitaire Ali Mendjeli, Constantine 25100, Algeria;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, Portici, 80055 Naples, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.A.); (M.M.S.)
- BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, Portici, 80055 Naples, Italy
| |
Collapse
|
11
|
Mhalhel K, Kadmi Y, Ben Chira A, Levanti M, Pansera L, Cometa M, Sicari M, Germanà A, Aragona M, Montalbano G. Urtica dioica Extract Abrogates Chlorpyrifos-Induced Toxicity in Zebrafish Larvae. Int J Mol Sci 2024; 25:6631. [PMID: 38928336 PMCID: PMC11203861 DOI: 10.3390/ijms25126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Yassine Kadmi
- LASIRE, Equipe Physico-Chimie de l’Environnement, CNRS UMR 8516, Université Lille, Sciences et Technologies, CEDEX, 59655 Villeneuve d′Ascq, France;
- Department of Chemistry, Université d’Artois, IUT de Béthune, 62400 Béthune, France
| | - Ahlem Ben Chira
- LR22ES01 Laboratory of Biomathematics, Faculty of Sciences of Sfax, Department of Mathematics, P.O. Box 1171, Sfax 3000, Tunisia;
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| |
Collapse
|
12
|
Lazić V, Klaus A, Kozarski M, Doroški A, Tosti T, Simić S, Vunduk J. The Effect of Green Extraction Technologies on the Chemical Composition of Medicinal Chaga Mushroom Extracts. J Fungi (Basel) 2024; 10:225. [PMID: 38535233 PMCID: PMC10971126 DOI: 10.3390/jof10030225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
The mushroom industry should implement green extraction technologies; however, there is not enough information on the differences between these techniques expressed as the chemical composition of the resulting extract. In this study, selected types of green extraction techniques (GETs) were used on Chaga (Inonotus obliquus) (Fr.) Pilát from Serbia (IS) and Mongolia (IM) to examine the differences that would enable the composition-based technology choices in the mushroom supplement industry. Subcritical water extraction (SWE), microwave-assisted (MW) extraction, and ultrasonic-assisted extraction (VAE) were used to prepare the extracts. SWE was performed at two different temperatures (120 and 200 °C), while 96% ethanol, 50% ethanol, and water were used for MW and VAE. The yield, the content of total phenols, total proteins, and carbohydrates, qualitative and quantitative analysis of phenolic compounds, carbohydrates, including α- and β- and total glucans, and fatty acids, were determined in the obtained extracts. SWE resulted in a significantly higher yield, total polysaccharide, and glucan content than any other technique. Glucose was the most dominant monosaccharide in the SWE samples, especially those extracted at 200 °C. The MW 50% EtOH extracts showed the highest yield of total phenols. Among the tested phenolic compounds, chlorogenic acid was the most dominant. SWE can be recommended as the most efficient method for extracting commercially important compounds, especially glucans and phenols.
Collapse
Affiliation(s)
- Vesna Lazić
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Anita Klaus
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Maja Kozarski
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Ana Doroški
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (V.L.); (A.K.); (M.K.); (A.D.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia;
| | - Siniša Simić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski Trg 12/V, 11158 Belgrade, Serbia
| |
Collapse
|
13
|
Qneibi M, Bdir S, Maayeh C, Bdair M, Sandouka D, Basit D, Hallak M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem Res 2024; 49:258-289. [PMID: 37768469 DOI: 10.1007/s11064-023-04032-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Numerous studies have demonstrated essential oils' diverse chemical compositions and pharmacological properties encompassing antinociceptive, anxiolytic-like, and anticonvulsant activities, among other notable effects. The utilization of essential oils, whether inhaled, orally ingested, or applied topically, has commonly been employed as adjunctive therapy for individuals experiencing anxiety, insomnia, convulsions, pain, and cognitive impairment. The utilization of synthetic medications in the treatment of various disorders and symptoms is associated with a wide array of negative consequences. Consequently, numerous research groups across the globe have been prompted to explore the efficacy of natural alternatives such as essential oils. This review provides a comprehensive overview of the existing literature on the pharmacological properties of essential oils and their derived compounds and the underlying mechanisms responsible for these observed effects. The primary emphasis is on essential oils and their constituents, specifically targeting the nervous system and exhibiting significant potential in treating neurodegenerative disorders. The current state of research in this field is characterized by its preliminary nature, highlighting the necessity for a more comprehensive overlook of the therapeutic advantages of essential oils and their components. Integrating essential oils into conventional therapies can enhance the effectiveness of comprehensive treatment regimens for neurodegenerative diseases, offering a more holistic approach to addressing the multifaceted nature of these conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Diana Basit
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
14
|
Kowalski R, Kowalska G, Mitura P, Rowiński R, Pankiewicz U, Hawlena J. The Effect of Peppermint and Thyme Oils on Stabilizing the Fatty Acid Profile of Sunflower Oil. Molecules 2024; 29:292. [PMID: 38257205 PMCID: PMC10819199 DOI: 10.3390/molecules29020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Presently, there is an increasing shift towards the utilization of natural antioxidants and compounds with protective attributes for fatty acids in order to replace synthetic counterparts that may pose health risks. This transition aligns with the growing emphasis on promoting healthy and organic food choices. Essential oils stand out in this context due to scientific validations of their antioxidant properties. There are few published research results concerning changes in the fatty acid composition in model systems with the addition of essential oils. This study aims to investigate the impact of incorporating peppermint and thyme oils on inhibiting changes in the fatty acid profile of sunflower oil stored at both room temperature with exposure to daylight and in a thermostat set at 40 °C. The experimental procedure involved the addition of peppermint and thyme oils, along with butylated hydroxyanisole (BHA), to batches of sunflower oil. The samples were then stored for 11 months. The study observed a detrimental influence of storage conditions on the quantitative changes in the fatty acid profile of the sunflower oil. The addition of BHA stabilized the content of linoleic acid in the sunflower oil (approximately 53 g/100 g of linoleic acid compared to approximately 58 g/100 g in the control sample). Meanwhile, the model system of sunflower oil with the addition of peppermint and thyme oils (40 °C) exhibited a statistically significant decrease in the concentration of linoleic acid to approximately 8 g/100 g after eleven months of thermostating. Similar trends to those observed for linoleic acid were noted for the total fatty acid content in the sunflower oil. Notably, the efficacy of the selected substances in inhibiting adverse transformations in fats was contingent upon their concentration and the storage temperature.
Collapse
Affiliation(s)
- Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| | - Przemysław Mitura
- Department of Urology and Oncological Urology, Medical University of Lublin, 8 Jaczewskiego Str., 20-954 Lublin, Poland;
| | - Rafał Rowiński
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| | - Urszula Pankiewicz
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland;
| | - Joanna Hawlena
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland; (G.K.); (R.R.); (J.H.)
| |
Collapse
|
15
|
Romero-Montero A, Melgoza-Ramírez LJ, Ruíz-Aguirre JA, Chávez-Santoscoy A, Magaña JJ, Cortés H, Leyva-Gómez G, Del Prado-Audelo ML. Essential-Oils-Loaded Biopolymeric Nanoparticles as Strategies for Microbial and Biofilm Control: A Current Status. Int J Mol Sci 2023; 25:82. [PMID: 38203252 PMCID: PMC10778842 DOI: 10.3390/ijms25010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.
Collapse
Affiliation(s)
- Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.R.-M.); (G.L.-G.)
| | - Luis Javier Melgoza-Ramírez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| | - Jesús Augusto Ruíz-Aguirre
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| | - Alejandra Chávez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.R.-M.); (G.L.-G.)
| | - María Luisa Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| |
Collapse
|
16
|
Abd El-Fatah RA, Rozan MA, Ziena HM, Imre K, Morar A, Herman V, Abdel-Naeem HH. Improvement of Microbial Quality, Physicochemical Properties, Fatty Acids Profile, and Shelf Life of Basa ( Pangasius bocourti) Fillets during Chilling Storage Using Pepsin, Rosemary Oil, and Citric Acid. Foods 2023; 12:4170. [PMID: 38002227 PMCID: PMC10670765 DOI: 10.3390/foods12224170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Meat discoloration, lipid oxidation, and undesirable texture are inevitable phenomena in basa fish fillets during storage, which in turn limits their exportation as well as decreases consumer acceptability. In addition, increasing consumers' requirements for high-quality, minimally processed, and ready-to-cook fish fillets with an extended shelf-life is a great challenge, particularly with lifestyle changes. Accordingly, this study aimed to improve the quality, lipid stability, fatty acid profile, and lipid nutritional quality indices (LNQI) of basa fish fillets during chilling storage at 4 °C for 15 days using pepsin enzyme (E, 0.1%), rosemary oil (R, 0.5%), citric acid (CA, 0.5%), and their combination (0.1% E + 0.5% R; 0.1% E + 0.5% CA; and 0.1% E + 0.5% R + 0.5% CA). Our results revealed that all treated samples exhibited a significant increase in protein content, a significant decrease in fat content, and a marked reduction in pH, total volatile base nitrogen (TVBN), thiobarbituric acid (TBA), free fatty acids, and shear force (SF) values in comparison to control ones. Moreover, significant improvements in sensory scores, color stability, fatty acid profile, LNQI, and microbial quality of all treated samples were observed. Such findings were more pronounced in samples treated with a mixture of pepsin, rosemary, and citric acid (TVBN: 2.04 vs. 6.52 mg%; TBA: 0.40 vs. 2.68 mg malonaldehyde/Kg; and SF: 8.58 vs. 19.51 Kgf). Based on the obtained results, there was an extension for the shelf life of all treated basa fish fillet samples, especially in samples treated with a mixture of pepsin, rosemary, and citric acids when compared with the control samples (˃15 days versus 10 days). Additionally, eucalyptol, camphor, isoborneol, and α-pinene are the main components of rosemary, with great antioxidant and antimicrobial activity. In conclusion, the mixture of pepsin, rosemary, and citric acid can be applied easily in the seafood industry and at the household level to provide ready-to-cook fish fillets of high quality with great health benefits.
Collapse
Affiliation(s)
- Raghda A. Abd El-Fatah
- Department of Food and Dairy Science and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt; (R.A.A.E.-F.); (M.A.R.); (H.M.Z.)
| | - Mahmoud A. Rozan
- Department of Food and Dairy Science and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt; (R.A.A.E.-F.); (M.A.R.); (H.M.Z.)
| | - Hamid M. Ziena
- Department of Food and Dairy Science and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt; (R.A.A.E.-F.); (M.A.R.); (H.M.Z.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Heba H.S. Abdel-Naeem
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
17
|
Tomić A, Šovljanski O, Erceg T. Insight on Incorporation of Essential Oils as Antimicrobial Substances in Biopolymer-Based Active Packaging. Antibiotics (Basel) 2023; 12:1473. [PMID: 37760769 PMCID: PMC10525543 DOI: 10.3390/antibiotics12091473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing interest in microbiological food safety requires the development of sensitive and reliable analyses and technologies for preserving food products' freshness and quality. Different types of packaging systems are one of the solutions for controlling microbiological activity in foods. During the last decades, the development of biopolymer-based active packaging with essential oil incorporation systems has resulted in technologies with exceptional application potential, primarily in the food industry. There is no doubt that this principle can facilitate food status monitoring, reduce food waste, extend the shelf life, improve the overall quality of food, or indicate a larger problem during the storage, production, and distribution of foodstuffs. On the other hand, most antimicrobial packaging systems are in the development phase, while the sensitivity, selectivity, complexity, and, above all, safety of these materials are just some of the essential questions that need to be answered before they can be widely used. The incorporation of essential oils as antimicrobial substances in biopolymer-based active packaging holds significant promise for enhancing food safety, extending shelf life, and offering more sustainable packaging solutions. While challenges exist, ongoing research and innovation in this field are likely to lead to the development of effective and environmentally friendly packaging systems with enhanced antimicrobial properties.
Collapse
Affiliation(s)
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21 000 Novi Sad, Serbia; (A.T.); (T.E.)
| | | |
Collapse
|
18
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
19
|
Tomić A, Šovljanski O, Nikolić V, Pezo L, Aćimović M, Cvetković M, Stanojev J, Kuzmanović N, Markov S. Screening of Antifungal Activity of Essential Oils in Controlling Biocontamination of Historical Papers in Archives. Antibiotics (Basel) 2023; 12:antibiotics12010103. [PMID: 36671304 PMCID: PMC9854659 DOI: 10.3390/antibiotics12010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The main challenge in controlling the microbiological contamination of historical paper is finding an adequate method that includes the use of cost-effective, harmless, and non-toxic biocides whose effectiveness is maintained over time and without adverse effects on cultural heritage and human health. Therefore, this study demonstrated the possibility of using a non-invasive method of historical paper conservation based on plant essential oils (EOs) application. Evaluation of antimicrobial effects of different EOs (lemongrass, oregano, rosemary, peppermint, and eucalyptus) was conducted against Cladosporium cladosporoides, Aspergillus fumigatus, and Penicillium chrysogenum, which are commonly found on archive papers. Using a mixture of oregano, lemongrass and peppermint in ratio 1:1:1, the lower minimal inhibition concentration (0.78%) and better efficiency during a vapour test at the highest tested distance (5.5 cm) compared with individual EOs was proven. At the final step, this EOs mixture was used in the in situ conservation of historical paper samples obtained from the Archives of Vojvodina. According to the SEM imaging, the applied EOs mixture demonstrates complete efficiency in the inhibition of fungi colonization of archive papers, since fungal growth was not observed on samples, unlike the control samples.
Collapse
Affiliation(s)
- Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (A.T.); (O.Š.)
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (A.T.); (O.Š.)
| | - Višnja Nikolić
- The Archives of Vojvodina, Žarka Vasiljevića 2A, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Instutute of General and Physical Chemistry, Studenski trg 10-12, 11000 Belgrade, Serbia
| | - Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, University of Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia
| | - Mirjana Cvetković
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jovana Stanojev
- Biosense Institute, University of Novi Sad, Dr Zorana Ðindića 1, 21000 Novi Sad, Serbia
| | | | - Siniša Markov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
20
|
Huang Y, Xu H, Ding M, Li J, Wang D, Li H, Sun M, Xia F, Bai H, Wang M, Mo M, Shi L. Screening of Rosemary Essential Oils with Different Phytochemicals for Antioxidant Capacity, Keratinocyte Cytotoxicity, and Anti-Proliferative Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020586. [PMID: 36677644 PMCID: PMC9865278 DOI: 10.3390/molecules28020586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Nowadays, the demand for rosemary essential oils (REOs) in the cosmetic, food, and pharmaceutical industries is increasing, and the abundant germplasm resources of rosemary provide more possibilities for functional applications. The REOs from six cultivars were selected to evaluate and compare their bioactivities. REOs have good cellular antioxidant activity in scavenging reactive oxygen species, and the technology for order preference by similarity to an ideal solution (TOPSIS)-random forest multivariate model indicated that 'Dutch Mill' REO has the best antioxidant activity, which is closely related to its verbenone content. In addition, α-pinene-dominant REOs are more toxic to human keratinocytes, which is closely related to the content of α-pinene, as revealed by multivariate analyses. Moreover, anti-proliferative assays on six cancer cell lines showed that all REOs have a higher anti-proliferative ability against human pancreatic cancer cell line SW1990 and gastric epithelial cell line NCI-N87. Among them, 'Miss Jessopp's Upright' and 'Blue Lagoon' REOs exhibit more prominent anti-proliferative activity. Our study provides a reference value for exploring the application potential of different REOs by evaluating their differences in chemical composition and bioactivity.
Collapse
Affiliation(s)
- Yeqin Huang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heran Xu
- Beijing Key Laboratory of Plant Research and Development, College of Chemistry and Materials Engineering of Beijing Technology and Business University, Beijing 100048, China
| | - Mengting Ding
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Min Wang
- Beijing Key Laboratory of Plant Research and Development, College of Chemistry and Materials Engineering of Beijing Technology and Business University, Beijing 100048, China
| | - Meiling Mo
- Sinno Cosmetics Co., Ltd., Zhongshan 528451, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
21
|
Enhanced antimicrobial and antioxidant capacity of Thymus vulgaris, Lippia sidoides, and Cymbopogon citratus emulsions when combined with mannosylerythritol a lipid biosurfactant. Food Res Int 2023; 163:112213. [PMID: 36596143 DOI: 10.1016/j.foodres.2022.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Essential oils (EOs) are natural and effective agents for controlling microorganisms which cause biodeterioration and disease. However, their application is hampered/restricted due to hydrophobicity and rapid vaporization of these compounds. Encapsulation technology provides an effective approach to maintain EO stabilization and prevent the loss of volatile ingredients. Meanwhile, using a synthetic surfactant is seen as counter-productive; therefore, a natural biosurfactant is more reasonable and can potentially increase activity due to its other biological proprieties. This work aims to evaluate the mannosylerythritol lipid (MEL) biosurfactant combined with Thymus vulgaris, Lippia sidoides, and Cymbopogon citratus essential oil emulsions (O/W) and evaluate its antimicrobial and antioxidant capacity. The biosurfactant MEL demonstrated activity against Bacillus subtilis and Penicillium sp. After emulsification, the antimicrobial activity of Thymus vulgaris and Lippia sidoides was increased against Escherichia coli (500 µg/mL), Staphylococcus aureus (600 µg/mL), Bacillus subtilis (120 µg/mL), Pseudomonas aeruginosa (1500 µg/mL), Penicillium sp. (62.25 µg/mL), Aspergillus flavus (250 µg/mL), Fusarium oxysporum (100 and 250 µg/mL), and Candida albicans (125 and 250 µg/mL). We report that emulsions prepared with MEL have high inhibitory activity, maintain the active concentration, and increase antioxidant capacity by 7.33% (Thymus vulgaris), 13.71% (Lippia sidoides), and 3.15% (Cymbopogon citratus).
Collapse
|
22
|
Elian C, Andaloussi SA, Moilleron R, Decousser JW, Boyer C, Versace DL. Biobased polymer resources and essential oils: a green combination for antibacterial applications. J Mater Chem B 2022; 10:9081-9124. [PMID: 36326108 DOI: 10.1039/d2tb01544g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To fight nosocomial infections, the excessive use of antibiotics has led to the emergence of multidrug-resistant microorganisms, which are now considered a relevant public health threat by the World Health Organization. To date, most antibacterial systems are based on the use of petro-sourced polymers, but the global supplies of these resources are depleting. Besides, silver NPs are widely accepted as the most active biocide against a wide range of bacterial strains but their toxicity is an issue. The growing interest in natural products has gained increasing interest in the last decade. Therefore, the design of functional antibacterial materials derived from biomass remains a significant challenge for the scientific community. Consequently, attention has shifted to naturally occurring substances such as essential oils (EOs), which are classified as Generally Recognized as Safe (GRAS). EOs can offer an alternative to the common antimicrobial agents as an inner solution or biocide agent to inhibit the resistance mechanism. Herein, this review not only aims at providing developments in the antibacterial modes of action of EOs against various bacterial strains and the recent advances in genomic and proteomic techniques for the elucidation of these mechanisms but also presents examples of biobased polymer resource-based EO materials and their antibacterial activities. Especially, we describe the antibacterial properties of biobased polymers, e.g. cellulose, starch, chitosan, PLA PHAs and proteins, associated with EOs (cinnamon (CEO), clove (CLEO), bergamot (BEO), ginger (GEO), lemongrass (LEO), caraway (CAEO), rosemary (REO), Eucalyptus globulus (EGEO), tea tree (TTEO), orange peel (OPEO) and apricot (Prunus armeniaca) kernel (AKEO) essential oils). Finally, we discuss the influence of EOs on the mechanical strength of bio-based materials.
Collapse
Affiliation(s)
- Christine Elian
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France. .,Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Samir Abbad Andaloussi
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Régis Moilleron
- Université Paris-Est Créteil (UPEC), Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue Général de Gaulle, 94010 Créteil Cedex, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 7380 Dynamyc Université Paris - Est Créteil (UPEC), Ecole nationale vétérinaire d'Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, 1 rue Gustave Eiffel, 94000 Créteil, France
| | - Cyrille Boyer
- Australian Center for Nanomedicine (ACN), Cluster for Advanced Macromolecular Design, School of Chemical Engineering, UNSW Sydney, Australia
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE) - UMR7182-CNRS-UPEC, Department C3M, Team BioM&M's, 2-8 rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
23
|
Ganić T, Vuletić S, Nikolić B, Stevanović M, Kuzmanović M, Kekić D, Đurović S, Cvetković S, Mitić-Ćulafić D. Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii. Front Microbiol 2022; 13:989667. [PMID: 36299724 PMCID: PMC9589355 DOI: 10.3389/fmicb.2022.989667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen resistant to a wide spectrum of antibiotics, with great potential to form a biofilm, which further aggravates treatment of infections caused by it. Therefore, searching for new potent agents that are efficient against A. baumannii seems to be a necessity. One of them, which has already been proven to possess a wide spectrum of biological activities, including antimicrobial effect, is cinnamon essential oil. Still, further increase of antibacterial efficacy and improvement of bioavailability of cinnamon oil is possible by emulsification process. The aim of this study was comparative analysis of cinnamon essential oil and its emulsion against biofilm forming A. baumannii clinical isolates. Furthermore, the investigation of toxicological aspects of possible applications of essential oil and emulsion was done as well. Gas chromatography–mass spectrometry of essential oil indicated trans-cinnamaldehyde as the most abundant component. The cinnamon emulsion was synthesized from cinnamon essential oil by combining modified low- and high- energy methods. Synthesized emulsion was characterized with Fourier-transform infrared spectroscopy and photon correlation spectroscopy. Both substances exhibited significant antibacterial (minimal inhibitory concentrations in the range 0.125–0.5 mg/ml) and antibiofilm effects (inhibitions of formation and reduction of pre-formed biofilm were 47–81 and 30–62%, respectively). Compared to essential oil, the efficacy of emulsion was even stronger considering the small share of pure oil (20%) in the emulsion. The result of biofilm eradication assay was confirmed by scanning electron microscopy. Even though the cytotoxicity was high especially for the emulsion, genotoxicity was not determined. In conclusion, strong antibacterial/antibiofilm effect against A. baumannii of the cinnamon essential oil and the fact that emulsification even potentiated the activity, seems to be of great significance. Observed cytotoxicity implicated that further analysis is needed in order to clearly determine active principles being responsible for obtained antibacterial/antibiofilm and cytotoxic properties.
Collapse
Affiliation(s)
- Tea Ganić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stefana Vuletić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| | - Maja Kuzmanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Belgrade, Serbia
| | - Dušan Kekić
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, Belgrade, Serbia
| | - Saša Đurović
- Institute of General and Physical Chemistry, Belgrade, Serbia
| | | | - Dragana Mitić-Ćulafić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dragana Mitić-Ćulafić,
| |
Collapse
|
24
|
Biological Profiling of Essential Oils and Hydrolates of Ocimum basilicum var. Genovese and var. Minimum Originated from Serbia. Processes (Basel) 2022. [DOI: 10.3390/pr10091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Ocimum has many species that are used to treat diverse kinds of illnesses and sicknesses from ancient times. One of them, Ocimum basilicum L., commonly known as basil, has a vital role due to its various medicinal goods. It is best known as a plant with pharmacological activities, but also as an antioxidant, antimicrobial, and larvicidal agent. Although it has been traditionally used in Serbia in traditional medicine for centuries as an insecticidal, antibacterial, and antifungal plant as well as a traditional culinary plant, none of the O. basilicum varieties have been commercialised until today. There are significant numbers of information across the world that oils and by-products are part of the global market, but no references to the essential oil composition of Serbian plants were found. Therefore, the objective of this work was to evaluate the antioxidant and antimicrobial potentials of essential oil and hydrolate of two different varieties: O. basilicum var. genovese and Ocimum. basilicum var. minimum originating from Serbia for further industrial production of antimicrobial- and/or antioxidant-valued products. The results of this study confirm that essential oils of O. basilicum var. genovese and var. minimum represent a significant source of bioactive compounds, especially linalool, with a high rate of biological activities. Similar behaviour is observed for hydrolates, which are the by-product of the essential oil distillation process and can be utilised as bioactive-rich waste in further investigation.
Collapse
|
25
|
Aćimović M, Šovljanski O, Pezo L, Travičić V, Tomić A, Zheljazkov VD, Ćetković G, Švarc-Gajić J, Brezo-Borjan T, Sofrenić I. Variability in Biological Activities of Satureja montana Subsp. montana and Subsp. variegata Based on Different Extraction Methods. Antibiotics (Basel) 2022; 11:1235. [PMID: 36140014 PMCID: PMC9495055 DOI: 10.3390/antibiotics11091235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Winter savory (Satureja montana L.) is a well-known spice and medicinal plant with a wide range of activities and applications. Two subspecies of S. montana, subsp. montana and subsp. variegata, were used for the preparation of seven different extracts: steam distillation (essential oil (EO) and hydrolate (HY)), subcritical water (SWE), ultrasound-assisted (UAE-MeOH and UAE-H2O), and microwave-assisted (MAE-MeOH and MAE-H2O) extraction. The obtained EOs, HYs, and extracts were used for an in vitro evaluation of the antioxidant activity (DPPH, ABTS, reducing power, and superoxide anion methods) and in vitro antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Salmonella Typhimurium, Saccharomyces cerevisiae, and Candida albicans. The antimicrobial screening was conducted using disk-diffusion assessment, minimal inhibitory concentration, time-kill kinetics modeling, and pharmacodynamic study of the biocide effect. The total phenolic content (TPC) was highest in EO, followed by SWE, MAE, and UAE, and the lowest was in HY. The highest antimicrobial activity shows EO and SWE for both varieties, while different UAE and MAE extracts have not exhibited antimicrobial activity. The natural antimicrobials in the S. montana extract samples obtained by green extraction methods, indicated the possibility of ecologically and economically better solutions for future in vivo application of the selected plant subspecies.
Collapse
Affiliation(s)
- Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, 21000 Novi Sad, Serbia
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, Studentski trg 10–12, 11000 Belgrade, Serbia
| | - Vanja Travičić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Valtcho D. Zheljazkov
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | - Gordana Ćetković
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jaroslava Švarc-Gajić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Tanja Brezo-Borjan
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Sofrenić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties. Antioxidants (Basel) 2022; 11:antiox11050825. [PMID: 35624689 PMCID: PMC9137901 DOI: 10.3390/antiox11050825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Artificial neural intelligence was established for the estimation, prediction, and optimization of many agricultural and food processes to enable enhanced and balanced utilization of fresh and processed fruits. The predictive capabilities of artificial neural networks (ANNs) are evaluated to estimate the phytochemical composition and the antioxidant and antimicrobial activity of horned melon (Cucumis metuliferus) pulp, peel, and seed. Using multiobjective optimization, the main goals were successively achieved through analysis of antimicrobial potential against sensitive microorganisms for peel (Bacillus cereus, Pseudomonas aeruginosa, Aspergillus brasiliensis, and Penicillium aurantiogriseum), pulp (Salmonella enterica subsp. enterica serotype Typhimurium), and seed samples (Saccharomyces cerevisiae and Candida albicans), and its connection with phytochemical and nutritional composition and antioxidant activity. The highly potent extracts were obtained from peels which represent a waste part with strong antioxidant and antifungal capacity. Briefly, the calculated inhibition zone minimums for sensitive microorganisms were 25.3−30.7 mm, while the optimal results achieved with carotenoids, phenolics, vitamin C, proteins, lipids, DPPH, ABTS, and RP were: 332.01 mg β-car/100 g, 1923.52 mg GAE/100 g, 928.15 mg/100 g, 5.73 g/100 g, 2.3 g/100 g, 226.56 μmol TE/100 g, 8042.55 μmol TE/100 g, and 7526.36 μmol TE/100 g, respectively. These results imply the possibility of using horned melon peel extract as an antioxidant and antifungal agent for food safety and quality.
Collapse
|
27
|
Aćimović M, Šovljanski O, Šeregelj V, Pezo L, Zheljazkov VD, Ljujić J, Tomić A, Ćetković G, Čanadanović-Brunet J, Miljković A, Vujisić L. Chemical Composition, Antioxidant, and Antimicrobial Activity of Dracocephalum moldavica L. Essential Oil and Hydrolate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070941. [PMID: 35406925 PMCID: PMC9002726 DOI: 10.3390/plants11070941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 05/12/2023]
Abstract
Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate (DMH), a byproduct of the distillation process, was also collected. The DMEO and DMH were analyzed and compared in terms of their chemical composition, as well as their in vitro biological activities. The main component in DMEO was geranyl acetate, while geranial was dominant in DMH. The DMEO demonstrated better antioxidant and antimicrobial activities compared with the DMH against Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, which represent sources of food-borne illness at the global level. The DMEO and DMH show promise as antioxidant and antimicrobial additives to various products.
Collapse
Affiliation(s)
- Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia
- Correspondence:
| | - Olja Šovljanski
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (V.Š.); (A.T.); (G.Ć.); (J.Č.-B.)
| | - Vanja Šeregelj
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (V.Š.); (A.T.); (G.Ć.); (J.Č.-B.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia;
| | - Valtcho D. Zheljazkov
- College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Jovana Ljujić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.L.); (L.V.)
| | - Ana Tomić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (V.Š.); (A.T.); (G.Ć.); (J.Č.-B.)
| | - Gordana Ćetković
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (V.Š.); (A.T.); (G.Ć.); (J.Č.-B.)
| | - Jasna Čanadanović-Brunet
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (O.Š.); (V.Š.); (A.T.); (G.Ć.); (J.Č.-B.)
| | - Ana Miljković
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Ljubodrag Vujisić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (J.L.); (L.V.)
| |
Collapse
|
28
|
The effect of various extraction techniques on the quality of sage ( Salvia officinalis L.) essential oil, expressed by chemical composition, thermal properties and biological activity. Food Chem X 2022; 13:100213. [PMID: 35498992 PMCID: PMC9039893 DOI: 10.1016/j.fochx.2022.100213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, influence of the extraction techniques on the quality of the sage essential oil was investigated. Obtained samples were analyzed for chemical composition by GC/MS, thermal properties by thermogravimetric analysis (TGA), and for biological activity: antioxidant (DPPH, CUPRAC, FRAP, ABTS, HRSA and TBARS), microbiological (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger), and cytotoxic (HeLa, LS-174, A549 and MRC-5) activities. Chemical composition showed that viridiflorol was principal compound in all samples followed by camphor, thujones, and verticiol. MWD 400 W was the most potent antioxidant agent, D 200 W and MWD 400 W antimicrobial agents, while hydrodistallates (D 200 W and D 400 W) were the most potent cytotoxic agents. An artificial neural network model was developed for the antioxidant activity anticipation of analyzed samples. These models showed good prediction properties (the r2 value during training cycle for output variables was 0.998).
Collapse
|