1
|
Petraru A, Amariei S, Senila L. Flaxseed Oilcake: An Ingredient with High Nutritional Value in the Realization of Innovative Food Products. Foods 2025; 14:1087. [PMID: 40238196 PMCID: PMC11989078 DOI: 10.3390/foods14071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The by-products of the oil cold pressing of flaxseed are deemed to be safe, edible products. They have been shown to possess high nutritional value (compared with the seeds, they are richer in proteins and minerals) and adequate functional parameters (i.e., a high water-holding capacity and emulsion stability). In oilcakes, we found a portion of oil that was richer in unsaturated fatty acids (87.90%) than flax seeds (57.40%). Mg predominates in flax seeds, while Ce is predominant in flaxseed oilcake. Regarding essential amino acids, the seeds (76.71%) were found to be richer than the oilcake (70.46%). The use of methanol, low extraction temperatures, s high ultrasonic amplitude, and longer times resulted in the highest antioxidant capacity and phenolic content for flaxseed oilcake. Our analyses showed that oilcakes can be utilized as a functional ingredient or for the extraction of bioactive compounds, which can be incorporated into food products due to their nutritional, social, and economic benefits.
Collapse
Affiliation(s)
- Ancuța Petraru
- Faculty of Food Engineering, Stefan cel Mare University, 720229 Suceava, Romania;
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University, 720229 Suceava, Romania;
| | - Lăcrimioara Senila
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Capcanari T, Covaliov E, Negoița C. Harnessing Hemp ( Cannabis sativa L.) Seed Cake Proteins: From Concentrate Production to Enhanced Choux Pastry Quality. Foods 2025; 14:567. [PMID: 40002011 PMCID: PMC11854287 DOI: 10.3390/foods14040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
This study explores the production and valorization of hemp seed cake protein concentrate (HPC) as a functional ingredient to enhance the nutritional quality and sensory attributes of choux pastry products, specifically éclairs. By integrating varied concentrations of HPC (0%, 1%, 5%, 10%, 15%, and 20%) into traditional formulations, the physicochemical properties, proximate composition, amino acid profile, and sensory characteristics of the resulting pastries were assessed. Sensory attributes were assessed using the check-all-that-apply (CATA) method, where a trained panel selected applicable descriptors from a predefined list. Results indicated that the incorporation of HPC significantly increased protein content from 8.23% in the control sample (HPC0%) to 11.32% in the HPC20% formulation and improved moisture retention, leading to greater exterior and interior éclairs volume, increasing from 42.15 cm3 to 51.5 cm3 and from 18.34 cm3 to 38.47 cm3, respectively. Furthermore, sensory evaluation revealed pronounced differences in attributes such as flavor, appearance, and mouthfeel, with optimal sensory profiles noted at 10% HPC inclusion. The amino acid analysis demonstrated a balanced composition, particularly of essential amino acids, emphasizing HPC's potential as a valuable protein source, with significant contributions from leucine (8.17 g/100 g protein), isoleucine (5.56 g/100 g protein), and phenylalanine (6.31 g/100 g protein), as well as notable levels of immunoactive amino acids such as arginine (10.92 g/100 g protein) and glutamic acid (20.16 g/100 g protein). These findings highlight the significant nutritional benefits of HPC enrichment, supporting the development of healthier bakery products and contributing to sustainable food practices within the industry.
Collapse
Affiliation(s)
- Tatiana Capcanari
- Department of Food and Nutrition, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (E.C.); (C.N.)
| | | | | |
Collapse
|
3
|
Zhang G, Guo J, Guo J. A sustainable approach in pumpkin seed oil processing line: Recent advances in pumpkin seed oil and oil processing by-products. Food Chem X 2025; 26:102259. [PMID: 39995405 PMCID: PMC11848496 DOI: 10.1016/j.fochx.2025.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Pumpkin seed oil (PSO) has gained popularity worldwide for its nutritional profile and biological effects, significantly increasing its market demand and consumption. However, pumpkin seed oil cake (PSOC), as the secondary by-product from oil processing, contains high potential value and is scarcely utilised. With the PSO increase in production, a large amount of PSOC will be generated. The key to achieving a sustainable food system is maximising value from the food supply chain. This review aims to summarise the nutritional profile of PSO and PSOC and highlight the current advance in the biological activity of PSO and the valorisation strategies of PSOC. This review also concludes the current advance in food applications of PSO and PSOC in meat and bakery products, respectively. A better understanding of their value and current advances can help to achieve the maximisimg value from PSO processing line in an effective and sustainable approach.
Collapse
Affiliation(s)
| | - Jingbo Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
| |
Collapse
|
4
|
Barozzi L, Plazzotta S, Nucci A, Manzocco L. Elucidating the role of compositional and processing variables in tailoring the technological functionalities of plant protein ingredients. Curr Res Food Sci 2025; 10:100971. [PMID: 39911601 PMCID: PMC11795097 DOI: 10.1016/j.crfs.2025.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Although various plant protein (PP) ingredients are available on the market, their application in foods is not trivial, and food companies are struggling to identify PP ingredients fitting the intended use. To fill this gap, abundant literature has appeared but data are hardly comparable due to the absence of a recognized classification of PP ingredients accounting not only for protein purity but also for the process history, and of standardised protocols for technological functionality assessment. In this review, a comprehensive analysis of comparable literature data was thus carried out to elucidate the effect of composition and processing variables on PP technological functionalities. The review presents four sections describing: (i) the approach followed for the construction of a database of PP ingredient functionalities; (ii) the composition and processing factors relevant to PP ingredients; (iii) PP ingredient functional properties and methods used for their determination; (iv) the effect of composition and processing factors on PP ingredient functionalities. This analysis showed legume proteins to present the highest solubility and interfacial properties while pseudocereal ones the highest water-holding capacity. Although pure ingredients show higher functionalities, non-protein components could contribute to interfacial properties. Alkaline extraction, isoelectric precipitation and freeze-drying is the process mostly used in academic research to obtain PP ingredients. However, other extraction, purification, and drying methods can be properly combined, resulting in specific PP ingredient functionalities. Overall, this review highlights that, besides protein purity and source, knowledge of the processing history is required to select PP ingredients with desired functionalities.
Collapse
Affiliation(s)
- Lorenzo Barozzi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Stella Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Ada Nucci
- Lavazza innovation Center, Luigi Lavazza s.p.a., Str. di Settimo, 10156, Famolenta, Italy
| | - Lara Manzocco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/a, 33100, Udine, Italy
| |
Collapse
|
5
|
Petraru A, Amariei S. Rapeseed-An Important Oleaginous Plant in the Oil Industry and the Resulting Meal a Valuable Source of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3085. [PMID: 39520003 PMCID: PMC11548519 DOI: 10.3390/plants13213085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Rapeseeds (Brassica napus), cultivated widely as a source of oil, generate substantial by-products after oil extraction. Unfortunately, rapeseed meal is considered a waste product and as such is discharged into environment as compost or used as animal feed. However, this meal is rich in bioactive compounds (proteins, minerals, fibers and polyphenols), indicating its potential for the development of value-added products. The meal shows a higher content of minerals, total dietary fibers and proteins. Rapeseed meal contains a proportion of oil rich in polyunsaturated fatty acids, predominately linoleic and α-linolenic acid. The amino acid proportion in the meal is higher than that in the seeds and contains essential amino acids, predominately valine. The analyses show the presence of valuable components in the cake, which makes it suitable for use in obtaining value-added products.
Collapse
Affiliation(s)
- Ancuţa Petraru
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
6
|
Majed M, Galala AA, Amer MM, Selmar D, Abouzeid S. Oilseed Cakes: A Promising Source of Antioxidant, and Anti-Inflammatory Agents-Insights from Lactuca sativa. Int J Mol Sci 2024; 25:11077. [PMID: 39456857 PMCID: PMC11507441 DOI: 10.3390/ijms252011077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study evaluated the antioxidant and antibacterial properties of methanolic extracts derived from oilseed cakes of Lactuca sativa (lettuce), Nigella sativa (black seed), Eruca sativa (rocket), and Linum usitatissimum (linseed). Lettuce methanolic extract showed the highest potential, so it was selected for further investigation. High-performance liquid chromatography (HPLC-DAD) analysis and bioassay-guided fractionation of lettuce seed cake extract led to the isolation of five compounds: 1,3-propanediol-2-amino-1-(3',4'-methylenedioxyphenyl) (1), luteolin (2), luteolin-7-O-β-D-glucoside (3), apigenin-7-O-β-D-glucoside (4), and β-sitosterol 3-O-β-D-glucoside (5). Compound (1) was identified from Lactuca species for the first time, with high yield. The cytotoxic effects of the isolated compounds were tested on liver (HepG2) and breast (MCF-7) cancer cell lines, compared to normal cells (WI-38). Compounds (2), (3), and (4) exhibited strong activity in all assays, while compound (1) showed weak antioxidant, antimicrobial, and cytotoxic effects. The anti-inflammatory activity of lettuce seed cake extract and compound (1) was evaluated in vivo using a carrageenan-induced paw oedema model. Compound (1) and its combination with ibuprofen significantly reduced paw oedema, lowered inflammatory mediators (IL-1β, TNF-α, PGE2), and restored antioxidant enzyme activity. Additionally, compound (1) showed promising COX-1 and COX-2 inhibition in an in vitro enzymatic anti-inflammatory assay, with IC50 values of 17.31 ± 0.65 and 4.814 ± 0.24, respectively. Molecular docking revealed unique interactions of compound (1) with COX-1 and COX-2, suggesting the potential for targeted inhibition. These findings underscore the value of oilseed cakes as a source of bioactive compounds that merit further investigation.
Collapse
Affiliation(s)
- Mayye Majed
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
| | - Amal A. Galala
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
- Pharmacognosy Department, Faculty of Pharmacy, Horus University in Egypt (HUE), New Damietta 34517, Egypt
| | - Mohamed M. Amer
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
| | - Dirk Selmar
- Institute for Plant Biology, Technical University of Braunschweig, Mendelssohnsstr. 4, 38106 Braunschweig, Germany
| | - Sara Abouzeid
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; (M.M.); (A.A.G.); (M.M.A.)
- Institute for Plant Biology, Technical University of Braunschweig, Mendelssohnsstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Butnaru E, Stoleru E, Ioniță D, Brebu M. Thermal Properties of Seed Cake Biomasses and Their Valorisation by Torrefaction. Polymers (Basel) 2024; 16:2872. [PMID: 39458700 PMCID: PMC11511059 DOI: 10.3390/polym16202872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Seed cakes, by-products from the cold press extraction of vegetable oils, are valuable animal feed supplements due to their high content of proteins, carbohydrates, and minerals. However, the presence of anti-nutrients, as well as the rancidification and development of aflatoxins, can impede their intended use, requiring alternative treatment and valorisation methods. Thermal treatment as a procedure for the conversion of seed cakes from walnuts, hemp, pumpkin, flax, and sunflower into valuable products or energy has been investigated in this paper. Thermogravimetry shows the particular behaviour of seed cakes, with several degradation stages at around 230-280 and 340-390 °C, before and after the typical degradation of cellulose. These are related to the volatilisation of fatty acids, which are either free or bonded as triglycerides, and with the thermal degradation of proteins. Torrefaction at 250 °C produced ~75-82 wt% solids, with high calorific values of 24-26 kJ/g and an energy yield above 90%. The liquid products have a complex composition, with most parts of the compounds partitioning between the aqueous phase (strongly dominant) and the oily one (present in traces). The structural components of seed cakes (hemicelluloses, cellulose, and lignin) produce acetic acid, hydroxy ketones, furans, and phenols. In addition to these, most compounds are nitrogen-containing aromatic compounds from the degradation of protein components, which are highly present in seed cakes.
Collapse
Affiliation(s)
| | | | | | - Mihai Brebu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania; (E.B.); (E.S.); (D.I.)
| |
Collapse
|
8
|
Ozdemir MB, Kılıçarslan E, Demir H, Koca E, Salum P, Berktaş S, Çam M, Erbay Z, Aydemir LY. Upgrading the Bioactive Potential of Hazelnut Oil Cake by Aspergillus oryzae under Solid-State Fermentation. Molecules 2024; 29:4237. [PMID: 39275085 PMCID: PMC11397294 DOI: 10.3390/molecules29174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Hazelnut oil cake (HOC) has the potential to be bioactive component source. Therefore, HOC was processed with a solid-state fermentation (SSF) by Aspergillus oryzae with two steps optimization: Plackett-Burman and Box-Behnken design. The variables were the initial moisture content (X1: 30-50%), incubation temperature (X2: 26-37 °C), and time (X3: 3-5 days), and the response was total peptide content (TPC). The fermented HOC (FHOC) was darker with higher protein, oil, and ash but lower carbohydrate content than HOC. The FHOC had 6.1% more essential amino acid and benzaldehyde comprised 48.8% of determined volatile compounds. Fermentation provided 14 times higher TPC (462.37 mg tryptone/g) and higher phenolic content as 3.5, 48, and 7 times in aqueous, methanolic, and 80% aqueous methanolic extract in FHOC, respectively. FHOC showed higher antioxidant as ABTS+ (75.61 µmol Trolox/g), DPPH (14.09 µmol Trolox/g), and OH (265 mg ascorbic acid/g) radical scavenging, and α-glucosidase inhibition, whereas HOC had more angiotensin converting enzyme inhibition. HOC showed better water absorption while FHOC had better oil absorption activity. Both cakes had similar foaming and emulsifying activity; however, FHOC produced more stable foams and emulsions. SSF at lab-scale yielded more bioactive component with better functionality in FHOC.
Collapse
Affiliation(s)
- Melike Beyza Ozdemir
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye; (M.B.O.); (E.K.); (P.S.); (Z.E.)
| | - Elif Kılıçarslan
- Graduate School of Natural and Applied Sciences, Osmaniye Korkut Ata University, Osmaniye 80000, Türkiye;
| | - Hande Demir
- Department of Food Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Türkiye
| | - Esra Koca
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye; (M.B.O.); (E.K.); (P.S.); (Z.E.)
| | - Pelin Salum
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye; (M.B.O.); (E.K.); (P.S.); (Z.E.)
| | - Serap Berktaş
- Department of Food Engineering, Erciyes University, Kayseri 38280, Türkiye; (S.B.); (M.Ç.)
| | - Mustafa Çam
- Department of Food Engineering, Erciyes University, Kayseri 38280, Türkiye; (S.B.); (M.Ç.)
| | - Zafer Erbay
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye; (M.B.O.); (E.K.); (P.S.); (Z.E.)
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Türkiye; (M.B.O.); (E.K.); (P.S.); (Z.E.)
| |
Collapse
|
9
|
Khemthong C, Suttisansanee U, Chaveanghong S, Chupeerach C, Thangsiri S, Temviriyanukul P, Sahasakul Y, Santivarangkna C, Chamchan R, Aursalung A, On-Nom N. Physico-functional properties, structural, and nutritional characterizations of Hodgsonia heteroclita oilseed cakes. Sci Rep 2024; 14:19241. [PMID: 39164362 PMCID: PMC11336117 DOI: 10.1038/s41598-024-70276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
The physicochemical and functional properties, structures, and nutritional characterizations of Hodgsonia heteroclita oilseed cake powder (OCP) obtained from oil extraction with no pretreatment (NP), heat pretreatment (HP; drying at 55 °C until reaching 10% moisture content), and the combined heat and enzymatic pretreatment (HEP; 2.98% (w/w) enzyme loading, 48 °C of incubation temperature and 76 min of incubation time) were investigated. HP and HEP caused a decrease in lightness but an increase in the yellow-brown color of OCP. The results showed that HEP-OCP had significantly lower oil and water absorption index, pasting properties and gelatinization enthalpy while higher water solubility index, foaming and emulsifying properties than NP-OCP and HP-OCP. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction indicated a small change in the protein secondary structure after pretreatment. Moreover, depending on pretreatment method, OCP samples contained a significant difference in nutritional values. However, all OCP samples could be claimed as high protein sources, containing all 9 essential amino acids and 9 non-essential amino acids. Finally, HEP-OCP seemed to have suitable properties to use as a potential ingredient in various food products such as soups, sauces, ice-cream, mousses, chiffon cakes and whipped toppings.
Collapse
Grants
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
- RSPG01/2564 The 2020 Plant Genetic Conservation Project Under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sinrindhorn, Mahidol University
Collapse
Affiliation(s)
- Chanakan Khemthong
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Suwilai Chaveanghong
- Mahidol University Frontier Research Facility, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Chaowanee Chupeerach
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Chalat Santivarangkna
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Rungrat Chamchan
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Amornrat Aursalung
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Nattira On-Nom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
10
|
de Melo FABR, Galvão MBF, da Costa AF, da Silva CF, Guerra JMC, Stamford TCM. Development and Evaluation of Nutritional and Quality Standard of Beef Burger Supplemented with Pumpkin ( Cucurbita moschata) Seed Flour. Foods 2024; 13:1702. [PMID: 38890933 PMCID: PMC11172399 DOI: 10.3390/foods13111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
The composition of pumpkin seeds includes bioactive compounds, proteins, polyunsaturated fatty acids, and dietary fibers. Thus, the objective of this research was to develop and evaluate the nutritional and quality standard of beef burgers supplemented with pumpkin seeds (Cucurbita moschata) added in different proportions. To process the pumpkin seed flour (PSF), the seeds were sanitized, dried in an oven, crushed, and sieved. Through such means, three formulations of beef burgers were prepared, named S (without the addition of PSF), F5 (with the addition of 5% (w/w) of PSF), and F10 (with the addition of 10% (w/w) of PSF). The respective results for burgers P, F5, and F10 were as follows (w/w): proteins 17.61%, 18.04%, 19.86%; lipids 12.19%, 12.42%, 14.55%; ash 1.77%, 1.86%, 1.94%; fibers 0%, 0.88%, 1.76%; phenolic compounds 39.55, 82.93, 90.30 (mg/g); and total antioxidant capacity 11.09%, 18.48%, 24.45%. Regarding the sensory analysis attributes, tasters gave sample F10 scores lower than 7. However, the standard and F5 samples showed results higher than 7 for all parameters. For the determination of shelf life, an expiration date of 30 days was established. It was observed that adding PSF to industrialized products adds nutritional value with the inclusion of polyunsaturated fats, phenolic compounds, and dietary fibers.
Collapse
Affiliation(s)
- Flávia Alexsandra B. Rolim de Melo
- Programa de Pós-graduação de Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil; (F.A.B.R.d.M.); (M.B.F.G.); (J.M.C.G.)
- Laboratório de Microbiologia Aplicada-LaMAp, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil
| | - Maria Brígida Fonseca Galvão
- Programa de Pós-graduação de Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil; (F.A.B.R.d.M.); (M.B.F.G.); (J.M.C.G.)
- Laboratório de Microbiologia Aplicada-LaMAp, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil
| | - Antônio Félix da Costa
- Instituto Agronômico de Pernambuco, Av. General San Martin, 1371, Bongi, Recife CEP 50761-000, Brazil;
| | - Carla Fabiana da Silva
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil;
| | - Jenyffer Medeiros Campos Guerra
- Programa de Pós-graduação de Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil; (F.A.B.R.d.M.); (M.B.F.G.); (J.M.C.G.)
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil;
| | - Thayza Christina Montenegro Stamford
- Programa de Pós-graduação de Nutrição, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil; (F.A.B.R.d.M.); (M.B.F.G.); (J.M.C.G.)
- Laboratório de Microbiologia Aplicada-LaMAp, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Av. Profª Morais Rego, 1235, Cidade Universitária, Recife CEP 50670-901, Brazil
| |
Collapse
|
11
|
Ozgolet M, Cakmak ZHT, Bozkurt F, Sagdic O, Karasu S. Optimization of extraction parameters of protein isolate from milk thistle seed: Physicochemical and functional characteristics. Food Sci Nutr 2024; 12:3346-3359. [PMID: 38726413 PMCID: PMC11077193 DOI: 10.1002/fsn3.4001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 05/12/2024] Open
Abstract
In the current study, optimization of milk thistle protein extraction parameters was carried out in terms of purity and yield. In addition, the characterization of proteins isolated from milk thistle seeds was conducted. The optimal conditions for achieving the highest purity of protein (MTP) from milk thistle seeds were identified as extraction pH 9.47, temperature 30°C, and extraction time 180 min. Conversely, optimal values for overall protein yield (MTY) were determined at extraction pH 12, temperature 50°C, and extraction time 167 min. The proteins obtained under these two sets of conditions (MTP and MTY) demonstrated comparable oil absorption capacity (OAC), foaming, and emulsifying capabilities, as well as stability, aligning with findings from previous studies on seed protein. Both proteins had the highest protein solubilities at pH 11. Both proteins' zeta potentials were closest to zero at pH 4, demonstrating their closeness to the isoelectric point. MTP and MTY had poorer antioxidant capabilities than the other protein isolates/concentrates. MTP and MTY contain high β sheet concentrations that might enhance thermal stability and lower the digestibility of proteins. In conclusion, the protein extraction process demonstrated a high potential for achieving both substantial yield and remarkable purity with some decent technological and functional properties, thus holding promise for various applications in diverse fields.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
12
|
Jarošová M, Roudnický P, Bárta J, Zdráhal Z, Bártová V, Stupková A, Lorenc F, Bjelková M, Kyselka J, Jarošová E, Bedrníček J, Bohatá A. Proteomic Profile of Flaxseed ( Linum usitatissimum L.) Products as Influenced by Protein Concentration Method and Cultivar. Foods 2024; 13:1288. [PMID: 38731659 PMCID: PMC11083286 DOI: 10.3390/foods13091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The research is focused on the quantitative evaluation of the flaxseed (Linum usitatissimum L.) proteome at the level of seed cake (SC), fine flour-sieved a fraction below 250 µm (FF)-and protein concentrate (PC). The evaluation was performed on three oilseed flax cultivars (Agriol, Raciol, and Libra) with different levels of α-linolenic acid content using LC-MS/MS (shotgun proteomics) analysis, which was finalized by database searching using the NCBI protein database for Linum usitatissimum and related species. A total of 2560 protein groups (PGs) were identified, and their relative abundance was calculated. A set of 33 quantitatively most significant PGs was selected for further characterization. The selected PGs were divided into four classes-seed storage proteins (11S globulins and conlinins), oleosins, defense- and stress-related proteins, and other major proteins (mainly including enzymes). Seed storage proteins were found to be the most abundant proteins. Specifically, 11S globulins accounted for 41-44% of SC proteins, 40-46% of FF proteins, and 72-84% of PC proteins, depending on the cultivar. Conlinins (2S albumins) were the most abundant in FF, ranging from 10 to 13% (depending on cultivar). The second most important class from the point of relative abundance was oleosins, which were represented in SC and FF in the range of 2.1-3.8%, but only 0.36-1.20% in PC. Surprisingly, a relatively high abundance of chitinase was found in flax products as a protein related to defence and stress reactions.
Collapse
Affiliation(s)
- Markéta Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Pavel Roudnický
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (P.R.); (Z.Z.)
| | - Jan Bárta
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Zbyněk Zdráhal
- Mendel Centre of Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (P.R.); (Z.Z.)
| | - Veronika Bártová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Adéla Stupková
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - František Lorenc
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, 370 05 České Budějovice, Czech Republic; (F.L.); (J.B.)
| | - Marie Bjelková
- Department of Legumes and Technical Crops, Agritec Plant Research Ltd., Zemědělská 2520/16, 787 01 Šumperk, Czech Republic;
| | - Jan Kyselka
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic;
| | - Eva Jarošová
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| | - Jan Bedrníček
- Department of Food Biotechnology and Agricultural Products Quality, Faculty of Agriculture and Technology, University of South Bohemia, Studentská 1668, 370 05 České Budějovice, Czech Republic; (F.L.); (J.B.)
| | - Andrea Bohatá
- Department of Plant Production, Faculty of Agriculture and Technology, University of South Bohemia, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (M.J.); (V.B.); (A.S.); (E.J.); (A.B.)
| |
Collapse
|
13
|
Vincent D, Reddy P, Isenegger D. Integrated Proteomics and Metabolomics of Safflower Petal Wilting and Seed Development. Biomolecules 2024; 14:414. [PMID: 38672431 PMCID: PMC11048707 DOI: 10.3390/biom14040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Safflower (Carthamus tinctorius L.) is an ancient oilseed crop of interest due to its diversity of end-use industrial and food products. Proteomic and metabolomic profiling of its organs during seed development, which can provide further insights on seed quality attributes to assist in variety and product development, has not yet been undertaken. In this study, an integrated proteome and metabolic analysis have shown a high complexity of lipophilic proteins and metabolites differentially expressed across organs and tissues during seed development and petal wilting. We demonstrated that these approaches successfully discriminated safflower reproductive organs and developmental stages with the identification of 2179 unique compounds and 3043 peptides matching 724 unique proteins. A comparison between cotyledon and husk tissues revealed the complementarity of using both technologies, with husks mostly featuring metabolites (99%), while cotyledons predominantly yielded peptides (90%). This provided a more complete picture of mechanisms discriminating the seed envelope from what it protected. Furthermore, we showed distinct molecular signatures of petal wilting and colour transition, seed growth, and maturation. We revealed the molecular makeup shift occurring during petal colour transition and wilting, as well as the importance of benzenoids, phenylpropanoids, flavonoids, and pigments. Finally, our study emphasizes that the biochemical mechanisms implicated in the growing and maturing of safflower seeds are complex and far-reaching, as evidenced by AraCyc, PaintOmics, and MetaboAnalyst mapping capabilities. This study provides a new resource for functional knowledge of safflower seed and potentially further enables the precision development of novel products and safflower varieties with biotechnology and molecular farming applications.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (P.R.); (D.I.)
| | | | | |
Collapse
|
14
|
Toutirais L, Walrand S, Vaysse C. Are oilseeds a new alternative protein source for human nutrition? Food Funct 2024; 15:2366-2380. [PMID: 38372388 DOI: 10.1039/d3fo05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
This review focuses on the potential use, nutritional value and beneficial health effects of oilseeds as a source of food protein. The process of extracting oil from oilseeds produces a by-product that is rich in proteins and other valuable nutritional and bioactive components. This product is primarily used for animal feed. However, as the demand for proteins continues to rise, plant-based proteins have a real success in food applications. Among the different plant protein sources, oilseeds could be used as an alternative protein source for human diet. The data we have so far show that oilseeds present a protein content of up to 40% and a relatively well-balanced profile of amino acids with sulphur-containing amino acids. Nevertheless, they tend to be deficient in lysine and rich in anti-nutritional factors (ANFs), which therefore means they have lower anabolic potential than animal proteins. To enhance their nutritional value, oilseed proteins can be combined with other protein sources and subjected to processes such as dehulling, heating, soaking, germination or fermentation to reduce their ANFs and improve protein digestibility. Furthermore, due to their bioactive peptides, oilseeds can also bring health benefits, particularly in the prevention and treatment of diabetes, obesity and cardiovascular diseases. However, additional nutritional data are needed before oilseeds can be endorsed as a protein source for humans.
Collapse
Affiliation(s)
- Lina Toutirais
- ITERG, Department of Nutritional Health and Lipid Biochemistry, Bordeaux, France
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
| | - Stephane Walrand
- Université Clermont Auvergne, INRAE, UNH, 63000 Clermont-Ferrand, France.
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| | - Carole Vaysse
- Clinical Nutrition Department, CHU, Clermont-Ferrand, France
| |
Collapse
|
15
|
Mendoza-Pérez RJ, Náthia-Neves G, Blanco B, Vela AJ, Caballero PA, Ronda F. Physicochemical Characterisation of Seeds, Oil and Defatted Cake of Three Hempseed Varieties Cultivated in Spain. Foods 2024; 13:531. [PMID: 38397508 PMCID: PMC10888170 DOI: 10.3390/foods13040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The increasing use of hempseed in food products highlights the need for a comprehensive database for scientific research and industrial applications. In food development, information about the techno-functional properties of raw materials plays a crucial role in determining the suitability of each product for specific applications. Thus, this study aims to characterise three hempseed varieties (Ferimon, Henola and Uso-31), comparing their physicochemical and nutritional compositions. Moreover, the study investigates the impact of hempseed varieties on the techno-functional, physical and thermal properties of the partially defatted hempseed flours (PDHFs) obtained from single screw pressing (SSP) oil extraction. The fatty acid and tocopherol profiles of the dehulled seeds and oil were also analysed. Significant variations in yield and physical properties were observed among hempseed varieties, influenced by genetics, adaptation to agro-climatic conditions and cultivation systems. Despite its lower yield (kg/ha), Uso-31 exhibited superior 1000-seed weight, dehulling yield and larger mean seed size (1.79 ± 0.02 mm). Hempseed oil was rich in unsaturated fatty acids, particularly linoleic (51.2-53.4 g/100 g oil) and α-linolenic (14.88-18.97 g/100 oil) acids, showing variations in γ- and α-tocopherols depending on the variety. The variety also influenced the least gelation concentration (LGC) and techno-functional properties such as water absorption capacity (WAC), emulsifying activity (EA) and emulsion stability (ES). SDS-PAGE and DSC measurements indicated the presence of 11S and 7S globulin proteins with denaturation temperatures above 87.8 °C. These findings confirm that the studied hempseed flours are valuable techno-functional and nutritional ingredients suitable for sustainable food formulations.
Collapse
Affiliation(s)
- Rito J. Mendoza-Pérez
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (R.J.M.-P.); (G.N.-N.); (A.J.V.); (F.R.)
- Research Institute on Bioeconomy - BioEcoUVa, PROCEREALtech Group, University of Valladolid, 47011 Valladolid, Spain
| | - Grazielle Náthia-Neves
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (R.J.M.-P.); (G.N.-N.); (A.J.V.); (F.R.)
- Research Institute on Bioeconomy - BioEcoUVa, PROCEREALtech Group, University of Valladolid, 47011 Valladolid, Spain
| | - Beatriz Blanco
- Chemical Engineering Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - Antonio J. Vela
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (R.J.M.-P.); (G.N.-N.); (A.J.V.); (F.R.)
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907-2053, USA
| | - Pedro A. Caballero
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (R.J.M.-P.); (G.N.-N.); (A.J.V.); (F.R.)
- Research Institute on Bioeconomy - BioEcoUVa, PROCEREALtech Group, University of Valladolid, 47011 Valladolid, Spain
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain; (R.J.M.-P.); (G.N.-N.); (A.J.V.); (F.R.)
- Research Institute on Bioeconomy - BioEcoUVa, PROCEREALtech Group, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
16
|
Pycia K, Juszczak L. Rheological Characteristics of Wheat Dough Containing Powdered Hazelnuts or Walnuts Oil Cakes. Foods 2023; 13:140. [PMID: 38201168 PMCID: PMC10779212 DOI: 10.3390/foods13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This study assessed edible oil industry byproducts, oil cakes (OC) based on hazelnuts and walnuts (HOC, WOC), to replace wheat flour dough (WD) based on farinograph and extensograph parameters and rheological measurements. The research hypothesis of this work is that replacing part of wheat flour with ground nut oil cakes modifies the rheological characteristics of the dough. WF was replaced at the level of 5%, 10% and 15%. It was shown that use of OC in flour mixtures at various levels significantly influenced the rheological properties of the dough. The water absorption of wheat flour and oil cake mixtures was higher than that of the control sample, and the average value of this indicator was 53.4%. The control sample had the lowest dough development time (DDT), and the presence of HOC or WOC in the system resulted in a significant increase in this parameter (p < 0.05). The average DDT of WDHOC cakes was 4.7 min and was lower compared to WDWOC which was 5.9 min. The WDWOC10% and WDWOC15% samples were characterized by the highest dough stability value and the lowest degree of softening (p < 0.05). The presence of OC in the flour mixtures increased the values of the storage and loss moduli, which was reflected in the K' and K″ values. The values of these parameters also increased as the level of OC addition increased. WDHOC doughs were characterized by higher values of the K' and K″ parameters compared to WDWOC. The results of the creep and recovery test showed that the dough with the addition of nut OC was less susceptible to deformation compared to the control dough (p < 0.05). The resistance to deformation increased with the increasing share of HOC or WOC in the mixtures. The average value of viscoelastic compliance (J1) of this parameter for WDHOC dough was on average 1.8 × 10-4 Pa-1, and for WDWOC 2.0 × 10-4 Pa-1. Nut oil cakes are an interesting technological addition to the dough. Their use may have a positive impact on the characteristics of the finished product and expand their application possibilities in the food industry. This is because the dough with the addition of nut cakes was more stiff and less flexible and susceptible to deformation.
Collapse
Affiliation(s)
- Karolina Pycia
- Department of Food Technology and Human Nutrition, Institute of Food Technology, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland
| | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
17
|
Inthachat W, Thangsiri S, Khemthong C, On-Nom N, Chupeerach C, Sahasakul Y, Temviriyanukul P, Suttisansanee U. Green Extraction of Hodgsonia heteroclita Oilseed Cake Powder to Obtain Optimal Antioxidants and Health Benefits. Foods 2023; 12:4281. [PMID: 38231711 PMCID: PMC10706092 DOI: 10.3390/foods12234281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Most biowaste produced by domestic food preparation and food processing has no value, is difficult to manage, and is detrimental to the environment. Oil extraction from Hodgsonia heteroclita seeds produces large amounts of oilseed cake powder (OCP) as biowaste. The extraction of residual phytochemicals using simple and eco-friendly methods can increase the economic utility of OCP. This study optimized the extraction process for Hodgsonia heteroclita OCP using a Box-Behnken design and response surface methodology. The optimized extraction condition was 30 °C for 5 h in 50% (v/v) ethanol, giving a total phenolic content (TPC) of 414.23 mg of gallic acid equivalent/100 g dry weight (DW). Phytochemical profiles of OCP using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ECI-MS/MS) identified 4-hydroxybenzoic acid and ferulic acid as the major compounds. Antioxidant activities and enzyme inhibitory activities toward the major enzymes involved in obesity (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP IV)), Alzheimer's disease (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase-1 (BACE-1)), hypertension (angiotensin-converting enzyme, ACE), and genotoxicity were also investigated. Results showed that H. heteroclita OCP possessed antioxidant activity and potential inhibitory activities against BACE-1 and ACE, while also being genome-safe. A simple extraction method for H. heteroclita OCP was developed, demonstrating the enhanced value of its phytochemical and health-promoting qualities.
Collapse
|
18
|
Pycia K, Juszczak L. Influence of Hazelnut and Walnut Oil Cakes Powder on Thermal and Rheological Properties of Wheat Flour. Foods 2023; 12:4060. [PMID: 38002119 PMCID: PMC10669997 DOI: 10.3390/foods12224060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the study was to assess the influence of the addition of powdery hazelnut oil cakes (HOC) or walnut oil cakes (WOC) to wheat flour (WF) on its selected thermal and rheological properties. In the research material, part of the wheat flour (5%, 10%, 15%) was substituted with powdery oil cakes based on hazelnuts and walnuts. The control sample was wheat flour (100% WF). In the tested systems with the addition of hazelnut oil cakes (WFHOC) and walnuts (WFWOC), the characteristics of the gelatinization and retrogradation processes were determined using the DSC method, the gelatinization characteristics of 10% pastes using the RVA method, flow curves and viscosity curves, as well as mechanical spectra. Based on the results obtained, it was found that the type of oil cakes and the level of their addition significantly influenced the thermal and rheological properties of the tested systems. Partial replacement of wheat flour with HOC or WOC significantly influenced most DSC parameters. The highest values of gelatinization enthalpy ∆HG and retrogradation ∆HR were characteristic of the WFWOC5% sample (5.9 J/g) and the control sample (1.3 J/g), respectively. All tested systems showed the properties of shear-thinning non-Newtonian fluids, and the partial replacement of wheat flour with HOC or WOC resulted in a significant reduction in the maximum viscosity of pastes, increasing with the increase in the proportion of oil cakes. WFHOC-based pastes were characterized by higher values of the G' and G″ modulus, while their values and the values of the K' and K″ parameters decreased as the share of oil cakes increased. Gels based on all tested systems showed the nature of weak gels (tan δ = G″/G' > 0.1). Replacing part of the wheat flour with nut oil cakes modified the thermal and rheological properties of pastes and gels, and the observed changes were influenced by both the origin and the level of addition of powdered oil cakes. It was found that WFHOC/WFWOC15% systems had reduced viscosity and weakened viscoelastic properties compared to systems with a lower OC content, which is not a favorable feature from the technological point of view. However, these systems were the most stable, which is an advantageous feature. However, for baking purposes, research should be carried out on the rheological properties of dough made from these mixtures.
Collapse
Affiliation(s)
- Karolina Pycia
- Department of Food Technology and Human Nutrition, Institute of Food Technology, College of Natural Science, University of Rzeszow, Zelwerowicza Street 4, 35-601 Rzeszow, Poland
| | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture in Krakow, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
19
|
Singh R, Sá AGA, Sharma S, Nadimi M, Paliwal J, House JD, Koksel F. Effects of Feed Moisture Content on the Physical and Nutritional Quality Attributes of Sunflower Meal-based High-Moisture Meat Analogues. FOOD BIOPROCESS TECH 2023; 17:1897-1913. [PMID: 38939448 PMCID: PMC11199254 DOI: 10.1007/s11947-023-03225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/06/2023] [Indexed: 06/29/2024]
Abstract
Adding value to food industry by-products, like sunflower meal (SFM), through their utilization as ingredients in new food products can improve sustainability of food systems. This research investigated extrusion cooking to produce high-moisture meat analogues (HMMAs) made from blends of soy protein isolate and expeller-pressed SFM. The effects of feed moisture content [FMC] (60, 65, and 70%, wet basis) and SFM concentration (37.5, 50, and 62.5%, total blend weight basis) on physical and protein nutritional quality attributes of HMMAs were investigated. The processing temperatures (including cooling die), screw speed and feed rate were kept constant at 60-80-115-125-50-25 °C (from feeder to the die end), 200 rpm and 0.5 kg/h (dry basis), respectively. An increase in SFM concentration and FMC significantly (p < 0.05) reduced the mechanical energy requirements for extrusion. Cutting strength and texture profile analysis of HMMAs indicated softer texture with increases in SFM and FMC. X-ray microcomputed tomography analysis revealed that the microstructure of the HMMAs at the centre and towards the surface was different and affected by SFM concentration and FMC. The in vitro-protein digestibility corrected amino acid score of the HMMAs ranged between 85 and 91% and did not show significant (p < 0.05) changes as a function of FMC or SFM concentration. HMMAs produced from 37.5% SFM at 70% FMC showed no deficiency in essential amino acids for all age categories except for infants, suggesting the high potential of SFM and soy protein blends for creating nutritious meat alternative products. Overall, this work provided valuable insights regarding the effects of soy protein replacement by SFM on the textural, microstructural and nutritional quality of HMMA applications, paving the way for value-addition to this underutilized food industry by-product.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Amanda Gomes Almeida Sá
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Shubham Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6 Canada
| | - James D. House
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Filiz Koksel
- Department of Food and Human Nutritional Sciences, Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
20
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
21
|
Sert D, Rohm H, Struck S. Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality. Foods 2022; 11:4029. [PMID: 36553771 PMCID: PMC9777787 DOI: 10.3390/foods11244029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Conventional solvent-based methods widely used for isolating plant proteins may deliver an unsatisfactory protein yield and/or result in protein degradation. The present study started with the optimization of pumpkin seed protein from press cake by alkaline extraction and subsequent isoelectric precipitation. Subsequently, extraction was supported by ultrasound under three conditions: ultrasonic treatment followed by alkaline extraction (US+AE), concomitant ultrasonic treatment and alkaline extraction (UAE), and alkaline extraction followed by ultrasonic treatment (AE+US). Compared to the control group, an increase in protein yield was achieved after ultrasonic treatment, while the highest protein yield was obtained with AE+US (57.8 ± 2.0%). Isolates with a protein content of 94.04 ± 0.77 g/100 g and a yield of 43.6 ± 0.97% were obtained under optimized conditions. Following ultrasonic treatment applied during extraction, solubility, foaming capacity, foam stability, and denaturation enthalpy of the isolated protein increased, and water binding capacity decreased as compared to non-sonicated samples. The d90 particle size percentile of the extracted suspensions was 376.68 ± 38.32 µm for the control experiments, and particle size was significantly reduced in ultrasound-assisted treatments down to d90 = 179.93 ± 13.24 µm for the AE+US treatment). Generally, ultrasonication resulted in a significant increase in protein yield and improved techno-functional properties of the isolates.
Collapse
Affiliation(s)
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
22
|
Wang Y, Jian C. Sustainable plant-based ingredients as wheat flour substitutes in bread making. NPJ Sci Food 2022; 6:49. [PMID: 36307422 PMCID: PMC9614748 DOI: 10.1038/s41538-022-00163-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Bread as a staple food has been predominantly prepared from refined wheat flour. The world's demand for food is rising with increased bread consumption in developing countries where climate conditions are unsuitable for wheat cultivation. This reliance on wheat increases the vulnerability to wheat supply shocks caused by force majeure or man-made events, in addition to negative environmental and health consequences. In this review, we discuss the contribution to the sustainability of food systems by partially replacing wheat flour with various types of plant ingredients in bread making, also known as composite bread. The sustainable sources of non-wheat flours, their example use in bread making and potential health and nutritional benefits are summarized. Non-wheat flours pose techno-functional challenges due to significantly different properties of their proteins compared to wheat gluten, and they often contain off-favor compounds that altogether limit the consumer acceptability of final bread products. Therefore, we detail recent advances in processing strategies to improve the sensory and nutritional profiles of composite bread. A special focus is laid on fermentation, for its accessibility and versatility to apply to different ingredients and scenarios. Finally, we outline research needs that require the synergism between sustainability science, human nutrition, microbiomics and food science.
Collapse
Affiliation(s)
- Yaqin Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Milk Thistle Oilseed Cake Flour Fractions: A Source of Silymarin and Macronutrients for Gluten-Free Bread. Antioxidants (Basel) 2022; 11:antiox11102022. [PMID: 36290745 PMCID: PMC9598143 DOI: 10.3390/antiox11102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The utilization of plant by-products as functional food ingredients has received increasing attention in the last decade. One such by-product generated during milk thistle oil pressing is oilseed cakes, which could be used as a novel food ingredient. Therefore, the study aimed at investigating the effects of the addition of milk thistle oilseed cake (MTOC) flour fractions obtained via dry sieving, differing in particle size (unsieved; coarse: >710 µm; medium: 315−710 µm; and fine: <315 µm), on the quality of gluten-free bread and stability of silymarin during breadmaking. The 10% addition of the fractions into gluten-free bread increased the protein, fibre, fat, ash and silymarin content. The breads with the coarse fraction had the highest content of fibre, whereas the breads with the fine fraction excelled in protein, fat and ash content. The medium fraction was characterized as the richest source of silymarin, whilst the fine fraction was the poorest. Silymarin constituents were slightly released during dough rising but also partially decomposed during baking; moreover, silydianin was the most susceptible and degraded the most. The enriched breads had better sensory and textural properties compared to the control bread. The results suggest that MTOC flour fractions can improve the potential health benefits and nutritional profile of gluten-free bread.
Collapse
|
24
|
Comparative Study of Food-Grade Pickering Stabilizers Obtained from Agri-Food Byproducts: Chemical Characterization and Emulsifying Capacity. Foods 2022; 11:foods11162514. [PMID: 36010516 PMCID: PMC9407277 DOI: 10.3390/foods11162514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Natural Pickering emulsions are gaining popularity in several industrial fields, especially in the food industry and plant-based alternative sector. Therefore, the objective of this study was to characterize and compare six agri-food wastes/byproducts (lupin hull, canola press-cake, lupin byproduct, camelina press-cake, linseed hull, and linseed press-cake) as potential sources of food-grade Pickering stabilizers. The results showed that all samples contained surface-active agents such as proteins (46.71-17.90 g/100 g) and dietary fiber (67.10-38.58 g/100 g). Canola press-cake, camelina press-cake, and linseed hull exhibited the highest concentrations of polyphenols: 2891, 2549, and 1672 mg GAE/100 g sample, respectively. Moreover, the agri-food byproduct particles presented a partial wettability with a water contact angle (WCA) between 77.5 and 42.2 degrees, and they were effective for stabilizing oil-in-water (O/W) emulsions. The emulsions stabilized by Camelina press-cake, lupin hull, and lupin by-product (≥3.5%, w/w) were highly stable against creaming during 45 days of storage. Furthermore, polarized and confocal microscopy revealed that the particles were anchored to the interfaces of oil droplets, which is a demonstration of the formation of a Pickering emulsion stabilized by solid particles. These results suggest that agri-food wastes/byproducts are good emulsifiers that can be applied to produce stable Pickering emulsions.
Collapse
|
25
|
Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods 2022; 11:foods11152304. [PMID: 35954070 PMCID: PMC9368198 DOI: 10.3390/foods11152304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023] Open
Abstract
Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.
Collapse
|