1
|
Gazaloğlu M, Camarasa C, Nevoigt E. Exploring pectinolytic yeast diversity: toward effective polygalacturonase producers for applications in wine-making. FEMS Yeast Res 2025; 25:foae033. [PMID: 39694689 PMCID: PMC11781195 DOI: 10.1093/femsyr/foae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024] Open
Abstract
Pectinolytic enzymes secreted by yeasts have an untapped potential in industry, particularly in wine-making. This study addresses the limitations of the current screening methods in reliably predicting the capacity of pectinolytic yeast strains to secrete polygalacturonase (PGase) under industrial conditions, suggesting a novel screening approach. Using the context of wine-making as an example, a diverse collection of 512 yeast strains from 17 species was analysed for PGase secretion, a key enzyme in pectinolysis. The traditional halo assay on solid yeast-pepton-dextrose (YPD) medium revealed 118 strains from nine genera being PGase positive. Screening these strains by incubating them at 20°C on a solid synthetic grape juice medium containing polygalacturonic acid (PG) significantly reduced the number of promising strains to 35. They belong to five genera: Kluyveromyces sp., Cryptococcus, Pichia, Torulaspora, and Rhodotorula. Afterward, a newly developed pectin-iodine assay was used to precisely quantify the PGase activity of the best-performing strains in a liquid medium. Strains from Kluyveromyces and Cryptococcus sp. stood out regarding high pectinolytic activity. Our methodological advancements tailored to identify highly promising pectinolytic yeasts for industrial use open new avenues for wine-making and other industrial processes encompassing media rich in pectin and sugars.
Collapse
Affiliation(s)
- Mehmet Gazaloğlu
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France
| | - Carole Camarasa
- UMR SPO, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France
| | - Elke Nevoigt
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
2
|
Liu Y, Miao Q, Liu Y, Jiang M. Effects of chitosan guanidine on blood glucose regulation and gut microbiota in T2DM. Int J Biol Macromol 2024; 279:135422. [PMID: 39245098 DOI: 10.1016/j.ijbiomac.2024.135422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia. Type 2 diabetes mellitus (T2DM) represents approximately 90 % of all DM cases and is primarily caused by an imbalance in blood glucose homeostasis due to inadequate insulin secretion or insulin resistance. This study explores the potential therapeutic effects of chitosan guanidine (CSG) on a T2DM mouse model. The findings reveal that CSG significantly enhances oral glucose tolerance (OGTT) and insulin sensitivity (ITT), reduces fasting blood glucose (FBG) levels, and suppresses the expression of proinflammatory cytokines in T2DM mice. These changes improve insulin resistance and diminish inflammation. Additionally, CSG markedly ameliorates lipid metabolism disorders, lowers total cholesterol (TC) and triglyceride (TG) levels, and inhibits hepatic fat accumulation. 16S rRNA and Spearman correlation analyses indicate that CSG promotes the relative abundance of probiotic genera such as Bacteroidota, Patescibacteria, Actinobacteria, and Cyanobacteria. These bacteria are positively correlated with short-chain fatty acids (SCFAs) and high-density lipoprotein cholesterol (HDLC) levels. Conversely, CSG reduces the relative abundance of pathogenic bacteria, including Proteobacteria and Ralstonia, leading to an improved intestinal microbial community composition in T2DM mice and alleviating T2DM symptoms. These results suggest that CSG holds significant potential as a non-insulin therapeutic agent for diabetes management.
Collapse
Affiliation(s)
- Yuancheng Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qingya Miao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Mengmeng Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
3
|
Liang Y, Yu J, Wu L, Cong X, Liu H, Chen X, Li S, Zhu Z. Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods. Antioxidants (Basel) 2024; 13:1251. [PMID: 39456504 PMCID: PMC11505448 DOI: 10.3390/antiox13101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The residues from selenium-enriched Cardamine violifolia after the extraction of protein were still rich in polysaccharides. Thus, the recovery of selenium polysaccharides (SePSs) was compared using hot water extraction and ultrasonic-assisted extraction techniques. The yield, extraction rate, purity, specific energy consumption, and content of total and organic selenium from different SePS extracts were determined. The results indicated that at conditions of 250 W (ultrasonic power), 30 °C, and a liquid-to-material ratio of 30:1 extracted for 60 min, the yield of SePSs was 3.97 ± 0.07%, the extraction rate was 22.76 ± 0.40%, and the purity was 65.56 ± 0.35%, while the total and organic selenium content was 749.16 ± 6.91 mg/kg and 628.37 ± 5.93 mg/kg, respectively. Compared to traditional hot water extraction, ultrasonic-assisted extraction significantly improves efficiency, reduces energy use, and boosts both total and organic selenium content in the extract. Measurements of particle size, molecular weight, and monosaccharide composition, along with infrared and ultraviolet spectroscopy, revealed that ultrasonic-assisted extraction breaks down long-chain structures, decreases particle size, and changes monosaccharide composition in SePSs, leading to lower molecular weight and reduced dispersity. The unique structure of SePSs, which integrates selenium with polysaccharide groups, results in markedly improved antioxidant activity and reducing power, even at low concentrations, due to the synergistic effects of selenium and polysaccharides. This study establishes a basis for using SePSs in functional foods.
Collapse
Affiliation(s)
- Yong Liang
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Jiali Yu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Lulu Wu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Xin Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Haiyuan Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Xu Chen
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
| | - Shuyi Li
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, Wuhan 430023, China
| | - Zhenzhou Zhu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; (Y.L.); (J.Y.); (L.W.); (X.C.); (H.L.); (X.C.)
- Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, Wuhan 430023, China
| |
Collapse
|
4
|
Wang Y, Yu D, Zhu S, Du X, Wang X. The genus Dioscorea L. (Dioscoreaceae), a review of traditional uses, phytochemistry, pharmacology, and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118069. [PMID: 38552992 DOI: 10.1016/j.jep.2024.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Dioscorea, a member of the Dioscoreaceae family, comprises approximately 600 species and is widely distributed across temperate and tropical regions such as Asia, South Africa, and North America. The traditional medicinal uses of Dioscorea have been documented in Asian and African pharmacological systems. In Asia, this genus is traditionally used to treat respiratory illnesses, rheumatism, diabetes, diarrhea, dysentery, and other conditions. In Africa, this genus has been used to treat human immunodeficiency virus and ring worms. However, the traditional medicinal practices in North America rarely mention the use of this genus. AIM OF THE STUDY The aim of this review is to comprehensively review the genus Dioscorea, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. The research also aims to highlight the valuable bioactive compounds within Dioscorea and emphasize the need for further investigations into acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors to contribute to the discovery of novel pharmaceuticals. MATERIALS AND METHODS A search for available information on Dioscorea was conducted using scientific databases, including PubMed, ISI-WOS, Scopus, and Google Scholar, as well as recent academic publications from reputable publishers and other literature sources. The search was not limited by language and spanned the literature published between 1950 and 2022. RESULTS This article provides a comprehensive review of the Dioscorea genus, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. Extensive research has been conducted on this genus, resulting in the isolation and examination of over 1000 compounds, including steroids, terpenoids, and flavonoids, to determine their biological activities. These activities include anti-tumor, anti-inflammatory, immunomodulatory, neuroprotective, hypoglycemic, and hypolipidemic effects. However, some studies have indicated the potential toxicity of high doses of Dioscorea, highlighting the need for further investigations to assess the safety of this genus. Additionally, this review explores potential avenues for future research and discusses the challenges associated with a comprehensive understanding of the Dioscorea genus. CONCLUSIONS Based on the existing literature, it can be concluded that Dioscorea is a valuable source of bioactive compounds that have the potential to treat various disorders. Future research should prioritize the investigation of acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors. This review provides a comprehensive analysis of the Dioscorea genus, emphasizing its potential to enable a deeper exploration of the biological activity mechanisms of these plants and contribute to the discovery of novel pharmaceuticals.
Collapse
Affiliation(s)
- Yufei Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Dan Yu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shaojie Zhu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiaowei Du
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Xijun Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
5
|
Zhang L, Wang S, Zhang W, Chang G, Guo L, Li X, Gao W. Prospects of yam (Dioscorea) polysaccharides: Structural features, bioactivities and applications. Food Chem 2024; 446:138897. [PMID: 38430768 DOI: 10.1016/j.foodchem.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Yam (Dioscorea) is a tuber crop cultivated for food security, revenue, and medicinal purposes. It has been used to treat diabetes, asthma, diarrhea, and other diseases. The main active ingredients in yam, polysaccharides, are regarded to be the important reason for its widespread applications. Now, a comprehensive review of research developments of yam polysaccharides (YPs) was presented to explore their prospects. We outlined the structural characteristics, biological activities, structure-activity relationships, and potential applications. Around 13 neutral components and 17 acidic components were separated. They exhibited various bioactivities, including immunomodulatory, hypoglycemic, hypolipidemic, antioxidant, gastrointestinal protective, anti-fatigue, and senile disease treatment activities, as well as prebiotic effect. Structure-activity relationships illustrated that unique structural properties, chemical modifications, and carried biopolymers could influence the bioactivities of YPs. The potential applications in medicine, food, and other fields have also been summarized.
Collapse
Affiliation(s)
- Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin 300402, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
6
|
Guo Y, Liu F, Zhang J, Chen J, Chen W, Hong Y, Hu J, Liu Q. Research progress on the structure, derivatives, pharmacological activity, and drug carrier capacity of Chinese yam polysaccharides: A review. Int J Biol Macromol 2024; 261:129853. [PMID: 38311141 DOI: 10.1016/j.ijbiomac.2024.129853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Chinese yam is a traditional Chinese medicine that has a long history of medicinal and edible usage in China and is widely utilised in food, medicine, animal husbandry, and other industries. Chinese yam polysaccharides (CYPs) are among the main active components of Chinese yam. In recent decades, CYPs have received considerable attention because of their remarkable biological activities, such as immunomodulatory, antitumour, hypoglycaemic, hypolipidaemic, antioxidative, anti-inflammatory, and bacteriostatic effects. The structure and chemical alterations of polysaccharides are the main factors affecting their biological activities. CYPs are potential drug carriers owing to their excellent biodegradability and biocompatibility. There is a considerable amount of research on CYPs; however, a systematic summary is lacking. This review summarises the structural characteristics, derivative synthesis, biological activities, and their usage as drug carriers, providing a basis for future research, development, and application of CYPs.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fangrui Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
7
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023; 12:3773. [PMID: 37893666 PMCID: PMC10606687 DOI: 10.3390/foods12203773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.
Collapse
Affiliation(s)
- Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yang Sun
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Bowen Liu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Jiajia Ming
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| | - Lulu Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yuanyuan Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
9
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
10
|
The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells, as Affected by the Covalent Se Conjugation. Nutrients 2022; 14:nu14193950. [PMID: 36235602 PMCID: PMC9571917 DOI: 10.3390/nu14193950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The non-starch yam polysaccharides (YP) are the bioactive substances of edible yam, while Se is an essential nutrient for the human body. Whether a covalent conjugation of Se to YP might cause bioactivity change for the resultant selenylated YP in the intestine is still insufficiently studied, including the critical intestinal barrier function. In this study, two selenylated YP products, namely, YPSe-I and YPSe-II, with corresponding Se contents of 795 and 1480 mg/kg, were obtained by the reaction of YP and Na2SeO3 in the presence of HNO3 and then assessed for their bioactivities to a cell model (i.e., rat intestinal epithelial IEC-6 cells). The results showed that YP, YPSe-I, and YPSe-II at 5–80 μg/mL dosages could promote cell growth with treatment times of 12–24 h. The three samples also could improve barrier integrity via increasing cell monolayer resistance and anti-bacterial activity against E. coli or by reducing paracellular permeability and bacterial translocation. Additionally, the three samples enhanced F-actin distribution and promoted the expression of the three tight junction proteins, namely, zonula occluden-1, occludin, and claudin-1. Meanwhile, the expression levels of ROCK and RhoA, two critical proteins in the ROCK/RhoA singling pathway, were down-regulated by these samples. Collectively, YPSe-I and, especially, YPSe-II were more potent than YP in enhancing the assessed bioactivities. It is thus concluded that this chemical selenylation of YP brought about enhanced activity in the cells to promote barrier integrity, while a higher selenylation extent of the selenylated YP induced much activity enhancement. Collectively, the results highlighted the important role of the non-metal nutrient Se in the modified polysaccharides.
Collapse
|
11
|
Gao W, Zhang N, Li S, Li S, Zhu S, Cong X, Cheng S, Barba FJ, Zhu Z. Polysaccharides in Selenium-Enriched Tea: Extraction Performance under Innovative Technologies and Antioxidant Activities. Foods 2022; 11:2545. [PMID: 36076731 PMCID: PMC9455174 DOI: 10.3390/foods11172545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Pulsed electric fields (PEF) and ultrasonic-assisted extraction (UE) were applied to improve the extraction performance of selenium-enriched tea polysaccharides (Se-TPSs) in mild conditions. Two combined extraction processes were investigated: (1) PEF strength at 10 kV/cm followed by conventional extraction (CE) at 50 °C for 60 min and (2) PEF+UE (PEF strength at 10 kV/cm followed by UE at 400 W for 60 min). The optimal extraction yields, and energy consumption rates were obtained at 36.86% and 41.53% and 78.78 kJ/mg and 133.91 kJ/mg, respectively. The Se-TPSs were analyzed and characterized by GPC, UV, and FT-IR, which evidenced the structural stability of the Se-TPSs during the extraction processes. It was found that PEF and UE could reduce the particle size diameter of the Se-TPS extract, as well as the proportion of uronic acid. Moreover, PEF could increase the selenium content in the Se-TPS extract by 160.14% due to a lower extraction temperature compared to conventional extraction. The antioxidant activities of the Se-TPSs in vitro were investigated using OH, O2-, and ABTS+ scavenging experiments, as well as a total antioxidant ability evaluation. It was found that the antioxidant activity of the Se-TPSs obtained using PEF2+CE2 was relatively high due to the potential synergistic effect between the selenium and polysaccharides. Based on these results, we speculate that PEF2+CE2 was the best extraction process for the Se-TPSs. Furthermore, this research indicates the application of selenium-enriched tea for functional food production.
Collapse
Affiliation(s)
- Weilan Gao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuyao Li
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shiyu Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
12
|
Zhang Y, Gu P, Jiao L, He J, Yu L, Liu Z, Yang Y, Hu Y, Liu J, Wang D. Chinese yam polysaccharides PLGA-stabilized Pickering emulsion as an adjuvant system for PCV- 2 vaccine to enhance immune response. Int J Biol Macromol 2022; 219:1034-1046. [PMID: 35963357 DOI: 10.1016/j.ijbiomac.2022.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Chinese yam polysaccharides (CYP) exhibit superior adjuvant activity and modulate the immune response, but the low bioavailability limits their clinical application. Pickering emulsions have been proven as an efficient vaccine delivery system to enhance the immune response. Here, we used the Chinese yam polysaccharides PLGA-stabilized Pickering emulsion adjuvant system (CYP-PPAS) loaded with Porcine circovirus 2 as a vaccine and focused on investigating its adjuvant activity on humoral and cellular immunity in mice. The CYP-PPAS increased PCV-2 antigen loading efficiency and showed a high antigen uptake efficiency by macrophages in vitro. In vivo, CYP-PPAS significantly facilitated DCs maturation in draining lymph nodes than CYP or PPAS alone group. The CYP-PPAS also induced an increased proliferation index and a CD4+/CD8+ ratio. Meanwhile, in contrast to the CYP and PPAS groups, CYP-PPAS elicited a stronger anti-PCV-2 IgG and mixed Th1/Th2 immune response. Specifically, the CYP-PPAS group displayed the high expression of CD107a, FasL, and Granzyme B secretion to augment a strong cytotoxic lymphocyte response. Overall, the CYP-PPAS was a successful adjuvant system for promoting humoral and cellular immune responses, which opens up an avenue for the development of effective adjuvants against infectious diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Pengfei Gu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Guan QY, Zhao XH. Monosaccharide composition and in vivo immuno-stimulatory potential of soluble yam (Dioscorea opposita Thunb.) polysaccharides in response to a covalent Se incorporation. Food Chem 2022; 396:133741. [PMID: 35878444 DOI: 10.1016/j.foodchem.2022.133741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/09/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
The present study aimed to investigate whether selenylation modification could affect compositional features and in vivo immuno-stimulatory potential of yam polysaccharides. In this study, the soluble yam mucilage polysaccharides (YPS) were prepared and selenylated in the HNO3-Na2SeO3 system, and two selenylated polysaccharide products, namely SeYPS-1 and SeYPS-2 with respective Se contents of 719 and 1585 mg/kg, were thus obtained. GC-MS analysis demonstrated that the compositional features of SeYPS-1 and SeYPS-2 were similar to those of YPS. Meanwhile, the immuno-stimulatory potential of the selenylated products, especially SeYPS-2, in the BALB/c mice model was higher than that of YPS, reflected by the elevated contents of serum immunoglobins and increased percentage of CD4+ splenic lymphocytes. It was thus confirmed that the selenylation did not change the composition of monosaccharides but endowed YPS with greater immuno-stimulation in the mice, while the higher extent of selenylation also caused a much enhanced immuno-stimulatory potential of SeYPS-2.
Collapse
Affiliation(s)
- Qing-Yun Guan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, PR China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030 Harbin, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000 Maoming, PR China.
| |
Collapse
|
14
|
Immunomodulatory Activity of Extracellular Vesicles of Kimchi-Derived Lactic Acid Bacteria ( Leuconostoc mesenteroides, Latilactobacillus curvatus, and Lactiplantibacillus plantarum). Foods 2022; 11:foods11030313. [PMID: 35159463 PMCID: PMC8834128 DOI: 10.3390/foods11030313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria present in Kimchi, such as Leuconostoc mesenteroides (Lm), Latilactobacillus curvatus (Lc), and Lactiplantibacillus plantarum (Lp) produce extracellular vesicles (ECVs) that modulate immune responses. The ECVs of probiotic Kimchi bacteria are abbreviated as LmV, LcV, and LpV. Treatment of macrophages (RAW264.7) with ECVs (LmV, LcV, and LpV) increased the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6). Immunostimulatory effects exerted on the RAW264.7 cells were stronger after treatments with LmV and LcV than with LpV. Treatment of mice with LcV (1 mg/kg, orally) induced splenocyte proliferation and subsequent production of both NO and cytokines (INF-γ, TNF-α, IL-4, and IL-10). Furthermore, pre-treatment of macrophages and microglial cells with ECVs prior to LPS stimulation significantly attenuated the production of NO and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Therefore, ECVs (LmV, LcV, and LpV) prevent inflammatory responses in the LPS-stimulated microglial cells by blocking the extracellular signal-regulated kinase (Erk) and p38 signaling pathways. These results showed that LmV, LcV, and LpV from Kimchi probiotic bacteria safely exert immunomodulatory effects.
Collapse
|