1
|
Su T, Fu Y, Tan J, Gagaoua M, Bak KH, Soladoye OP, Zhao Z, Zhao Y, Wu W. Effects of intramuscular fat on the flavor of fresh sheep and goat meat: Recent insights into pre-mortem and post-mortem factors. Food Chem X 2025; 25:102159. [PMID: 39867221 PMCID: PMC11762145 DOI: 10.1016/j.fochx.2025.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Sheep and goat meat products are becoming increasingly popular among consumers due to their unique flavor derived from intramuscular fat (IMF), which contributes to formation of the distinctive odor. However, there is currently a dearth of reviews on the impact of IMF on the flavor of sheep and goat meat. The present review aims to discuss the relationships between IMF and flavor through lipid composition and fatty acid (FA) distribution, provide an overview of characteristic flavor compounds affecting the flavor of sheep and goat meat, and shed light on the impacts of pre-mortem and post-mortem factors on meat flavor attributed to changes in FAs and flavor compounds. Controlling pre-mortem practices and adjusting post-mortem harvesting methods are key factors in shaping and/or driving the flavor of sheep and goat meat products. This review enhances the comprehensive understanding of the impact of IMF on the flavor of sheep and goat meat.
Collapse
Affiliation(s)
- Tianyu Su
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jingjie Tan
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | | | - Kathrine H. Bak
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FH OÖ Campus Wels, Stelzhamerstraße 23, A-4600 Wels, Austria
| | - Olugbenga P. Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University; Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
| |
Collapse
|
2
|
Wang S, Tang W, Jiang T, Wang R, Zhang R, Ou J, Wang Q, Cheng X, Ren C, Chen J, Huang Y, Zhang Z. Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep. Animals (Basel) 2024; 14:3305. [PMID: 39595356 PMCID: PMC11591461 DOI: 10.3390/ani14223305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the effects of different dietary concentrate-to-forage ratios on slaughter performance, meat quality, rumen fermentation, rumen microbiota and fecal microbiota in Tibetan sheep. A total of sixty male Tibetan sheep were equally allocated into three dietary groups based on concentrate-to-forage ratios, i.e., 30:70 (C30), 50:50 (C50), and 70:30 (C70). Compared with the C30 group, sheep fed the C70 diet resulted in a higher (p < 0.05) slaughter live weight (SLW), hot carcass weight (HCW), dressing percentage (DP), eye muscle area, average daily gain (ADG), and ruminal total volatile fatty acids concentration and propionate molar proportion and lower (p < 0.05) shear force and cooking loss of meat, and ruminal acetate molar proportion and acetate:propionate ratio. Sheep in the C50 group exhibited a higher (p < 0.05) SLW, HCW, ADG, and ruminal propionate molar proportion and lower (p < 0.05) shear force and cooking loss of meat, and ruminal acetate molar proportion and acetate: propionate ratio compared with the C30 group. In rumen fluid, the relative abundance of Butyrivibrio was lower (p = 0.031) in the C30 group, and that of Ruminococcus was higher (p = 0.003) in the C70 group compared with the C50 group. In feces, genus Monoglobus and UCG_002 were the most abundant in the C30 group (p < 0.05), and the relative abundance of Prevotella was significantly higher in the C70 group than in other groups (p = 0.013). Correlation analysis revealed possible links between slaughter performance and meat quality and altered microbiota composition in the rumen and feces of Tibetan sheep. Overall, feeding a C70 diet resulted in superior carcass characteristics and meat quality in Tibetan sheep, thus laying a theoretical basis for the application of short-term remote feeding during the cold season.
Collapse
Affiliation(s)
- Shijia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Wenhui Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Ting Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Ruoxi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Jingyu Ou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Qiangjun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Jiahong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (W.T.); (T.J.); (R.W.); (R.Z.); (J.O.); (Q.W.); (X.C.); (C.R.); (J.C.); (Y.H.)
| |
Collapse
|
3
|
Rodrigues SSQ, Leite A, Vasconcelos L, Teixeira A. Exploring the Nexus of Feeding and Processing: Implications for Meat Quality and Sensory Perception. Foods 2024; 13:3642. [PMID: 39594057 PMCID: PMC11593356 DOI: 10.3390/foods13223642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The intrinsic quality of meat is directly related to muscle and fat tissues. Factors such as the rate and extent of anaerobic glycolysis affect muscle pH, influencing the meat's color, water holding, and texture. Postmortem anomalies can result in deviations from this intrinsic quality. The animals' diet plays a crucial role in meat quality. Specific nutrients, such as proteins, vitamins, and minerals, affect meat's texture, flavor, and juiciness. Feeds rich in omega-3 fatty acids can improve the sensorial quality of meat. Meat processing and methods such as aging, marinating, and cooking affect the texture, flavor, and juiciness, which can be evaluated by specific equipment or trained or untrained consumers. This comprehensive review investigates the relationship between animal feeding practices and meat processing techniques and their combined impact on meat quality and sensory perception. By synthesizing recent research, we explore how various feeding protocols (including diet composition and feed additives) and processing methods shape meat products' nutritional value, texture, flavor profile, and overall consumer appeal. Understanding this nexus is crucial for optimizing meat quality while ensuring sustainability and safety in the food supply chain.
Collapse
Affiliation(s)
- Sandra S. Q. Rodrigues
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (A.T.)
| | | | | | | |
Collapse
|
4
|
Wang W, Zhang X, Wei H, Wang S, Ye Y, He L, Zhang K, Lu Y, Zhang Z, Huang Y. Effects of Feeding Systems on the Growth Performance, Carcass Characteristics, and Meat Quality in Sheep: A Meta-Analysis. Animals (Basel) 2024; 14:2738. [PMID: 39335327 PMCID: PMC11429334 DOI: 10.3390/ani14182738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Meat quality is important in the meat-production chain. Conflicting reports of the effects of feeding systems on sheep growth performance and meat quality exist. By way of meta-analysis, we reviewed the literature on the growth and slaughter performance, and meat quality of lambs that grazed solely on pasture, those that grazed on pasture but received a dietary supplement, and those were exclusively fed indoors. The relevant literature comprised 28 papers, from which response variables of interest were obtained. Compared with stall-fed sheep, pasture-grazing led to significantly (p < 0.05) lower average daily gain, slaughter live weight, hot carcass weight, cold carcass weight, and similar dressing percentage, but pasture-grazed sheep fed a supplement had similar (p > 0.05) values for each of these attributes to stall-fed sheep. The quality of the longissimus muscle from lambs that grazed either exclusively on pasture or pasture with a supplement had significantly (p < 0.05) lower lightness and intramuscular fat content, and significantly (p < 0.05) higher yellowness, Warner-Bratzler shear force, and protein content than meat from stall-fed sheep. We conclude that sheep that have fed exclusively on pasture have lower carcass yield and meat edibility, but improved meat quality, and that pasture-fed sheep that received a supplement had comparable carcass attributes, but greater meat color and health quality than stall-fed sheep.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Huiqing Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Sunze Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
| | - Yang Ye
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
| | - Li He
- New Rural Development Research Institute, Anhui Agricultural University, Hefei 230036, China;
| | - Kefan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
| | - Yuan Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (W.W.); (X.Z.); (H.W.); (S.W.); (Y.Y.); (K.Z.); (Y.L.); (Z.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| |
Collapse
|
5
|
Jacondino L, Poli C, Tontini J, Correa G, da Silva I, Nigeliskii A, Mello R, Pereira A, Magalhães D, Trindade M, Carvalho S, Muir J. Plant Bioactive Compounds of Brazilian Pampa Biome Natural Grasslands Affecting Lamb Meat Quality. Foods 2024; 13:2931. [PMID: 39335859 PMCID: PMC11431356 DOI: 10.3390/foods13182931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Our study investigated how different levels of antioxidants and contrasting proportions of native legumes in the diet affect lamb meat quality. Twenty-four male Texel lambs were randomly assigned to three groups: two groups on a natural pasture in southern Brazil (Pampa Biome), each at a different proportion of legumes: Low-legume (LL, 4.37%) and High-legume (HL, 14.01%); the other group was stall-fed (Control) to achieve the same growth rates as the grazing groups. Cold carcass yield from the Control lambs was higher than HL. The meat from pasture-fed animals had a higher deposition of muscle α-tocopherol and lower lipid oxidation (TBARS values) after 9 days of storage. LL lambs had higher subcutaneous fat thickness, which promoted better sensory quality of the meat, as assessed by a trained panel. Pasture-based diets enhanced odd- and branched-chain fatty acids (OBCFAs), trans vaccenic acid, and total conjugated linoleic acids (CLAs), while decreasing elaidic acid. Despite the lower ∆9-desaturase activity, the higher proportion of Desmodium incanum (condensed tannin-rich native legume) in the HL diet did not impact meat nutritional quality. Finishing lambs on the Pampa Biome grasslands is an option for improving the oxidative stability and beneficial fatty acid content of lamb meat, which improves product quality and human consumer health.
Collapse
Affiliation(s)
- Luiza Jacondino
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - Cesar Poli
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - Jalise Tontini
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - Gladis Correa
- Department of Animal Science, Federal University of Pampa, R. Vinte e Um de Abril, 80, Dom Pedrito 96450000, RS, Brazil;
| | - Itubiara da Silva
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540000, RS, Brazil; (L.J.); (J.T.); (I.d.S.)
| | - André Nigeliskii
- Department of Science and Food Technology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105900, RS, Brazil; (A.N.); (R.M.)
| | - Renius Mello
- Department of Science and Food Technology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria 97105900, RS, Brazil; (A.N.); (R.M.)
| | - Angélica Pereira
- Department of Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635970, SP, Brazil; (A.P.); (D.M.); (M.T.)
| | - Danielle Magalhães
- Department of Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635970, SP, Brazil; (A.P.); (D.M.); (M.T.)
| | - Marco Trindade
- Department of Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635970, SP, Brazil; (A.P.); (D.M.); (M.T.)
| | - Sandra Carvalho
- Department of Animal Science, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, Florianopolis 88034000, SC, Brazil;
| | - James Muir
- Texas AgriLife Research, Texas A&M University, 1229 N. US Hwy 281, Stephenville, TX 76401, USA;
| |
Collapse
|
6
|
Harahap RS, Gunawan A, Endrawati YC, Darusman HS, Andersson G, Noor RR. A comprehensive study of CYP2E1 and its role in carcass characteristics and chemical lamb meat quality in different Indonesian sheep breeds. PLoS One 2024; 19:e0310336. [PMID: 39250496 PMCID: PMC11383218 DOI: 10.1371/journal.pone.0310336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The role of CYP2E1 in oxidation is essential for its effects on meat quality. This study used 200 Indonesian sheep (Ovis aries) to determine the SNP g allele frequencies. g. 50658168 T>C of CYP2E1 gene located in 3´-UTR region and their genetic association with lamb quality traits, including carcass characteristics, retail cut carcass, physicochemical lamb, fatty acid, cholesterol, flavor and odor, and mineral content. Further, the level of CYP2E1 mRNA and CYP2E1 protein expression in muscle were determined and correlated with lamb quality traits. CYP2E1 gene polymorphisms were identified using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis. The CYP2E1 mRNA expression levels in phenotypically divergent sheep populations were analyzed using Quantitative Real Time-PCR (qRT-PCR). Immunohistochemistry (IHC) and hematoxylin-eosin (HE) staining analysis used three samples each in the high and low lamb quality groups based on pH value and tenderness. An association study of CYP2E1 gene polymorphisms was performed using General Linear Model (GLM) analysis. The genetic association between the CC, CT, and TT genotypes at the SNP g. 50658168 T>C CYP2E1 gene and lamb quality traits were significant (P<0.05), including carcass characteristics, retail cut carcass, fatty acid, cholesterol, flavor, and odor. Lambs with the CT genotype had a higher mRNA and protein expression in high lamb quality traits. The highest CYP2E1 protein expression was localized in the longissimus dorsi. The group sample with high lamb quality had a higher area and perimeter of muscle cells. CYP2E1 can be used as a genetic marker for selecting sheep with high meat quality.
Collapse
Affiliation(s)
- Ratna Sholatia Harahap
- Faculty of Animal Science, Post-Doctoral Animal Production and Technology Student, IPB University, Bogor, Indonesia
- Faculty of Animal Science, Jambi University, Jambi, Indonesia
| | - Asep Gunawan
- Faculty of Animal Science, Department of Animal Production and Technology, IPB University, Bogor, Indonesia
| | - Yuni Cahya Endrawati
- Faculty of Animal Science, Department of Animal Production and Technology, IPB University, Bogor, Indonesia
| | - Huda Shalahudin Darusman
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary and Biomedical Sciences, IPB University, Bogor, Indonesia
- Primate Research Centre, Institute of Research and Community Service IPB University, Bogor, Indonesia
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agriculture Sciences, Uppsala, Sweden
| | - Ronny Rachman Noor
- Faculty of Animal Science, Department of Animal Production and Technology, IPB University, Bogor, Indonesia
| |
Collapse
|
7
|
Cao Y, Xing Y, Guan H, Ma C, Jia Q, Tian W, Li G, Tian Y, Kang X, Liu X, Li H. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken. Genes (Basel) 2023; 14:2197. [PMID: 38137019 PMCID: PMC10742768 DOI: 10.3390/genes14122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Intramuscular fat (IMF) plays an important role in the tenderness, water-holding capacity, and flavor of chicken meat, which directly affect meat quality. In recent years, regulatory mechanisms underlying IMF deposition and the development of effective molecular markers have been hot topics in poultry genetic breeding. Therefore, this review focuses on the current understanding of regulatory mechanisms underlying IMF deposition in chickens, which were identified by multiple genomic approaches, including genome-wide association studies, whole transcriptome sequencing, proteome sequencing, single-cell RNA sequencing (scRNA-seq), high-throughput chromosome conformation capture (HiC), DNA methylation sequencing, and m6A methylation sequencing. This review comprehensively and systematically describes genetic and epigenetic factors associated with IMF deposition, which provides a fundamental resource for biomarkers of IMF deposition and provides promising applications for genetic improvement of meat quality in chicken.
Collapse
Affiliation(s)
- Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.C.); (Y.X.); (H.G.); (C.M.); (Q.J.); (W.T.); (G.L.); (Y.T.); (X.K.); (X.L.)
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
8
|
Huang Y, Zhao M, Zhang X, Wei H, Liu L, Zhang Z, Cheng X, Wang G, Ren C. Indoor feeding combined with restricted grazing time improves body health, slaughter performance, and meat quality in Huang-huai sheep. Anim Biosci 2023; 36:1655-1665. [PMID: 37857341 PMCID: PMC10623047 DOI: 10.5713/ab.23.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of three feeding systems, i.e., indoor feeding (CON), indoor feeding with 4-h daily access to grazing artificial pasture (ITGP), and indoor feeding with 8-h daily access to grazing artificial pasture (IEGP), on the plasma antioxidant and immunological capacity, slaughter characteristics, meat quality and economic efficiency of Huang-huai lambs. METHODS Thirty-three healthy Huang-huai rams with similar body weight (approximately 5 mo of age, 28.96±1.01 kg) were assigned equally to three experimental groups. When finished fattening, six lambs from each group were collect blood samples for plasma analyses and then slaughtered to determine slaughter characteristics and obtain biceps brachii muscle for further analysis of meat quality and fatty acid profile. RESULTS Compared to CON group, animals submitted to ITGP and IEGP groups resulted in greater contents of serum glutathione peroxidase, immunoglobulins (IgA, IgG, and IgM), polyunsaturated fatty acids (PUFA), n-6 PUFA, and PUFA/saturated fatty acid (FA) ratio and lower palmitic /oleic acid ratio (p<0.05). Moreover, animals in ITGP group exhibited a higher (p<0.05) loin eye area, content of meat crude protein (CP), and eicosetrienoic acid compared to CON group, while slaughter performance was superior (p<0.05) to that of the IEGP group. The economic efficiency of ITGP group was 70.12% higher than that of CON group, while the IEGP group exhibited a decrease of 92.54% in economic efficiency compared to the CON group. CONCLUSION Restricted grazing time combined with indoor feeding was more effective in conferring superior body health, carcass traits and economic efficiency in Huang-huai lambs, as well as higher CP content and healthier FA composition in the resulting meat.
Collapse
Affiliation(s)
- Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan county, Dingyuan 233200,
China
- Yingshang Agricultural Green Development Promotion Center, Yingshang 236200,
China
| | - Mengyu Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Huiqing Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Lumeng Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan county, Dingyuan 233200,
China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan county, Dingyuan 233200,
China
| | - Guanjun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Yingshang Agricultural Green Development Promotion Center, Yingshang 236200,
China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan county, Dingyuan 233200,
China
| |
Collapse
|
9
|
Huang Y, Liu L, Zhao M, Zhang X, Chen J, Zhang Z, Cheng X, Ren C. Feeding regimens affecting carcass and quality attributes of sheep and goat meat - A comprehensive review. Anim Biosci 2023; 36:1314-1326. [PMID: 37402458 PMCID: PMC10472155 DOI: 10.5713/ab.23.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 07/06/2023] Open
Abstract
Sheep and goats can efficiently convert low quality forage into high-quality meat which contains specific nutrients and quality traits. Carcass traits and quality attributes of sheep and goat meat depend upon several factors and one of most effective strategies amongst these is feeding regimens. In this review, the major aspects of feeding regimens affecting growth rate, carcass traits and quality attributes of sheep and goat meat are thoroughly discussed, with a particular focus on physical-chemical composition, flavor profile, and fatty acid (FA) profile. Grazing lambs and kids receiving concentrate or under stall-feeding systems had greater average daily gain and carcass yield compared with animals reared on pasture only. However, growth rate was higher in lambs/kids grazing on pastures of improved quality. Moreover, the meat of grazing lambs receiving concentrate had more intense flavor, intramuscular fat (IMF) content, and unhealthy FA composition, but comparable color, tenderness, juiciness, and protein content compared to that of lambs grazed on grass only. In contrast, meat of concentrate-fed lambs had more intense color, greater tenderness and juiciness, IMF and protein contents, and lower flavor linked to meat. Additionally, the meat of kids grazed on concentrate supplementation had higher color coordinates, tenderness, IMF content and unhealthy FA composition, whereas juiciness and flavor protein content were similar. In contrast, kids with concentrate supplementation had superior color coordinates, juiciness, IMF content and unhealthy FA composition, but lower tenderness and flavor intensity compared to pasture-grazed kids. Thus, indoor-finished or supplemented grazing sheep/goats had higher growth rate and carcass quality, higher IMF content and unhealthy FA composition compared to animals grazed on grass only. Finally, supplementation with concentrate increased flavor intensity in lamb meat, and improved color and tenderness in kid meat, whereas indoor-fed sheep/goats had improved color and juiciness as well as reduced flavor compared to pasture-grazed animals.
Collapse
Affiliation(s)
- Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- National Agricultural Green Development Long-term Fixed Observation Yingshang Test Station, Yingshang 236200,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Lumeng Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Mengyu Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Jiahong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200,
China
| |
Collapse
|
10
|
Zhao M, Zhang X, Chen Y, Ren C, Sun Y, Wang P, Cheng X, Zhang Z, Chen J, Huang Y. Stall-Feeding of Sheep on Restricted Grazing: Effects on Performance and Serum Metabolites, Ruminal Fermentation, and Fecal Microbiota. Animals (Basel) 2023; 13:2644. [PMID: 37627436 PMCID: PMC10451354 DOI: 10.3390/ani13162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated the effects of three feeding systems, indoor feeding (CONT), indoor feeding with time-restricted grazing artificial pasture (4 h/day, G4H), and indoor feeding with an eight-hour daily grazing artificial pasture (G8H), on the growth performance, serum metabolites, ruminal fermentation, and fecal microbiota composition of lambs. Average daily gain showed a tendency (p = 0.081) to be higher for the G4H group compared with the CONT group. Moreover, feeding systems did not have a significant effect on most of the serum biochemical indicators in lambs. Concentrations of serum glutathione peroxidase and immunoglobulins (IgA, gG, and IgM) were significantly lower (p < 0.01) in the CONT group. Additionally, a tendency towards higher levels of volatile fatty acids, acetate, and butyrate was found in animals of the G4H group compared to the CONT group. Furthermore, fecal microbiota composition was altered in G4H and G8H groups, resulting in the increased relative abundance of Firmicutes and Ruminococcaceae UCG-005, as well as the decreased relative abundance of Ruminobacter compared with the CONT group. Overall, these results suggest that indoor feeding with restricted grazing time does not significantly affect fattening performance or rumen fermentation but enhances antioxidation and immune function activity and also alters fecal microbiota composition.
Collapse
Affiliation(s)
- Mengyu Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
- Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, China
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
- Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, China
| | - Yao Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, China
| | - Yiming Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, China
| | - Jiahong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.Z.); (X.Z.); (Y.C.); (C.R.); (Y.S.); (P.W.); (X.C.); (Z.Z.); (J.C.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
- Yingshang Agricultural Green Development Promotion Center, Fuyang 236200, China
| |
Collapse
|
11
|
Bu N, Yang Q, Chen J, Li Y, Liu D. Characterization and Discrimination of Volatile Compounds in Chilled Tan Mutton Meat during Storage Using HiSorb-TD-GC-MS and E-Nose. Molecules 2023; 28:4993. [PMID: 37446654 DOI: 10.3390/molecules28134993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Chilled Tan mutton is currently the mainstream of Tan mutton production and consumption in China, but the reports on chilled meat quality evaluation and shelf-life discrimination by volatiles are limited. This study aimed to investigate the changes of volatile compounds in chilled Tan mutton at four storage stages (1d, 3d, 5d, 7d) in order to differentiate the various storage stages. An analysis protocol was established for the characterization and discrimination of the volatiles in chilled Tan mutton based on high capacity sorptive extraction-thermal desorption-gas coupled with chromatography-mass spectrometry (HiSorb-TD-GC-MS), electronic nose (E-nose), and multivariate statistical analysis. A total of 96 volatile compounds were identified by HiSorb-TD-GC-MS, in which six compounds with relative odor activity value >1 were screened as the key characteristic volatiles in chilled Tan mutton. Four storage stages were discriminated by partial least squares discriminant analysis, and nine differential volatile compounds showed a variable importance for the projection score >1, including octanoic acid, methyl ester, decanoic acid, methyl ester, acetic acid, heptanoic acid, methyl ester, propanoic acid, 2-hydroxy-, methyl ester, (ñ)-, hexanoic acid, propanoic acid, butanoic acid, and nonanoic acid. With the volcano plot analysis, hexadecanoic acid, methyl ester, was the common volatile marker candidate to discriminate chilled stages of Tan mutton. Meanwhile, E-nose could discriminate chilled Tan mutton at different storage stages rapidly and efficiently using linear discriminant analysis. Furthermore, E-nose sensors could obtain comprehensive volatile profile information, especially in esters, acids, and alcohols, which could confirm the potential of E-nose for meat odor recognition. Thus, this analysis protocol could characterize and discriminate the volatiles in chilled Tan mutton during storage.
Collapse
Affiliation(s)
- Ningxia Bu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qi Yang
- Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011, China
| | - Juan Chen
- Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011, China
| | - Yongqin Li
- Ningxia Veterinary Drugs and Fodder Inspection Institute, Yinchuan 750011, China
| | - Dunhua Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
12
|
Ke T, Zhao M, Zhang X, Cheng Y, Sun Y, Wang P, Ren C, Cheng X, Zhang Z, Huang Y. Review of Feeding Systems Affecting Production, Carcass Attributes, and Meat Quality of Ovine and Caprine Species. Life (Basel) 2023; 13:life13051215. [PMID: 37240860 DOI: 10.3390/life13051215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Growth rate, carcass attributes, and meat quality traits of small ruminants (i.e., sheep and goats) depend on various factors, among which the feeding system is one of the most important factors. However, how feeding systems affect these parameters differ between sheep and goats. Therefore, this review aimed to evaluate the differences in how different feeding systems affect the growth performance, carcass characteristics, and meat quality of sheep and goats. It also explored the effects of a new finishing strategy-time-limited grazing with supplements on these traits. Compared with stalled feeding, finishing lambs/kids on pasture-only feed reduced the average daily gain (ADG) and carcass yield, while supplemented-grazing lambs/kids had near-equivalent or higher ADG and carcass attributes. Pasture-grazing increased the meat flavor intensity and healthy fatty acid content (HFAC) of lamb/kid meat. Supplemental grazing lambs had comparable or superior meat sensory attributes and increased meat protein and HFAC compared to stall-fed ones. In contrast, supplemental grazing only improved the meat color of kids but had little effect on other meat qualities. Moreover, time-limited grazing with supplemental concentrates increased the carcass yield and meat quality in lamb meat. Overall, the effects of different feeding systems on growth performance and carcass traits were comparable between sheep and goats but differed in terms of the meat quality.
Collapse
Affiliation(s)
- Tiantian Ke
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengyu Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Yingshang Agricultural Green Development Promotion Center, Yingshang 236200, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Yingshang Agricultural Green Development Promotion Center, Yingshang 236200, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Yao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiming Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Yingshang Agricultural Green Development Promotion Center, Yingshang 236200, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| |
Collapse
|
13
|
Zhang R, Pavan E, Ross AB, Deb-Choudhury S, Dixit Y, Mungure TE, Realini CE, Cao M, Farouk MM. Molecular insights into quality and authentication of sheep meat from proteomics and metabolomics. J Proteomics 2023; 276:104836. [PMID: 36764652 DOI: 10.1016/j.jprot.2023.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Sheep meat (encompassing lamb, hogget and mutton) is an important source of animal protein in many countries, with a unique flavour and sensory profile compared to other red meats. Flavour, colour and texture are the key quality attributes contributing to consumer liking of sheep meat. Over the last decades, various factors from 'farm to fork', including production system (e.g., age, breed, feeding regimes, sex, pre-slaughter stress, and carcass suspension), post-mortem manipulation and processing (e.g., electrical stimulation, ageing, packaging types, and chilled and frozen storage) have been identified as influencing different aspects of sheep meat quality. However conventional meat-quality assessment tools are not able to elucidate the underlying mechanisms and pathways for quality variations. Advances in broad-based analytical techniques have offered opportunities to obtain deeper insights into the molecular changes of sheep meat which may become biomarkers for specific variations in quality traits and meat authenticity. This review provides an overview on how omics techniques, especially proteomics (including peptidomics) and metabolomics (including lipidomics and volatilomics) are applied to elucidate the variations in sheep meat quality, mainly in loin muscles, focusing on colour, texture and flavour, and as tools for authentication. SIGNIFICANCE: From this review, we observed that attempts have been made to utilise proteomics and metabolomics techniques on sheep meat products for elucidating pathways of quality variations due to various factors. For instance, the improvement of colour stability and tenderness could be associated with the changes to glycolysis, energy metabolism and endogenous antioxidant capacity. Several studies identify proteolysis as being important, but potentially conflicting for quality as the enhanced proteolysis improves tenderness and flavour, while reducing colour stability. The use of multiple analytical methods e.g., lipidomics, metabolomics, and volatilomics, detects a wider range of flavour precursors (including both water and lipid soluble compounds) that underlie the possible pathways for sheep meat flavour evolution. The technological advancement in omics (e.g., direct analysis-mass spectrometry) could make analysis of the proteins, lipids and metabolites in sheep meat routine, as well as enhance the confidence in quality determination and molecular-based assurance of meat authenticity.
Collapse
Affiliation(s)
- Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand.
| | - Enrique Pavan
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand; Unidad Integrada Balcarce (FCA, UNMdP - INTA, EEA Balcarce), Ruta 226 km 73.5, CP7620 Balcarce, Argentina
| | - Alastair B Ross
- Proteins and Metabolites, AgResearch Ltd, Lincoln, New Zealand
| | | | - Yash Dixit
- Food informatics, AgResearch Ltd, Palmerston North, New Zealand
| | | | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand
| | - Mingshu Cao
- Data Science, AgResearch Ltd, Palmerston North, New Zealand
| | - Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
14
|
Alshamiry FA, Alharthi AS, Al-Baadani HH, Aljumaah RS, Alhidary IA. Growth Rates, Carcass Traits, Meat Yield, and Fatty Acid Composition in Growing Lambs under Different Feeding Regimes. Life (Basel) 2023; 13:409. [PMID: 36836766 PMCID: PMC9966752 DOI: 10.3390/life13020409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
A total of 75 male Awassi (mean BW 23.5 ± 2.0 kg; 3 months old) were used in an 84-day trial to investigate the effects of different feeding regimes on productive performance, carcass characteristics, and meat quality, and the fatty acid profile of growing lambs. Animals were randomly allocated into 3 groups of 25 lambs each. The dietary treatments were as follows: (1) whole barley grain (60%) plus alfalfa hay (40%; GB-AH; the basal diet); (2) a concentrate pelleted diet plus alfalfa hay (CP-AH); and (3) a complete pelleted diet (CPD). Feed intake was measured weekly, and all lambs were weighed every two weeks for an evaluation of the productive parameters. Blood samples were collected from all lambs for the measurement of biochemical and enzymatic variables. At the end of the experiment, 13 lambs from each treatment were slaughtered to evaluate the carcass characteristics, meat quality, and fatty acid composition. The final body weight, body weight gain, average daily gain, and feed efficiency of lambs were lowest (p < 0.05) in lambs on the grain and alfalfa diet compared with the other groups. Feeding lambs either the CP-AH or CPD diets resulted (p < 0.05) in increases in slaughter weight, carcass weights (hot and cold), the percentage of liver and shoulder, carcass length, back fat thickness, and the area of longissimus thoracis muscle compared with those lambs on the GB-AF diet. The proportion of saturated fatty acids in meat was greater (p = 0.04) in lambs fed on the GA-AH diet than in those of lambs fed on the pelleted diets. Lambs on the CP-AH diet had (p < 0.05) the highest ratios of PUFA to SFA and omega 6 to omega 3, and the proportion of omega 6. The atherogenic and thrombogenic indexes were lower (p < 0.05) in the CP-AH group compared with the GB-AH group. In conclusion, the results indicate that feeding growing lambs on concentrate pellets instead of whole barley grain improves the growth rate, traits, meat quality, and fatty acid profile, which have important implications for productivity, efficiency, and profitability in the livestock industry.
Collapse
Affiliation(s)
| | | | | | | | - Ibrahim A. Alhidary
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Effect of Feeding System on Muscle Fiber Composition, Antioxidant Capacity, and Nutritional and Organoleptic Traits of Goat Meat. Animals (Basel) 2023; 13:ani13010172. [PMID: 36611780 PMCID: PMC9817876 DOI: 10.3390/ani13010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to evaluate the effect of feeding system on muscle fiber composition, antioxidant capacity, and nutritional and organoleptic traits of goat meat. Goats that grazed on flatland (whole area with about 0% inclination, FG group) and mountain range (whole area with about 40% inclination, MG group) were selected for the analysis. The results showed that grazing on flatland increased oxidized-twitch fiber percentage, the expression of the MyHC IIa gene (p < 0.001), the activity of glutathione peroxidase (GSH-Px) (p < 0.05), total antioxidant capacity (T-AOC) (p = 0.001), and radical scavenging ability (RSA) (p < 0.05); meanwhile, the MyHC IIb gene expression (p < 0.01) and malondialdehyde (MDA) content (p = 0.001) were decreased. Feeding system affected nutritional and organoleptic traits of goat meat, and grazing on flatland increased protein content, total content of monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), pH45min, a* value, and variety of volatile flavor compounds but decreased the content of saturated fatty acid (SFA), shear force, and b* value. In addition, the key flavor substances were screened using relative odor activity value (ROAV), including hexanal, heptanal, (E)-2-octenal, octanal, nonanal, decanal, (E)-2-nonenal, and 1-octen-3-ol. Among them, 1-octen-3-ol and (E)-2-nonenal were the most contributing flavor compounds in the FG and MG groups, respectively, providing distinctive odor to goat meat.
Collapse
|
16
|
Wang J, Lu R, Li Y, Lu J, Liang Q, Zheng Z, Huang H, Deng F, Huang H, Jiang H, Hu J, Feng M, Xiao P, Yang X, Liang X, Zeng J. Dietary supplementation with jasmine flower residue improves meat quality and flavor of goat. Front Nutr 2023; 10:1145841. [PMID: 37063323 PMCID: PMC10100067 DOI: 10.3389/fnut.2023.1145841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
Jasmine flower residue (JFR) is a by-product retained in the production process of jasmine tea and can be used as an unconventional feed due to its rich nutrient value. This study aimed to evaluate the effects of the addition of JFR to the diet of goats on their meat quality and flavor. Twenty-four castrated Nubian male goats were randomly divided into two groups and fed a mixed diet containing 10% JFR (JFR, n = 12) or a conventional diet (CON, n = 12) for 45 days. Meat quality and flavor were measured at the end of the treatment. The addition of JFR to the diet could reduce the shear force of the longissimus dorsi muscle, as well as, the cross-sectional area and diameter of muscle fibers, indicating that the addition of JFR improved meat quality. JFR also increased the content of glutamic acid and ω-3 polyunsaturated fatty acid (C18:3n3 and C20:5N3) and reduced the content of C24:1 and saturated fatty acid (C20:0 and C22:0). In addition, the use of JFR increased the content of acetaldehyde and hexanal in the meat. Furthermore, JFR introduced new volatile components in the meat. The umami, saltiness, and richness of the meat also improved. In conclusion, the addition of jasmine flower residue to the diet can improve the meat quality and flavor of goat.
Collapse
Affiliation(s)
- Jinxing Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Renhong Lu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Yehong Li
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Junzhi Lu
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Qiong Liang
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Zihua Zheng
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Heng Huang
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Fuchang Deng
- Guangxi Nongken Yongxin Animal Husbandry Group Nasuo Animal Husbandry Co., Ltd., Nanning, China
| | - Huali Huang
- Institute for New Rural Development, Guangxi University, Nanning, China
| | - Huimin Jiang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Junjie Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Ming Feng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Peng Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Xingwei Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, Guangxi, China
| | - Jun Zeng
- Institute for New Rural Development, Guangxi University, Nanning, China
- *Correspondence: Jun Zeng,
| |
Collapse
|
17
|
Effects of Sheep Sires on Muscle Fiber Characteristics, Fatty Acid Composition and Volatile Flavor Compounds in F 1 Crossbred Lambs. Foods 2022; 11:foods11244076. [PMID: 36553818 PMCID: PMC9778286 DOI: 10.3390/foods11244076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Crossbreeding significantly improves meat production performance in sheep; however, whether hybridization changes the meat quality characteristics of lambs is uncertain. We analyzed the effects of three different hybrid sires on muscle fiber characteristics (MFCs), fatty acid composition (FAC), and volatile flavor compounds (VFCs) in lambs under identical feeding conditions. Compared with those of purebred lambs, the muscle fiber diameter and cross-sectional areas of the crossbred lambs were significantly decreased (p < 0.05), and the collagen fiber content was significantly increased (p < 0.05). The numbers and area ratios of the fast and slow muscle fibers did not significantly differ between the purebred and crossbred lambs, but the expressions of four MyHC gene types differed significantly (p < 0.05). Twenty-three fatty acids were identified in both the purebred and crossbred lambs, of which thirteen were differentially expressed (p < 0.05). Saturated fatty acid (SFA) contents in the crossbred lambs were significantly increased (p < 0.05), whereas the monounsaturated fatty acid content was significantly decreased (p < 0.05). Polyunsaturated fatty acid/SFA and n-6/n-3 ratios were significantly lower in the crossbred lambs than in the purebred lambs (p < 0.05). Twenty-five VFCs were identified among the three hybrids, and aldehydes were the main VFCs. Eleven VFCs were differentially expressed in the crossbred lambs (p < 0.05). Hybrid sires affected the MFCs, FAC, and VFCs of the F1 lambs, thus providing a reference for high-quality mutton production.
Collapse
|
18
|
Preliminary Investigation of Mixed Orchard Hays on the Meat Quality, Fatty Acid Profile, and Gastrointestinal Microbiota in Goat Kids. Animals (Basel) 2022; 12:ani12060780. [PMID: 35327177 PMCID: PMC8944599 DOI: 10.3390/ani12060780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
This preliminary investigation was designed to study the effects of different mixed orchard hays on meat quality, fatty acids, amino acids, rumen intestinal microflora, and the relationship between rumen bacteria and fatty acids in the longissimus dorsi muscle of Saanen dairy goats. In this preliminary investigation, goats were separately fed crop straws (corn and wheat straws) and alfalfa (Medicago sativa L.) (CK group), alfalfa + oats (Avena sativa L.) (group I), alfalfa + perennial ryegrass (Lolium perenne L.) (group II), and hairy vetch (Vicia villosa Roth.) + perennial ryegrass (group III). There were differences in shear force and cooking loss between treatments. The contents of saturated fatty acids (SFAs) C14:0, C16:0, and C18:0 in the CK group were significantly higher than those in other three groups (p < 0.001). The 16S rDNA sequencing results showed that the relative abundance of Proteobacteria in group II were higher than those in other three groups (p < 0.05). Association analysis showed that Prevotella_1 was negatively correlated with C18:0 and significantly positively correlated with C16:1, while Clostridium and Romboutsia showed a positive correlation with monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Therefore, feeding mixed hays can increase beneficial fatty acids and the percentages of associated bacteria in rumen and intestines.
Collapse
|
19
|
Effects of Ageing on Donkey Meat Chemical Composition, Fatty Acid Profile and Volatile Compounds. Foods 2022; 11:foods11060821. [PMID: 35327244 PMCID: PMC8949164 DOI: 10.3390/foods11060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Donkey meat samples obtained from muscle Longissimus Thoracis Lumborum (LTL) taken from 14 entire donkey males slaughtered at 20 months and aged for 1, 8 and 15 days were analysed with the aim of determining the chemical composition, physical attributes, fatty acid profile and volatile compounds. Ageing did not significantly affect the chemical composition and colour parameters, while cooking loss was significantly (p < 0.05) higher at 8 and 15 days of ageing. Thiobarbituric acid reactive substances (TBARS) content significantly (p < 0.01) increased during ageing, while shear force values significantly (p < 0.01) decreased. Ageing significantly (p < 0.05) increased polyunsaturated fatty acids (PUFAs) determined both at 8 and 15 days after slaughter. Volatile compounds were analysed using solid-phase microextraction (SPME) and gas chromatography−mass spectrometry (GC−MS). Among 109 volatile compounds determined in donkey meat, hydrocarbons were the most common molecules detected. Ageing affected 21 of the detected volatile compounds; both total aldehydes and total ketones contents were significantly (p < 0.05) higher 15 days after slaughter. Total furans and total alcohols were significantly (p < 0.01) higher 15 days after slaughter, as well. Significant modifications of donkey meat volatile compounds can be attributed to ageing periods longer than 7 days.
Collapse
|
20
|
The Quality and Functional Improvement of Retorted Korean Ginseng Chicken Soup (Samgyetang) by Enzymolysis Pre-Treatment with Cordyceps militaris Mushroom Extract. Foods 2022; 11:foods11030422. [PMID: 35159571 PMCID: PMC8834007 DOI: 10.3390/foods11030422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/20/2023] Open
Abstract
This study aimed to investigate the functional and quality improvement of retorted Korean ginseng chicken soup that was hydrolyzed using a single extract from Cordyceps militaris (CM) mushroom, or in combination with bromelain, flavorzyme, or a mix of both. A total of 36 fat-trimmed breast meat from commercial broilers were hydrolyzed with one of six treatments, (1) flavorzyme as a positive control (PC), (2) no addition as negative control (NC), (3) crude CM extract (CME), CM extract prepared with either (4) bromelain (CMB), (5) flavorzyme (CMF), or (6) bromelain:flavorzyme mixture (CMBF) in a water bath at 55 °C for 2.5 h, and subsequently retorted at 121.1 °C, 147.1 kPa for 1 h. The highest antioxidant activity was observed in the CMB treatment (40.32%), followed by CMBF (34.20%), and CME (32.97%). The suppression of malondialdehyde ranged between 28 and 83%. The water-holding-capacity of the treated samples increased, ranging between 59.69 and 62.98%, and significantly tenderized the meat. The shear force decreased from 23.05 N in negative control to 11.67 N in the CMB samples. The predominant nucleotides across the samples were 5′-IMP and hypoxanthine, and the lowest was adenosine. The intensification of the taste properties was due to the increase of umami substances, both by 5′-nucleotides (5′-IMP, 5′-GMP) and free amino acids (FAAs), whereas the highest improvement was observed in the CMB group. Therefore, the hydrolyzation of Korean ginseng chicken soup using CM extract, prepared using bromelain, improves functional and quality profiles.
Collapse
|