1
|
Huang YS, An YL, Zheng YY, Zhao WJ, Song CQ, Zhang LJ, Chen JT, Tang ZJ, Feng L, Li ZW, Liu XK, Zhang DD, Guo DA. A holistic strategy for the in-depth discrimination and authentication of 16 citrus herbs and associated commercial products based on machine learning techniques and non-targeted metabolomics. J Chromatogr A 2025; 1745:465747. [PMID: 39908954 DOI: 10.1016/j.chroma.2025.465747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Citrus-derived raw medicinal materials are frequently used for health care, flavoring, and therapeutic purposes. However, Due to similarities in origin or appearance, citrus herbs are often misused in the market, necessitating effective differentiation methods. For the first time, this study constructed automated discrimination models for 16 citrus species (239 batches) while previous studies focused on a limited number of species. Seven machine learning models -Tree, Discriminant, Support Vector Machine, K-Nearest Neighbor, Ensemble, Neural Network, and Partial least squares discriminant analysis-were compared, with the Ensemble model achieving 100% accuracy in the test set. 16 Orthogonal partial least squares discriminant analysis models were constructed to screen and identify 53 differential markers. These markers were successfully utilized to determine the absence or presence of specified components in the 20 citrus products. This study provides a comprehensive solution for the quality control of citrus herbs, enabling the differentiation of raw herbs and processed slices, as well as the identification of complex systems such as Chinese patent medicines.
Collapse
Affiliation(s)
- Yu-Shi Huang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ya-Ling An
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yue-Yuan Zheng
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Wen-Jie Zhao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Chun-Qian Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Li-Jie Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jie-Ting Chen
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Zi-Jun Tang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China
| | - Lin Feng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zhen-Wei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiao-Kang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Dai-di Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - De-An Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, East of Outer Ring Road #280, Guangdong 510006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
2
|
Yang FQ, Tan XM, Chu SS, Yin MZ, Zhang ZY, Peng HS. UPLC-Q-TOF-MS With Chemometrics Approach Analysis of Nonvolatile Compounds for Medicinal Citrus reticulata With Cultivar and Areas Variations. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:467-484. [PMID: 39731403 DOI: 10.1002/pca.3496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
INTRODUCTION Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. The quality of CRP can be affected by various factors, which are closely related to the metabolite composition of CRP. OBJECTIVES The objective of this study is to conduct a comprehensive comparative analysis on the chemical profiling of 51 C. reticulata samples of eight medicinal varieties, grown in different areas, and provide a methodological reference for the study of pharmacodynamic material bases and quality control of C. reticulata. METHODOLOGY Initially, a comprehensive characterization was performed using quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and a heatmap visualization was employed for clarifying the distribution of the annotated active ingredients. Furthermore, obtained chemical profiles data were employed in multivariate statistical methods, comprising principal component analysis (PCA), and orthogonal partial least-squares-discrimination analysis (OPLS-DA). RESULTS A total of 42 chemical components were annotated in positive ion mode. The relative contents were evident differences in the active ingredients of medicinal varieties of C. reticulata; mostly, polymethoxy flavones (PMFs) in C. reticulata "Dahongpao" were more abundant; among them, nobiletin and tangeretin are the main active ingredients in CRP. In addition, the relative contents of chemical constituents of C. reticulata "Dahongpao" and C. reticulata "Unshiu" from different areas were less variable. Compared with production origins, the varieties of C. reticulata had a greater impact on quality. CONCLUSION This work obtains a better understanding of the chemical profiles of medicinal varieties of C. reticulata, facilitated the reasonable applicability and quality control of medicinal varieties of C. reticulata.
Collapse
Affiliation(s)
- Fang-Qing Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Mei Tan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shan-Shan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Min-Zhen Yin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen-Yu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hua-Sheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Shu X, Xie M, Zhang X, Wang N, Zhang W, Lin J, Yang J, Yang X, Li Y. Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China. Foods 2025; 14:355. [PMID: 39941950 PMCID: PMC11816377 DOI: 10.3390/foods14030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The untargeted metabolomics of Newhall navel oranges from three areas in China-Ganzhou, Fengjie, and Zigui-with geographical indication (GI) was measured using LC-MS/MS. Orthogonal partial least squares discriminant analysis was performed for sample classification and important metabolite identification. This approach identified the best markers of the geographical origin able to discriminate Fengjie, Ganzhou, and Zigui orange samples. For peeled samples, 2-isopropylmalic acid, succinic acid, citric acid, L-aspartic acid, L-glutamic γ-semialdehyde, D-β-phenylalanine, hesperetin, hydrocinnamic acid, 4-hydroxycinnamic acid, and dehydroascorbate were the markers used to discriminate the geographical origin. All these markers were overexpressed in the peeled samples from the Zigui area, followed by the Ganzhou area. As for unpeeled samples, L-glutamic γ-semialdehyde, isovitexin 2'-O-β-D-glucoside, 2-isopropylmalic acid, isovitexin, diosmetin, trans-2-hydroxycinnamate and trans-cinnamate, L-aspartic acid, hydrocinnamic acid, and β-carotene were used to discriminate their origin. The first seven markers in Zigui-planted whole samples showed the highest levels, and the last three markers were richest in Ganzhou-planted samples. According to the variation in the markers for discriminating the origins of the peeled or unpeeled Newhall navel oranges with GI and the highest value of titratable acidity in those from Zigui, the samples planted in Ganzhou have the best balance between taste and nutrition. This work confirms that the approach of untargeted metabolomics combined with OPLS-DA is an effective way for origin tracing and overall quality evaluation.
Collapse
Affiliation(s)
- Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Manli Xie
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Na Wang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Wei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Junjie Lin
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| | - Yingkui Li
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China; (X.S.); (M.X.); (X.Z.); (N.W.); (W.Z.); (J.Y.); (Y.L.)
| |
Collapse
|
4
|
Montgomery KH, Elhabashy A, Del Carmen Reynoso Rivas M, Brar G, Krishnan VV. NMR metabolomics as a complementary tool to brix-acid tests for navel orange quality control of long-term cold storage. Sci Rep 2024; 14:30078. [PMID: 39627282 PMCID: PMC11615199 DOI: 10.1038/s41598-024-77871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Quality control plays a crucial role in maintaining the reputation of agricultural organizations by ensuring that their products meet the expected standards and preventing any loss during the packaging process. A significant responsibility of quality control is conducting periodic product assessments. However, subjective interpretation during physical inspections of fruits can lead to variability in reporting. To counter this, assessing total soluble solids (Brix) and percent acidity (Acid) can provide a more objective approach. Nevertheless, it is essential to note that many fruit metabolites can impact these parameters. Nuclear magnetic resonance (NMR) spectroscopy, particularly 1H-NMR, has become a popular tool for quality control in recent years due to its precision, sample preservation, and high throughput analysis. This manuscript investigates if the standard Brix/Acid tests are directly related to the levels of metabolites during cold storage. Using citrus as the model system, a metabolomics analysis was conducted to identify patterns in the cold storage metabolite profiles of the juice, albedo, and flavedo tissues. The results show that Brix (or total dissolved solids) correlates well with sucrose, glucose, and fructose levels and moderately with choline levels. Acid (percent acidity) levels displayed a negative correlation with both fructose and choline levels. Interestingly, the formate levels were susceptible to storage time and directly related to Acid measurements. This study suggests metabolomics could be a complementary technique to quality control of fruits in cold storage, especially with cost-effective desktop NMR spectrometers.
Collapse
Affiliation(s)
- Keeton H Montgomery
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, 93740, USA
| | - Aya Elhabashy
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, 93740, USA
| | | | - Gurreet Brar
- Department of Plant Science, California State University Fresno, Fresno, CA, 93740, USA
| | - V V Krishnan
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, CA, 93740, USA.
- Department of Pathology and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
5
|
Cui Q, Jiang LJ, Wen LL, Tian XL, Yuan Q, Liu JZ. Metabolomic profiles and differential metabolites of volatile components in Citrus aurantium Changshan-huyou pericarp during different growth and development stages. Food Chem X 2024; 23:101631. [PMID: 39130723 PMCID: PMC11315122 DOI: 10.1016/j.fochx.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Citrus fruits possess a distinctive aroma and flavor, with Citrus aurantium Changshan-huyou (CACH) standing out due to their considerable edible and medicinal value. However, the volatile components (VOCs) in the CACH pericarp (CP) remain underexplored. In this study, gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively analyze VOCs in 27 CP samples across different growth stages. A total of 544 VOCs were identified, including 91 terpenoids. The types, quantities and distributions of VOCs were conducted. Detailed discussions on the major terpenoids in CP were also presented. A metabolomics approach combining multivariate statistical analysis with univariate analysis was employed for screening the differential metabolites. The study provides comprehensive insights into the VOCs in CP and citrus plants. Moreover, it delivers the first in-depth analysis of differential metabolites in CP throughout the entire CACH growth and development process, laying a foundation for ongoing research and development of the VOCs in CP.
Collapse
Affiliation(s)
| | | | | | - Xiao-Li Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Qiang Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Ju-Zhao Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| |
Collapse
|
6
|
Wang H, Wang P, Wang F, Chen H, Chen L, Hu Y, Liu Y. Integrated HS-GC-IMS and UPLC-Q-Orbitrap HRMS-based metabolomics revealed the characteristics and differential volatile and nonvolatile metabolites of different citrus peels. Curr Res Food Sci 2024; 8:100755. [PMID: 38756737 PMCID: PMC11096708 DOI: 10.1016/j.crfs.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Citrus is an important genus in the Rutaceae family, and citrus peels can be used in both food and herbal medicine. However, the bulk of citrus peels are discarded as waste by the fruit processing industry, causing environmental pollution. This study aimed to provide guidelines for the rational and effective use of citrus peels by elucidating the volatile and nonvolatile metabolites within them using metabolomics based on headspace-gas chromatography-ion mobility spectrometry and ultra-high-performance liquid chromatography-Q-Orbitrap high-resolution mass spectrometry. In addition, the antioxidant activities of the citrus peels were evaluated using DPPH radical scavenging, ABTS radical scavenging, and ferric reducing antioxidant power. In total, 103 volatile and 53 nonvolatile metabolites were identified and characterized. Alcohols, aldehydes, and terpenes constituted 87.36% of the volatile metabolites, while flavonoids and carboxylic acids accounted for 85.46% of the nonvolatile metabolites. Furthermore, (Z)-2-penten-1-ol, L-pipecolinic acid, and limonin were identified as characteristic components of Citrus reticulata Blanco cv. Ponkan (PK), C. reticulata 'Unshiu' (CLU), and C. reticulata 'Wo Gan' (WG), respectively. Principal component analysis and partial least squares discriminant analysis indicated that C. reticulata Blanco 'Chun Jian' (CJ), PK, CLU, and C. reticulata 'Dahongpao' (DHP) were clustered together. DHP is a traditional Chinese medicine documented in the Chinese Pharmacopoeia, suggesting that the chemical compositions of CJ, PK, and CLU may also have medicinal values similar to those of DHP. Moreover, DHP, PK, C. reticulata 'Ai Yuan 38'(AY38), CJ, C. reticulata 'Gan Ping'(GP), and C. reticulata 'Qing Jian'(QJ) displayed better antioxidant activities, recommending their use as additives in cosmetics and food. Correlation analysis suggested that some polyphenols including tangeritin, nobiletin, skullcapflavone II, genistein, caffeic acid, and isokaempferide were potential antioxidant compounds in citrus peel. The results of this study deepen our understanding of the differences in metabolites and antioxidant activities of different citrus peel varieties and ultimately provide guidance for the full and rational use of citrus peels.
Collapse
Affiliation(s)
- Haifan Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Peng Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Fu Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Hongping Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Lin Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Yuan Hu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| | - Youping Liu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China
| |
Collapse
|
7
|
Kim JW, Ko HC, Jang MG, Han SH, Kim HJ, Kim SJ. Phytochemical content and antioxidant activity in eight citrus cultivars grown in Jeju Island according to harvest time. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jae-Won Kim
- Jeju Institute of Korean Medicine, Jeju, Republic of Korea
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Hee Chul Ko
- Jeju Institute of Korean Medicine, Jeju, Republic of Korea
| | - Mi-Gyeong Jang
- Biotech Regional Innovation Center, Jeju Nation University, Jeju, Republic of Korea
| | - Sang Heon Han
- Department of Horticultural Science, Jeju National University, Jeju, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Bioengineering, Jeju National University, Jeju, Republic of Korea
| | - Se-Jae Kim
- Biotech Regional Innovation Center, Jeju Nation University, Jeju, Republic of Korea
| |
Collapse
|
8
|
Kefale H, Segla Koffi Dossou S, Li F, Jiang N, Zhou R, Wang L, Zhang Y, Li D, You J, Wang L. Widely targeted metabolic profiling provides insights into variations in bioactive compounds and antioxidant activity of sesame, soybean, peanut, and perilla. Food Res Int 2023; 174:113586. [PMID: 37986527 DOI: 10.1016/j.foodres.2023.113586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Oilseeds are important sources of diversified nutraceuticals with marked health attributes. Thus, a better understanding of metabolome differences between common oilseeds will be conducive to the food pharmacy. This study aimed to compare the metabolite profiles and antioxidant activity of sesame, soybean, peanut, and perilla seeds and reveal the variation in bioactive compounds. LC-MS-based widely targeted metabolic profiling identified a total of 975 metabolites, of which 753 were common to the four crops. Multivariate analyses unveiled a crop-specific accumulation of metabolites, with 298-388 DAMs (differentially accumulated metabolites) identified. Amino acid metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and lipid metabolism were the most differentially regulated pathways. Furthermore, we revealed the variation in the relative content of 48, 20, 18, 9, 18, 11, and 6 differentially accumulated bioactive flavonoids, phenolic acids, amino acids, vitamins, terpenoids, alkaloids, and coumarins, respectively. Most of the flavonoids accumulated highly in soybean, followed by perilla. Sesame exhibited a better amino acid profile than other oilseeds. DPPH and FRAP assays showed that the antioxidant activity of perilla seed extracts was the highest, followed by soybean, peanut, and sesame. Our results provide data support for the comprehensive use of sesame, perilla, soybean, and peanut seeds in food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Habtamu Kefale
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Department of Plant Science, College of Agriculture & Natural Resources, Debre Markos University, Ethiopia
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Li
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Nanjun Jiang
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
9
|
Asikin Y, Tamura Y, Aono Y, Kusano M, Shiba H, Yamamoto M, Mitsube F, Lin SY, Takara K, Wada K. Multivariate Profiling of Metabolites and Volatile Organic Compounds in Citrus depressa Hayata Fruits from Kagoshima, Okinawa, and Taiwan. Foods 2023; 12:2951. [PMID: 37569221 PMCID: PMC10418860 DOI: 10.3390/foods12152951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Citrus depressa Hayata is a small-fruit citrus species; it is indigenous to Kagoshima, Okinawa, and Taiwan. The metabolites and volatile organic compounds (VOCs) that affect the flavor of its fruits have not been investigated based on geographical origin. In the present study, we investigated the metabolite and VOC profiles of 18 C. depressa cultivation lines from these regions. Multivariate analysis revealed differences in the metabolites of C. depressa based on its cultivation origins; variations in sugar, sugar alcohol, and amino acid contents were also observed. Fruits from Kagoshima and Okinawa had higher galactinol, trehalose, xylose, glucose, and sucrose intensities than fruits from Taiwan (log2-fold change; 2.65-3.44, 1.68-2.13, 1.37-2.01, 1.33-1.57, and 1.07-1.43, respectively), whereas the Taiwanese lines contained higher leucine, isoleucine, serine, and alanine. In contrast to the Taiwanese Nantou line, other cultivation lines had comparable total VOC contents, and the VOCs of all lines were dominated by limonene, γ-terpinene, and p-cymene. Accordingly, the highest VOC intensities were recorded in the Nantou line, which was followed by Shikunin sweet (Kagoshima) and Taoyuan (Taiwan) (log10 normalize concentration; 5.11, 3.08, and 3.01, respectively). Moreover, multivariate analysis plots elucidated the difference in the VOCs of Ishikunibu (Okinawa), Shikunin sweet, and Taoyuan and between those of most Kagoshima and Okinawa cultivation lines. These results suggest that both the cultivation line and origin influence the metabolites and VOCs of C. depressa, thus possibly affecting its flavor quality; the data provide a valuable insight for utilizing C. depressa of different cultivation lines and origins to produce foods and beverages.
Collapse
Affiliation(s)
- Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yoshio Tamura
- Feed and Livestock Production Division, Zennoh, Tokyo 100-6832, Japan
| | - Yusuke Aono
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Hiroshi Shiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Masashi Yamamoto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Fumimasa Mitsube
- Okinawa Prefectural Agricultural Research Center Nago Branch, Nago 905-0012, Japan
| | - Shu-Yen Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
10
|
Kim DS, Jeong SM, Jo SH, Chanmuang S, Kim SS, Park SM, Yun SH, Han SG, Cho JY, Kang I, Kim HJ. Comparative Analysis of Physicochemical Properties and Storability of a New Citrus Variety, Yellowball, and Its Parent. PLANTS (BASEL, SWITZERLAND) 2023; 12:2863. [PMID: 37571017 PMCID: PMC10421519 DOI: 10.3390/plants12152863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Although numerous citrus varieties have recently been developed to enhance their quality, information on their quality characteristics is limited. We assessed the quality characteristics of Yellowball, a novel citrus variety, by evaluating its appearance, storability, sensory properties, functionality, and metabolite profiles and then comparing these characteristics with those of its parent varieties, Haruka and Kiyomi. The metabolite profiles between the citrus varieties differed significantly, resulting in distinct physicochemical and functional qualities. The storability of Yellowball was significantly increased compared with that of its parent varieties owing to its strong antifungal activity and unique peel morphology, including the stoma and albedo layers. While we did not investigate the volatile compounds, overall functional activities, and detailed characteristics of each metabolite, our data provide valuable insights into the relationship between citrus metabolites, peel morphology, physicochemical properties, and storability, and demonstrate the potential of Yellowball as a promising variety in the citrus industry.
Collapse
Affiliation(s)
- Dong-Shin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Sung-man Jeong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-m.J.); (S.-H.J.)
| | - Seong-Ho Jo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-m.J.); (S.-H.J.)
| | - Saoraya Chanmuang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Republic of Korea; (S.S.K.); (S.M.P.); (S.H.Y.); (S.-G.H.)
| | - Suk Man Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Republic of Korea; (S.S.K.); (S.M.P.); (S.H.Y.); (S.-G.H.)
| | - Su Hyun Yun
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Republic of Korea; (S.S.K.); (S.M.P.); (S.H.Y.); (S.-G.H.)
| | - Seung-Gab Han
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Republic of Korea; (S.S.K.); (S.M.P.); (S.H.Y.); (S.-G.H.)
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| | - Hyun-Jin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-m.J.); (S.-H.J.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Department of Food Science and Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
11
|
He G, Chen X, Hou X, Yu X, Han M, Qiu S, Li Y, Qin S, Wang F. UPLC-Q-TOF/MS-based metabolomic analysis reveals the effects of asomate on the citrus fruit. Curr Res Food Sci 2023; 6:100523. [PMID: 37275389 PMCID: PMC10232657 DOI: 10.1016/j.crfs.2023.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
The regulation of the sugar-acid ratio is of great significance to the improvement of citrus fruit quality. The citric acid level in fruit is influenced by many factors. Among them, cultivar selection and production practices are the most important strategies under the grower's control. In recent years, an arsenic-containing preparation called "Tianmisu", with the main ingredient of asomate, has occasionally been reported to be used in citrus cultivation to improve the sweetness of fruits. In order to reveal the effects of the pesticide on citrus fruits, 'Harumi' tangor was treated with "Tianmisu", and the impact of this pesticide on fruit quality and metabolites was investigated through UPLC-Q-TOF/MS-based metabolomic analysis. Compared with the control, the concentration of titratable acidity, in particular citric acid, in the pulp of 'Harumi' tangor treated with the pesticide, was significantly reduced by 60.5%. The differences in metabolites between the pesticide-treated samples and the control were illustrated by Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The PLS-DA analysis demonstrated a clear discrimination, with R2Y and Q2 values of 0.982 and 0.933 in the positive mode and 0.984 and 0.900 in the negative mode, respectively. A total of 155 compounds were identified, and 63 characteristic components were screened out from the pesticide-treated samples compared to the control. Aside from the upregulation observed for a few metabolites, the majority of the compounds, including citric acid and various lipids, were down-regulated in the treated citrus fruits compared to the control. This study can serve as a basis for understanding the regulatory mechanism of organic acids in citrus and will be helpful in developing different strategies to improve citrus quality.
Collapse
Affiliation(s)
- Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| | - Xi Chen
- SCIEX Analytical Instrument Trading Co., Shanghai, 200335, China
| | - Xue Hou
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Mei Han
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| | - Shiting Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| | - Ying Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| | - Shudi Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| | - Fengyi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Laboratory of Quality and Safety Risk Assessment for Agro-products (Chengdu), Ministry of Agriculture, Chengdu, 610066, China
| |
Collapse
|
12
|
Comparative Untargeted Metabolic Profiling of Different Parts of Citrus sinensis Fruits via Liquid Chromatography-Mass Spectrometry Coupled with Multivariate Data Analyses to Unravel Authenticity. Foods 2023; 12:foods12030579. [PMID: 36766108 PMCID: PMC9914239 DOI: 10.3390/foods12030579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Differences between seven authentic samples of Citrus sinensis var. Valencia peel (albedo and flavedo) and juices from Spain and Uruguay, in addition to a concentrate obtained from Brazil, were investigated by untargeted metabolic profiling. Sixty-six metabolites were detected by nano-liquid chromatography coupled to a high-resolution electrospray-ionization quadrupole time-of-flight mass spectrometer (nLC-ESI-qTOF-MS) belonging to phenolic acids, coumarins, flavonoid glycosides, limonoids, terpenes, and fatty acids. Eleven metabolites were detected for the first time in Citrus sinensis and identified as citroside A, sinapic acid pentoside, apigenin-C-hexosyl-O-pentoside, chrysoeriol-C-hexoside, di-hexosyl-diosmetin, perilloside A, gingerol, ionone epoxide hydroxy-sphingenine, xanthomicrol, and coumaryl alcohol-O-hexoside. Some flavonoids were completely absent from the juice, while present most prominently in the Citrus peel, conveying more industrial and economic prospects to the latter. Multivariate data analyses clarified that the differences among orange parts overweighed the geographical source. PCA analysis of ESI-(-)-mode data revealed for hydroxylinoleic acid abundance in flavedo peel from Uruguay the most distant cluster from all others. The PCA analysis of ESI-(+)-mode data provided a clear segregation of the different Citrus sinensis parts primarily due to the large diversity of flavonoids and coumarins among the studied samples.
Collapse
|
13
|
Sun L, Xu J, Nasrullah, Wang L, Nie Z, Huang X, Sun J, Ke F. Comprehensive studies of biological characteristics, phytochemical profiling, and antioxidant activities of two local citrus varieties in China. Front Nutr 2023; 10:1103041. [PMID: 36761227 PMCID: PMC9905102 DOI: 10.3389/fnut.2023.1103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Citrus is widely grown all over the world, and citrus fruits have long been recognized for their nutritional and medical value for human health. However, some local citrus varieties with potentially important value are still elusive. In the current study, we elucidated the biological characteristics, phylogenetic and phytochemical profiling, antioxidants and antioxidant activities of the two local citrus varieties, namely Zangju and Tuju. The physiological and phylogenetic analysis showed that Zangju fruit has the characteristics of wrinkled skin, higher acidity, and phylogenetically closest to sour mandarin Citrus sunki, whereas, Tuju is a kind of red orange with vermilion peel, small fruit and high sugar content, and closely clustered with Citrus erythrosa. The phytochemical analysis showed that many nutrition and antioxidant related differentially accumulated metabolites (DAMs) were detected in the peel and pulp of Zangju and Tuju fruits. Furthermore, it was found that the relative abundance of some key flavonoids and phenolic acids, such as tangeritin, sinensetin, diosmetin, nobiletin, and sinapic acid in the peel and pulp of Zangju and Tuju were higher than that in sour range Daidai and satsuma mandarin. Additionally, Zangju pulp and Tuju peel showed the strongest ferric reducing/antioxidant power (FRAP) activity, whereas, Tuju peel and pulp showed the strongest DPPH and ABTS free radical scavenging activities, respectively. Moreover, both the antioxidant activities of peel and pulp were significantly correlated with the contents of total phenols, total flavonoids or ascorbic acid. These results indicate that the two local citrus varieties have certain nutritional and medicinal value and potential beneficial effects on human health. Our findings will also provide an important theoretical basis for further conservation, development and medicinal utilization of Zangju and Tuju.
Collapse
Affiliation(s)
- Lifang Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Nasrullah
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Luoyun Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Zhenpeng Nie
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Xiu Huang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Jianhua Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Fuzhi Ke
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| |
Collapse
|
14
|
Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods 2023; 12:foods12020425. [PMID: 36673517 PMCID: PMC9858094 DOI: 10.3390/foods12020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
In addition to volatile compounds, metabolites also have a great effect on the flavour of food. Fresh finger citron cannot be eaten directly because of its spicy and bitter taste, so it is made into a preserved fruit product known as Laoxianghuang (LXH). To investigate the metabolites that have an effect on the flavour of LXH, untargeted metabolomics was performed using an ultrahigh-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS), and the metabolites of the Laoxianghuang samples from different locations in the Chaoshan area were compared and analysed. A total of 756 metabolites were identified and distinct differences were revealed among the different Laoxianghuang samples. A total of 33 differential metabolites with the most significant changes were screened through further multivariate analytical steps, and each group of samples had unique metabolites. For instance, pomolic acid had the highest content in the JG sample, while L-glycyl-L-isoleucine was rich in the QS sample. Moreover, flavonoid metabolites made the greatest contribution to the unique flavour of Laoxianghuang. The metabolic pathways involved are the biosynthetic pathways of flavonoids, isoflavonoids, flavones, and flavonols. This study can provide some creative information for distinguishing the quality differences of Laoxianghuang from the perspective of metabolites and offer preliminary theoretical support to characterise the formation of flavour substances in Laoxianghuang.
Collapse
|
15
|
Song J, Jeong J, Kim EH, Hong YS. A strategy for healthy eating habits of daily fruits revisited: A metabolomics study. Curr Res Food Sci 2023; 6:100440. [PMID: 36699116 PMCID: PMC9868340 DOI: 10.1016/j.crfs.2023.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Many people peel fruits, commonly persimmon, grape, apple, and peach, before eating as table fruits. Differences of bioactive compounds between peels and pulps of daily fruits are widely known but limited to individual compound because understanding of differences in their global metabolites is lack. We employed 1H NMR-based metabolomics to explore the global metabolite differences between their peels and pulps from the fruits, which included changes of diverse metabolites in persimmon after harvest ripening. Of diverse metabolites observed among the fruits tested, various health-beneficial metabolites were present in the peels rather than the pulps and their classes were dependent on the type of fruit: gallocatechin, epicatechin and epigallocatehin only in persimmon, apple, and peach, respectively; quercetin only in persimmon and apple; kaempferol only in persimmon; chlorogenic acid only in grape and peach; neochlorogenic acid only in apple and peach; p-coumaric acid only in grape; phloridzin and catechin only in apple. These metabolites in the peels of each fruits were strongly correlated with free radical-scavenging activity and delay of carbohydrate digestion. Therefore, intake of whole fruits, rather than removal of their peels, were recommended for potential improvement of healthy lifespan and human wellness. This study highlights the critical role of metabolomic studies in simultaneous determinations of diverse and intrinsic metabolites in different types of fruits and thus providing a strategy for healthy eating habits of daily fruits.
Collapse
Affiliation(s)
- June Song
- Division of Food and Nutrition, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jaesik Jeong
- Department of Statistics, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Eun-Hee Kim
- Center for Research Equipment, Korea Basic Science Institute, Cheongwon-gu, Cheongju-si, Chungbuk, 28119, Republic of Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Buk-gu, Gwangju, 61186, Republic of Korea,Corresponding author.
| |
Collapse
|
16
|
Saldanha LL, Allard PM, Dilarri G, Codesido S, González-Ruiz V, Queiroz EF, Ferreira H, Wolfender JL. Metabolomic- and Molecular Networking-Based Exploration of the Chemical Responses Induced in Citrus sinensis Leaves Inoculated with Xanthomonas citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14693-14705. [PMID: 36350271 DOI: 10.1021/acs.jafc.2c05156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.
Collapse
Affiliation(s)
- Luiz Leonardo Saldanha
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pierre-Marie Allard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
- Departement of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Guilherme Dilarri
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Santiago Codesido
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| | - Henrique Ferreira
- Biochemistry Building, Department of General and Applied Biology, Institute of Biosciences, State University of São Paulo, Rio Claro, 13506-900 São Paulo, Brazil
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva 4, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Stinco CM, Benítez-González AM, Hernanz D, Vicario IM. Assessment of in vitro bioaccessibility of carotenoids and phenolic compounds in a model milk-mandarine beverage. Food Funct 2022; 13:10535-10545. [PMID: 36156618 DOI: 10.1039/d2fo01808j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mandarine juice is one of the richest sources of β-cryptoxanthin and flavonoids, which have been positively associated with bone mineral density. Carotenoids are lipophilic isoprenoid compounds with a complex absorption process that can be affected by different factors. In this study, we have evaluated the effect of the food matrix on the in vitro bioaccessibility of carotenoids and phenolic compounds in a model milk-mandarine beverage (MMB). MMBs were formulated with mandarine juice and different dairy products to achieve three fat levels (0.2%, 1.7% and 3.2%) and three calcium levels (120, 310 and 500 mg Ca2+ per 100 ml). The bioaccessibility was evaluated using a harmonised in vitro digestion method. The results showed that the content of milk fat increased the bioaccessibility in vitro of phenolic compounds (p < 0.05), while a moderate fat level (1.7%) resulted in the highest bioaccessibility for bioactive carotenoids. On the other hand, calcium fortification at the highest level (500 mg Ca2+ per 100 mL) decreased the bioaccessibility of bioactive carotenoids from 76% to 43% (66% for the major β-cryptoxanthin) compared to the lower calcium fortification level (120 mg Ca2+ per 100 mL). The bioaccessibility of hesperidin, the main flavanone in mandarine juice, was significantly (p < 0.05) reduced in the MMB with the highest calcium level. The bioaccessibility of carotenoids and phenolic compounds is affected by fat and calcium levels. When formulating functional beverages, the impact of the formulation should be carefully considered to optimize the bioaccessibility of the bioactive compounds.
Collapse
Affiliation(s)
- Carla M Stinco
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Ana M Benítez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Dolores Hernanz
- Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Isabel M Vicario
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
| |
Collapse
|
18
|
Characterization and Differentiation of Fresh Orange Juice Variety Based on Conventional Physicochemical Parameters, Flavonoids, and Volatile Compounds Using Chemometrics. Molecules 2022; 27:molecules27196166. [PMID: 36234701 PMCID: PMC9572974 DOI: 10.3390/molecules27196166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The present study focused on the possibility of differentiating fresh-unprocessed orange juice according to botanical origin (variety), based on the use of conventional physico-chemical parameters, flavonoids, and volatile compounds, in combination with chemometrics. For this purpose, oranges from seven different varieties were collected during the harvest years of 2013−2014 and 2014−2015 from central and southern Greece. The physico-chemical parameters that were determined included: electrical conductivity, acidity, pH, and total soluble solids. The flavonoids: hesperidin, neohespseridin, quercetin, naringin, and naringenin were determined using high-performance liquid chromatography (HPLC-DAD). Finally, volatile compounds were determined using headspace solid-phase micro-extraction in combination with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Statistical treatment of data by multivariate techniques showed that orange juice variety had a significant (p < 0.05) impact on the above analytical parameters. The classification rate for the differentiation of orange juice according to orange variety using multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) was 89.3%, based on the cross-validation method.
Collapse
|
19
|
Kim SS, Kim HJ, Park KJ, Kang SB, Park Y, Han SG, Kim M, Song YH, Kim DS. Metabolomic Profiling of Citrus unshiu during Different Stages of Fruit Development. PLANTS 2022; 11:plants11070967. [PMID: 35406947 PMCID: PMC9002680 DOI: 10.3390/plants11070967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Citrus fruits undergo significant metabolic profile changes during their development process. However, limited information is available on the changes in the metabolites of Citrus unshiu during fruit development. Here, we analyzed the total phenolic content (TPC), total carotenoid content (TCC), antioxidant activity, and metabolite profiles in C. unshiu fruit flesh during different stages of fruit development and evaluated their correlations. The TPC and antioxidant activity significantly decreased during fruit development, whereas the TCC increased. The metabolite profiles, including sugars, acidic compounds, amino acids, flavonoids, limonoids, carotenoids, and volatile compounds (mono- and sesquiterpenes), in C. unshiu fruit flesh also changed significantly, and a citrus metabolomic pathway related to fruit development was proposed. Based on the data, C. unshiu fruit development was classified into three groups: Group 1 (Aug. 1), Group 2 (Aug. 31 and Sep. 14), and Group 3 (Oct. 15 and Nov. 16). Although citrus peel was not analyzed and the sensory and functional qualities during fruit development were not investigated, the results of this study will help in our understanding of the changes in chemical profile during citrus fruit development. This can provide vital information for various applications in the C. unshiu industry.
Collapse
Affiliation(s)
- Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 Four), Gyeongsang National University, Jinju 52828, Korea;
| | - Kyung Jin Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Seok Beom Kang
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - YoSup Park
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Seong-Gab Han
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Misun Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration, Seogwipo 63607, Korea; (S.S.K.); (K.J.P.); (S.B.K.); (Y.P.); (S.-G.H.); (M.K.)
| | - Yeong Hun Song
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Dong-Shin Kim
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-2555
| |
Collapse
|