1
|
Liu X, Men L, Chen Y, Wang Y, Wang Y, Zhang X, Cui H, Guo Y, Wen J. Tryptophan Promotes the Production of Xanthophyll Compounds in Yellow Abdominal Fat through HAAO. Animals (Basel) 2024; 14:1555. [PMID: 38891602 PMCID: PMC11170993 DOI: 10.3390/ani14111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal fat, which in the past was often regarded as waste and discarded, has in recent years been used as a fat source to produce meat by-products. Yellow abdominal fat has higher economic value. Therefore, improving the color of abdominal fat plays an important role in improving the appearance of meat products. This study aimed to identify the contributors and the regulatory network involved in the formation of yellow and white color in abdominal fat. We found that four xanthophyll compounds were significantly different in yellow and white abdominal fat chicken, including zeaxanthin, lutein, canthaxanthin, and β-cryptoxanthin. There were 551 different and 8 common metabolites significantly correlated with these 4 xanthophyll compounds. Similarly, a total of 54 common genes were identified in 4 common related pathways (Complement and coagulation cascades, Metabolic pathways, PPAR signaling pathway, Carbon metabolism) of the 8 common metabolites. The high expression of HAAO in the yellow abdominal fat group leads to the degradation of tryptophan and its intermediate 5-hydroxyindole, and subsequently to the formation of the four xanthophyll compounds. This process is also regulated by tyrosine, kynurenine 3-monooxygenase (KMO), homogentisate 1, 2-dioxygenase (HGD), etc. Together, these findings show the effect of tryptophan on abdominal fat color, as well as a negative regulatory effect of HAAO and 5-hydroxyindole on the production of xanthophyll compounds involved in abdominal fat coloration.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lilin Men
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| | - Yanji Chen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| | - Yongli Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| | - Yanke Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| | - Xu Zhang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| | - Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (X.L.); (L.M.); (Y.C.); (Y.W.); (Y.W.); (X.Z.); (H.C.)
| |
Collapse
|
2
|
Della Malva A, Gagaoua M, Santillo A, di Corcia M, Natalello A, Sevi A, Albenzio M. In-depth characterization of the sarcoplasmic muscle proteome changes in lambs fed with hazelnut skin by-products: Relationships with meat color. J Proteomics 2023; 287:104997. [PMID: 37657717 DOI: 10.1016/j.jprot.2023.104997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
This study investigated the effect of agro-industrial hazelnut skin by-products supplementation on lamb meat color variation and the changes in the sarcoplasmic muscle proteome during post-mortem storage (0, 4 and 7 days). Gel-based proteomics and bioinformatics approaches were applied to better understand the potential role of feeding strategies in modulating the mechanisms underpinning meat discoloration and post-mortem changes during storage. Therefore, twenty-two Valle del Belice male lambs were randomly assigned to two dietary treatments: control (C), lambs fed with maize-barley diet, and hazelnut skin (H), lambs fed hazelnut skin by-product as maize partial replacer in the concentrate diet. Hazelnut dietary treatment led to better lamb meat color stability as evidenced by the lowest decrease in redness and saturation index values. Proteomics and bioinformatics results revealed changes in the abundance of 41 proteoforms, which were mainly involved in glycolytic processes, responses to oxidative stress, and immune and endocrine system. The proteins allowed revealing interconnected pathways to be behind meat color variation as a consequence of using hazelnut skin by-products to sustainable feed lamb. The proteins can be used as potential predictors of lamb meat color variation. Accordingly, the regression equations developed in this paper revealed triosephosphate isomerase (TPI1) as a reliable candidate biomarker of color stability in lamb meat. SIGNIFICANCE: The use of agro-industrial by-products in animal feeding can be a potential sustainable strategy to reduce the environmental impacts of the food production chain and consequently improve animal welfare and product quality. The inclusion of hazelnut skin by-products in the animal's diet, due to the high concentration of polyphenols, represents an effective strategy to improve the oxidative stability of meat, with significant implications on color. The use of proteomics combined with bioinformatics on the sarcoplasmic proteome is a powerful approach to decipher the underlying mechanism. Accordingly, this approach allowed in this trial a deeper understanding of the molecular mechanisms involved in the post-mortem processes through the discovery of several biological pathways linked with lamb meat color variation. Glycolysis, followed by responses to oxidative stress, and other proteins involved in the immune and endocrine system were found as the major interconnected pathways that could act as potential predictors of lamb meat color stability. Candidate proteins biomarkers were further revealed in this study to be related with multiple meat color traits.
Collapse
Affiliation(s)
- Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy.
| | | | - Antonella Santillo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Martina di Corcia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Antonio Natalello
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Agostino Sevi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71121 Foggia, Italy
| |
Collapse
|
3
|
Zhang R, Pavan E, Ross AB, Deb-Choudhury S, Dixit Y, Mungure TE, Realini CE, Cao M, Farouk MM. Molecular insights into quality and authentication of sheep meat from proteomics and metabolomics. J Proteomics 2023; 276:104836. [PMID: 36764652 DOI: 10.1016/j.jprot.2023.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Sheep meat (encompassing lamb, hogget and mutton) is an important source of animal protein in many countries, with a unique flavour and sensory profile compared to other red meats. Flavour, colour and texture are the key quality attributes contributing to consumer liking of sheep meat. Over the last decades, various factors from 'farm to fork', including production system (e.g., age, breed, feeding regimes, sex, pre-slaughter stress, and carcass suspension), post-mortem manipulation and processing (e.g., electrical stimulation, ageing, packaging types, and chilled and frozen storage) have been identified as influencing different aspects of sheep meat quality. However conventional meat-quality assessment tools are not able to elucidate the underlying mechanisms and pathways for quality variations. Advances in broad-based analytical techniques have offered opportunities to obtain deeper insights into the molecular changes of sheep meat which may become biomarkers for specific variations in quality traits and meat authenticity. This review provides an overview on how omics techniques, especially proteomics (including peptidomics) and metabolomics (including lipidomics and volatilomics) are applied to elucidate the variations in sheep meat quality, mainly in loin muscles, focusing on colour, texture and flavour, and as tools for authentication. SIGNIFICANCE: From this review, we observed that attempts have been made to utilise proteomics and metabolomics techniques on sheep meat products for elucidating pathways of quality variations due to various factors. For instance, the improvement of colour stability and tenderness could be associated with the changes to glycolysis, energy metabolism and endogenous antioxidant capacity. Several studies identify proteolysis as being important, but potentially conflicting for quality as the enhanced proteolysis improves tenderness and flavour, while reducing colour stability. The use of multiple analytical methods e.g., lipidomics, metabolomics, and volatilomics, detects a wider range of flavour precursors (including both water and lipid soluble compounds) that underlie the possible pathways for sheep meat flavour evolution. The technological advancement in omics (e.g., direct analysis-mass spectrometry) could make analysis of the proteins, lipids and metabolites in sheep meat routine, as well as enhance the confidence in quality determination and molecular-based assurance of meat authenticity.
Collapse
Affiliation(s)
- Renyu Zhang
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand.
| | - Enrique Pavan
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand; Unidad Integrada Balcarce (FCA, UNMdP - INTA, EEA Balcarce), Ruta 226 km 73.5, CP7620 Balcarce, Argentina
| | - Alastair B Ross
- Proteins and Metabolites, AgResearch Ltd, Lincoln, New Zealand
| | | | - Yash Dixit
- Food informatics, AgResearch Ltd, Palmerston North, New Zealand
| | | | - Carolina E Realini
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand
| | - Mingshu Cao
- Data Science, AgResearch Ltd, Palmerston North, New Zealand
| | - Mustafa M Farouk
- Food Technology & Processing, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
4
|
Wei W, Zha C, Jiang A, Chao Z, Hou L, Liu H, Huang R, Wu W. A Combined Differential Proteome and Transcriptome Profiling of Fast- and Slow-Twitch Skeletal Muscle in Pigs. Foods 2022; 11:foods11182842. [PMID: 36140968 PMCID: PMC9497725 DOI: 10.3390/foods11182842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle fiber types can contribute in part to affecting pork quality parameters. Biceps femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow muscle or red muscle) are two typical skeletal muscles characterized by obvious muscle fiber type differences in pigs. However, the critical proteins and potential regulatory mechanisms regulating porcine skeletal muscle fibers have yet to be clearly defined. In this study, the isobaric Tag for Relative and Absolute Quantification (iTRAQ)-based proteome was used to identify the key proteins affecting the skeletal muscle fiber types with Bf and Sol, by integrating the previous transcriptome data, while function enrichment analysis and a protein–protein interaction (PPI) network were utilized to explore the potential regulatory mechanisms of skeletal muscle fibers. A total of 126 differentially abundant proteins (DAPs) between the Bf and Sol were identified, and 12 genes were found to be overlapping between differentially expressed genes (DEGs) and DAPs, which are the critical proteins regulating the formation of skeletal muscle fibers. Functional enrichment and PPI analysis showed that the DAPs were mainly involved in the skeletal-muscle-associated structural proteins, mitochondria and energy metabolism, tricarboxylic acid cycle, fatty acid metabolism, and kinase activity, suggesting that PPI networks including DAPs are the main regulatory network affecting muscle fiber formation. Overall, these data provide valuable information for understanding the molecular mechanism underlying the formation and conversion of muscle fiber types, and provide potential markers for the evaluation of meat quality.
Collapse
Affiliation(s)
- Wei Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-84399762
| |
Collapse
|
5
|
Identification of the Differentially Expressed Genes in the leg muscles of Zhedong White Geese (Anser cygnoides) reared under different photoperiods. Poult Sci 2022; 101:102193. [PMID: 36257072 PMCID: PMC9579406 DOI: 10.1016/j.psj.2022.102193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Light is a factor affecting muscle development and meat quality in poultry production. However, few studies have reported on the role of light in muscle development and meat quality in geese. In this experiment, 10 healthy 220-day-old Zhedong white geese were reared for 60 d under a long photoperiod (15L:9D, LL) and short photoperiod (9L:15D, SL). The gastrocnemius muscles were collected after slaughter to evaluate muscle fiber characteristics and meat color, and RNA-seq analysis. The results showed that compared to the LL group, the SL group had large muscle fiber diameter and cross-sectional area, few muscle fibers per unit area, high meat color a* value, and low L* value at 24 h postmortem. On comparing the 2 groups, 70 differentially expressed genes (DEGs) were identified. Compared to the SL group, the LL group had 25 upregulated and 45 downregulated genes. Gene Ontology (GO) enrichment analysis showed that these DEGs were mainly involved in cell, cell part, binding, cellular processes, and single-organism processes. Several significantly enriched athways were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, such as the calcium and PI3k-Akt signaling pathways. The expression of five randomly selected DEGs was verified using quantitative real-time PCR, and the results were consistent with the RNA-seq data. This study provides a theoretical basis for studying the molecular mechanisms by which light affects muscle development and meat color in geese.
Collapse
|
6
|
Gagaoua M. Recent Advances in OMICs Technologies and Application for Ensuring Meat Quality, Safety and Authenticity. Foods 2022; 11:foods11162532. [PMID: 36010532 PMCID: PMC9407444 DOI: 10.3390/foods11162532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|