1
|
Valido E, Bertolo A, Hertig-Godeschalk A, Flueck JL, Ruettimann B, Glisic M, Stoyanov J. Characteristics of the gut microbiome of Swiss elite athletes with a spinal cord injury: An exploratory study. J Spinal Cord Med 2025; 48:376-384. [PMID: 38207282 PMCID: PMC12035930 DOI: 10.1080/10790268.2023.2265610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES To illustrate and explore associations between the gut microbiome and spinal cord injury (SCI) characteristics, physical training, dietary intake, body composition, and blood biomarkers of elite Swiss athletes. DESIGN AND SETTING Baseline data analysis of athletes with SCI who participated in a pilot trial (NCT04659408) in the Swiss Paraplegic Center, Nottwil, Switzerland. PARTICIPANTS Elite athletes, five males, and six females, with SCI who competed internationally. OUTCOME MEASURES We conducted a differential abundance analysis and measured the alpha and beta diversity of the gut microbiome. RESULTS The athletes' median age was 34.5 years. Six had traumatic SCI and five had a spina bifida. The athletes competed in para-cycling (5), wheelchair athletics (3), and wheelchair tennis (3). A higher duration of training per week was positively associated with Akkermansia and Akkermansiaceae but negatively associated with Prevotellaceae. Muribaculaceae was negatively associated with the average number of trainings per week. Waist circumference is negatively associated with Butyricimonas. Significant differences in the alpha diversity were found with sex, gastrointestinal quality of life index (GIQLI) scores, total caloric intake, total fat intake, total carbohydrate intake, and high-sensitivity C-reactive protein (hs-CRP). Beta diversity differences were found with impairment of the sympathetic nervous system of the gut at the genus level and HbA1c at the family level. CONCLUSIONS This study provides insight into the gut microbiome of athletes with SCI. Our results were similar to those found in athletes without SCI. Further replication is needed to confirm the relationships of organisms observed in the gut of athletes with SCI.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, Nottwil, Switzerland
- Faculty of Health Sciences, University of Lucerne, Lucerne, Switzerland
| | - Alessandro Bertolo
- Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Orthopedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| | | | - Joelle Leonie Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Belinda Ruettimann
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Marija Glisic
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Patel BK, Patel KH, Lee CN, Moochhala S. Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. Int J Mol Sci 2024; 25:10076. [PMID: 39337561 PMCID: PMC11432184 DOI: 10.3390/ijms251810076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recent years have witnessed an uptick in research highlighting the gut microbiota's role as a primary determinant of athletes' health, which has piqued interest in the hypothesis that it correlates with athletes' physical performance. Athletes' physical performances could be impacted by the metabolic activity of the assortment of microbes found in their gut. Intestinal microbiota impacts multiple facets of an athlete's physiology, including immune response, gut membrane integrity, macro- and micronutrient absorption, muscle endurance, and the gut-brain axis. Several physiological variables govern the gut microbiota; hence, an intricately tailored and complex framework must be implemented to comprehend the performance-microbiota interaction. Emerging evidence underscores the intricate relationship between the gut microbiome and physical fitness, revealing that athletes who engage in regular physical activity exhibit a richer diversity of gut microbes, particularly within the Firmicutes phylum, e.g., Ruminococcaceae genera, compared to their sedentary counterparts. In elite sport, it is challenging to implement an unconventional strategy whilst simultaneously aiding an athlete to accomplish feasible, balanced development. This review compiles the research on the effects of gut microbiota modulation on performance in sports and illustrates how different supplementation strategies for gut microbiota have the ability to improve athletic performance by enhancing physical capacities. In addition to promoting athletes' overall health, this study evaluates the existing literature in an effort to shed light on how interventions involving the gut microbiota can dramatically improve performance on the field. The findings should inform both theoretical and practical developments in the fields of sports nutrition and training.
Collapse
Affiliation(s)
- Bharati Kadamb Patel
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Kadamb Haribhai Patel
- Temasek Polytechnic, School of Applied Sciences, 21 Tampines Ave 1, Singapore 529757, Singapore;
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Shabbir Moochhala
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD3, 16 Medical Drive, Singapore 117600, Singapore
| |
Collapse
|
3
|
Wosinska L, Walsh LH, Walsh CJ, Cotter PD, Guinane CM, O’Sullivan O. Cataloging metagenome-assembled genomes and microbial genes from the athlete gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:41. [PMID: 39741946 PMCID: PMC11684919 DOI: 10.20517/mrr.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Aim: Exercise has been increasingly recognized as a potential influencer of the gut microbiome. Nevertheless, findings remain incongruous, particularly in relation to sport-specific patterns. Methods: In this study, we harness all publicly available data from athlete gut microbiome shotgun studies to explore how exercise may influence the gut microbiota through metagenomic assembly supplemented with short read-based taxonomic profiling. Through this analysis, we provide insights into exercise-associated taxa and genes, including the identification and annotation of putative novel species from the analysis of approximately 2,000 metagenome-assembled genomes (MAGs), classified as high-quality (HQ) MAGs and assembled as part of this investigation. Results: Our metagenomic analysis unveiled potential athlete-associated microbiome patterns at both the phylum and species levels, along with their associated microbial genes, across a diverse array of sports and individuals. Specifically, we identified 76 species linked to exercise, with a notable prevalence of the Firmicutes phylum. Furthermore, our analysis detected MAGs representing potential novel species across various phyla, including Bacteroidota, Candidatus Melainabacteria, Elusimicrobia, Firmicutes, Lentisphaerae, Proteobacteria, Tenericutes, and Verrucomicrobiota. Conclusion: In summary, this catalog of MAGs and their corresponding genes stands as the most extensive collection yet compiled from athletes. Our analysis has discerned patterns in genes associated with exercise. This underscores the value of employing shotgun metagenomics, specifically a MAG recovery strategy, for pinpointing sport-associated microbiome signatures. Furthermore, the identification of novel MAGs holds promise for developing probiotics and deepening our comprehension of the intricate interplay between fitness and the microbiome.
Collapse
Affiliation(s)
- Laura Wosinska
- Department of Biological Sciences, Munster Technological University, Cork Campus, Cork T12 P928, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Liam H. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- VistaMilk, Fermoy, Cork P61 C996, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork Campus, Cork T12 P928, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- VistaMilk, Fermoy, Cork P61 C996, Ireland
| |
Collapse
|
4
|
Humińska-Lisowska K, Zielińska K, Mieszkowski J, Michałowska-Sawczyn M, Cięszczyk P, Łabaj PP, Wasąg B, Frączek B, Grzywacz A, Kochanowicz A, Kosciolek T. Microbiome features associated with performance measures in athletic and non-athletic individuals: A case-control study. PLoS One 2024; 19:e0297858. [PMID: 38381714 PMCID: PMC10880968 DOI: 10.1371/journal.pone.0297858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
The influence of human gut microbiota on health and disease is now commonly appreciated. Therefore, it is not surprising that microbiome research has found interest in the sports community, hoping to improve health and optimize performance. Comparative studies found new species or pathways that were more enriched in elites than sedentary controls. In addition, sport-specific and performance-level-specific microbiome features have been identified. However, the results remain inconclusive and indicate the need for further assessment. In this case-control study, we tested two athletic populations (i.e. strength athletes, endurance athletes) and a non-athletic, but physically active, control group across two acute exercise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test). While we did not identify any group differences in alpha and beta diversity or significant differential abundance of microbiome components at baseline, one-third of the species identified were unique to each group. Longitudinal sample (pre- and post-exercise) analysis revealed an abundance of Alistipes communis in the strength group during the WT and 88 species with notable between-group differences during the Bruce Test. SparCC recognized Bifidobacterium longum and Bifidobacterium adolescentis, short-chain fatty acid producers with probiotic properties, species strongly associated with VO2max. Ultimately, we identified several taxa with different baseline abundances and longitudinal changes when comparing individuals based on their VO2max, average power, and maximal power parameters. Our results confirmed that the health status of individuals are consistent with assumptions about microbiome health. Furthermore, our findings indicate that microbiome features are associated with better performance previously identified in elite athletes.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Kinga Zielińska
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Jan Mieszkowski
- Faculty of Health Sciences, University of Lomza, Lomza, Poland
| | | | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Frączek
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education, Cracow, Poland
| | - Anna Grzywacz
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
5
|
Vazquez-Medina A, Rodriguez-Trujillo N, Ayuso-Rodriguez K, Marini-Martinez F, Angeli-Morales R, Caussade-Silvestrini G, Godoy-Vitorino F, Chorna N. Exploring the interplay between running exercises, microbial diversity, and tryptophan metabolism along the microbiota-gut-brain axis. Front Microbiol 2024; 15:1326584. [PMID: 38318337 PMCID: PMC10838991 DOI: 10.3389/fmicb.2024.1326584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The emergent recognition of the gut-brain axis connection has shed light on the role of the microbiota in modulating the gut-brain axis's functions. Several microbial metabolites, such as serotonin, kynurenine, tryptamine, indole, and their derivatives originating from tryptophan metabolism have been implicated in influencing this axis. In our study, we aimed to investigate the impact of running exercises on microbial tryptophan metabolism using a mouse model. We conducted a multi-omics analysis to obtain a comprehensive insight into the changes in tryptophan metabolism along the microbiota-gut-brain axis induced by running exercises. The analyses integrated multiple components, such as tryptophan changes and metabolite levels in the gut, blood, hippocampus, and brainstem. Fecal microbiota analysis aimed to examine the composition and diversity of the gut microbiota, and taxon-function analysis explored the associations between specific microbial taxa and functional activities in tryptophan metabolism. Our findings revealed significant alterations in tryptophan metabolism across multiple sites, including the gut, blood, hippocampus, and brainstem. The outcomes indicate a shift in microbiota diversity and tryptophan metabolizing capabilities within the running group, linked to increased tryptophan transportation to the hippocampus and brainstem through circulation. Moreover, the symbiotic association between Romboutsia and A. muciniphila indicated their potential contribution to modifying the gut microenvironment and influencing tryptophan transport to the hippocampus and brainstem. These findings have potential applications for developing microbiota-based approaches in the context of exercise for neurological diseases, especially on mental health and overall well-being.
Collapse
Affiliation(s)
- Alejandra Vazquez-Medina
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nicole Rodriguez-Trujillo
- Nutrition and Dietetics Program, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Kiara Ayuso-Rodriguez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Roberto Angeli-Morales
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
6
|
Campa F. Hydration and Body Composition in Sports Practice: An Editorial. Nutrients 2023; 15:4814. [PMID: 38004207 PMCID: PMC10675179 DOI: 10.3390/nu15224814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Assessing hydration status and monitoring body composition represent crucial aspects when discussing the advantages of embracing a healthy lifestyle, given its significant impact on both health and sports performance [...].
Collapse
Affiliation(s)
- Francesco Campa
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| |
Collapse
|
7
|
Fontana F, Longhi G, Tarracchini C, Mancabelli L, Lugli GA, Alessandri G, Turroni F, Milani C, Ventura M. The human gut microbiome of athletes: metagenomic and metabolic insights. MICROBIOME 2023; 11:27. [PMID: 36782241 PMCID: PMC9926762 DOI: 10.1186/s40168-023-01470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/18/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND The correlation between the physical performance of athletes and their gut microbiota has become of growing interest in the past years, since new evidences have emerged regarding the importance of the gut microbiota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity of the microbial population harbored by the large intestine of athletes might influence their physical performances. Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy athletes and healthy sedentary adults. RESULTS This study evidenced how agonistic physical activity and related lifestyle can be associated with the modulation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascular and age-related health-risk reduction. CONCLUSIONS Notably, our findings show how subsist an association between competitive athletes, and modulation of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that can lead to beneficial effects on human physical performance and health conditions. Video Abstract.
Collapse
Affiliation(s)
- Federico Fontana
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Giulia Longhi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- GenProbio Srl, Parma, Italy
| | - Chiara Tarracchini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Leonardo Mancabelli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Gabriele Andrea Lugli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Giulia Alessandri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
| | - Francesca Turroni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| | - Marco Ventura
- Department of Chemistry, Life Sciences, and Environmental Sustainability, Laboratory of Probiogenomics, University of Parma, Parco Area Delle Scienze 11a, 43124, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
8
|
Morita H, Kano C, Ishii C, Kagata N, Ishikawa T, Hirayama A, Uchiyama Y, Hara S, Nakamura T, Fukuda S. Bacteroides uniformis and its preferred substrate, α-cyclodextrin, enhance endurance exercise performance in mice and human males. SCIENCE ADVANCES 2023; 9:eadd2120. [PMID: 36696509 PMCID: PMC9876546 DOI: 10.1126/sciadv.add2120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although gut microbiota has been linked to exercise, whether alterations in the abundance of specific bacteria improve exercise performance remains ambiguous. In a cross-sectional study involving 25 male long-distance runners, we found a correlation between Bacteroides uniformis abundance in feces and the 3000-m race time. In addition, we administered flaxseed lignan or α-cyclodextrin as a test tablet to healthy, active males who regularly exercised in a randomized, double-blind, placebo-controlled study to increase B. uniformis in the gut (UMIN000033748). The results indicated that α-cyclodextrin supplementation improved human endurance exercise performance. Moreover, B. uniformis administration in mice increased swimming time to exhaustion, cecal short-chain fatty acid concentrations, and the gene expression of enzymes associated with gluconeogenesis in the liver while decreasing hepatic glycogen content. These findings indicate that B. uniformis enhances endurance exercise performance, which may be mediated by facilitating hepatic endogenous glucose production.
Collapse
Affiliation(s)
- Hiroto Morita
- Core Technology Laboratories, Asahi Quality & Innovations Ltd., 1-1-21, Midori, Moriya, Ibaraki 302-0106, Japan
| | - Chie Kano
- Core Technology Laboratories, Asahi Quality & Innovations Ltd., 1-1-21, Midori, Moriya, Ibaraki 302-0106, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata 997-0052, Japan
| | - Noriko Kagata
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata 997-0052, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata 997-0052, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata 997-0052, Japan
| | - Yoshihide Uchiyama
- Aoyama Gakuin University Track and Field Club, Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366, Japan
- School of International Politics, Economics and Communication, Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366, Japan
| | - Susumu Hara
- Aoyama Gakuin University Track and Field Club, Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366, Japan
- School of Global Studies and Collaboration, Aoyama Gakuin University, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366, Japan
| | - Teppei Nakamura
- Core Technology Laboratories, Asahi Quality & Innovations Ltd., 1-1-21, Midori, Moriya, Ibaraki 302-0106, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka-shi, Yamagata 997-0052, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki 305-8575, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Corresponding author.
| |
Collapse
|
9
|
Tuska RM, Helm SM, Graf CF, James C, Kong G, Stiemsma LT, Green DB, Helm SE. Surfeit folic acid, protein, and exercise modify oncogenic inflammatory biomarkers and fecal microbiota. Front Nutr 2023; 9:1060212. [PMID: 36742002 PMCID: PMC9894611 DOI: 10.3389/fnut.2022.1060212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Intestinal microbiota, diet, and physical activity are inextricably linked to inflammation occurring in the presence of tumor progression and declining neurocognition. This study aimed to explore how fecal microbiota, inflammatory biomarkers, and neurocognitive behavior are influenced by voluntary exercise and surplus dietary protein and folic acid which are common health choices. Dietary treatments provided over 8 weeks to C57BL/CJ male mice (N = 76) were: Folic Acid (FA) Protein (P) Control (FPC, 17.9% P; 2 mgFA/kg); Folic Acid Deficient (FAD); Folic Acid Supplemented (FAS; 8 mgFA/kg); Low Protein Diet (LPD, 6% P); and High Protein Diet (HPD, 48% P). FAS mice had decreased plasma HCys (p < 0.05), therefore confirming consumption of FA. Objectives included examining influence of exercise using Voluntary Wheel Running (VWR) upon fecal microbiota, inflammatory biomarkers C - reactive protein (CRP), Vascular Endothelial Growth Factor (VEGF), Interleukin-6 (IL-6), nuclear factor kappa ß subunit (NF-κßp65), Caspase-3 (CASP3), Tumor Necrosis Factor-alpha (TNF-α), and neurocognitive behavior. CRP remained stable, while a significant exercise and dietary effect was notable with decreased VEGF (p < 0.05) and increased CASP3 (p < 0.05) for exercised HPD mice. Consumption of FAS did significantly increase (p < 0.05) muscle TNF-α and the ability to build a nest (p < 0.05) was significantly decreased for both FAD and LPD exercised mice. Rearing behavior was significantly increased (p < 0.05) in mice fed HPD. An emerging pattern with increased dietary protein intake revealed more distance explored in Open Field Testing. At week 1, both weighted and unweighted UniFrac principal coordinates analysis yielded significant clustering (permanova, p ≤ 0.05) associated with the specific diets. Consumption of a HPD diet resulted in the most distinct fecal microbiota composition. At the phylum level-comparing week 1 to week 8-we report a general increase in the Firmicutes/Bacteroidetes ratio, characterized by an outgrowth of Firmicutes by week 8 in all groups except the HPD. MaAsLin2 analysis corroborates this finding and emphasizes an apparent inversion of the microbiome composition at week 8 after HPD. Explicit modification of oncogenic inflammatory biomarkers and fecal microbiome post high FA and protein intake along with voluntary exercise contributed to current underlying evidence that this diet and exercise relationship has broader effects on human health and disease-perhaps importantly as a practical modulation of cancer progression and declining neurocognition.
Collapse
|
10
|
Li C, Li X, Guo R, Ni W, Liu K, Liu Z, Dai J, Xu Y, Abduriyim S, Wu Z, Zeng Y, Lei B, Zhang Y, Wang Y, Zeng W, Zhang Q, Chen C, Qiao J, Liu C, Hu S. Expanded catalogue of metagenome-assembled genomes reveals resistome characteristics and athletic performance-associated microbes in horse. MICROBIOME 2023; 11:7. [PMID: 36631912 PMCID: PMC9835274 DOI: 10.1186/s40168-022-01448-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/14/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND As a domesticated species vital to humans, horses are raised worldwide as a source of mechanical energy for sports, leisure, food production, and transportation. The gut microbiota plays an important role in the health, diseases, athletic performance, and behaviour of horses. RESULTS Here, using approximately 2.2 Tb of metagenomic sequencing data from gut samples from 242 horses, including 110 samples from the caecum and 132 samples from the rectum (faeces), we assembled 4142 microbial metagenome-assembled genomes (MAG), 4015 (96.93%) of which appear to correspond to new species. From long-read data, we successfully assembled 13 circular whole-chromosome bacterial genomes representing novel species. The MAG contained over 313,568 predicted carbohydrate-active enzymes (CAZy), over 59.77% of which had low similarity match in CAZy public databases. High abundance and diversity of antibiotic resistance genes (ARG) were identified in the MAG, likely showing the wide use of antibiotics in the management of horse. The abundances of at least 36 MAG (e.g. MAG belonging to Lachnospiraceae, Oscillospiraceae, and Ruminococcus) were higher in racehorses than in nonracehorses. These MAG enriched in racehorses contained every gene in a major pathway for producing acetate and butyrate by fibre fermentation, presenting potential for greater amount of short-chain fatty acids available to fuel athletic performance. CONCLUSION Overall, we assembled 4142 MAG from short- and long-read sequence data in the horse gut. Our dataset represents an exhaustive microbial genome catalogue for the horse gut microbiome and provides a valuable resource for discovery of performance-enhancing microbes and studies of horse gut microbiome. Video Abstract.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Rongjun Guo
- Novogene Bioinformatics Institute, Beijing, 100000 China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 830003 Xinjiang China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yueren Xu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | | | - Zhuangyuan Wu
- Xinjiang Altay Animal Husbandry and Veterinary Station, Altay, 836501 Xinjiang China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000 Xinjiang China
| | - Bingbing Lei
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 830003 Xinjiang China
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003 Xinjiang China
| | - Chen Liu
- Novogene Bioinformatics Institute, Beijing, 100000 China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China
- Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, Shihezi University, Shihezi, 832003 Xinjiang China
| |
Collapse
|
11
|
Liu X, Gao W, Yang J, Mao G, Lu H, Xing W. Association between probiotic, prebiotic, and yogurt consumption and chronic kidney disease: The NHANES 2010-2020. Front Nutr 2022; 9:1058238. [PMID: 36618701 PMCID: PMC9822650 DOI: 10.3389/fnut.2022.1058238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies suggested that gut dysbacteriosis may promote the occurrence of chronic kidney disease (CKD), and probiotic, prebiotic, or yogurt supplements may alleviate CKD progression. This study aims to examine the association between probiotic, prebiotic, or yogurt supplements and the risk of CKD using the data from NHANES. Methods This study was designed to prospectively search data from the National Health and Nutrition Examination Survey (NHANES) (2011-2020). We examined dietary supplements and prescription medication labels to identify probiotic, or prebiotic product, and yogurt consumption during the dietary interview. The diagnosis of CKD was determined by the value of glomerular filtration rate (eGFR) and albumin creatinine ratio (ACR). Results The study enrolled a total of 6,522 individuals. The prevalence of CKD was lower in the probiotic, prebiotic, or yogurt consumption group [age-adjusted odds ratio (OR): 0.77, 95% CI: 0.62-0.95, P = 0.02; multivariable-adjusted OR: 0.86, 95% CI: 0.69-1.07, P = 0.05]. Furthermore, 32% reduced risk was observed in the older group aged 55 years or older, and 32% reduced risk was also observed in the female population. Probiotic, or prebiotic, or yogurt supplements was associated a 12% reduction in moderate risk of CKD and an 11% reduction in very high risk of CKD. Conclusion Our results suggest that probiotic, prebiotic, or yogurt supplements may contribute to the prevention of CKD and relieve its progression risk, especially in the female population and older population who were aged 55 years or older.
Collapse
Affiliation(s)
- Xiaoxian Liu
- Department of Nephrology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jie Yang
- Department of Nephrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China,Genxiang Mao,
| | - Hong Lu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China,Hong Lu,
| | - Wenmin Xing
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China,*Correspondence: Wenmin Xing,
| |
Collapse
|
12
|
Krumina A, Bogdanova M, Gintere S, Viksna L. Gut-Lung Microbiota Interaction in COPD Patients: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121760. [PMID: 36556962 PMCID: PMC9785780 DOI: 10.3390/medicina58121760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Respiratory diseases are one of the leading causes of death in the world, which is why a lot of attention has been recently paid to studying the possible mechanisms for the development of pulmonary diseases and assessing the impact on their course. The microbiota plays an important role in these processes and influences the functionality of the human immune system. Thus, alterations in the normal microflora contribute to a reduction in immunity and a more severe course of diseases. In this review, we summarized the information about gut and lung microbiota interactions with particular attention to their influence on the course of chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Angelika Krumina
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence: (A.K.); (M.B.); Tel.: +371-29113833 (A.K.); +371-26656592 (M.B.)
| | - Marina Bogdanova
- Faculty of Residency, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence: (A.K.); (M.B.); Tel.: +371-29113833 (A.K.); +371-26656592 (M.B.)
| | - Sandra Gintere
- Department of Family Medicine, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ludmila Viksna
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
13
|
Zhang YW, Cao MM, Li YJ, Chen XX, Yu Q, Rui YF. A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites. J Transl Med 2022; 20:490. [PMID: 36303163 PMCID: PMC9615371 DOI: 10.1186/s12967-022-03700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by the decreased bone mass and destruction of bone microstructure, which tends to result in the enhanced bone fragility and related fractures, as well as high disability rate and mortality. Exercise is one of the most common, reliable and cost-effective interventions for the prevention and treatment of OP currently, and numerous studies have revealed the close association between gut microbiota (GM) and bone metabolism recently. Moreover, exercise can alter the structure, composition and abundance of GM, and further influence the body health via GM and its metabolites, and the changes of GM also depend on the choice of exercise modes. Herein, combined with relevant studies and based on the inseparable relationship between exercise intervention-GM-OP, this review is aimed to discuss the moderating effects and potential mechanisms of exercise intervention on GM and bone metabolism, as well as the interaction between them.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Xiang-Xu Chen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
14
|
Puce L, Hampton-Marcell J, Trabelsi K, Ammar A, Chtourou H, Boulares A, Marinelli L, Mori L, Cotellessa F, Currà A, Trompetto C, Bragazzi NL. Swimming and the human microbiome at the intersection of sports, clinical, and environmental sciences: A scoping review of the literature. Front Microbiol 2022; 13:984867. [PMID: 35992695 PMCID: PMC9382026 DOI: 10.3389/fmicb.2022.984867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The human microbiota is comprised of more than 10-100 trillion microbial taxa and symbiotic cells. Two major human sites that are host to microbial communities are the gut and the skin. Physical exercise has favorable effects on the structure of human microbiota and metabolite production in sedentary subjects. Recently, the concept of "athletic microbiome" has been introduced. To the best of our knowledge, there exists no review specifically addressing the potential role of microbiomics for swimmers, since each sports discipline requires a specific set of techniques, training protocols, and interactions with the athletic infrastructure/facility. Therefore, to fill in this gap, the present scoping review was undertaken. Four studies were included, three focusing on the gut microbiome, and one addressing the skin microbiome. It was found that several exercise-related variables, such as training volume/intensity, impact the athlete's microbiome, and specifically the non-core/peripheral microbiome, in terms of its architecture/composition, richness, and diversity. Swimming-related power-/sprint- and endurance-oriented activities, acute bouts and chronic exercise, anaerobic/aerobic energy systems have a differential impact on the athlete's microbiome. Therefore, their microbiome can be utilized for different purposes, including talent identification, monitoring the effects of training methodologies, and devising ad hoc conditioning protocols, including dietary supplementation. Microbiomics can be exploited also for clinical purposes, assessing the effects of exposure to swimming pools and developing potential pharmacological strategies to counteract the insurgence of skin infections/inflammation, including acne. In conclusion, microbiomics appears to be a promising tool, even though current research is still limited, warranting, as such, further studies.
Collapse
Affiliation(s)
- Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Khaled Trabelsi
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, Sfax University, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), Université Paris Lumières, Paris Nanterre University, Nanterre, France
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia
| | - Ayoub Boulares
- Higher Institute of Sports and Physical Education of Ksar-Said, University of Manouba, Tunis, Tunisia
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Filippo Cotellessa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Sapienza University of Rome, Latina, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
15
|
A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients 2022; 14:nu14091773. [PMID: 35565740 PMCID: PMC9101735 DOI: 10.3390/nu14091773] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut–liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased ‘controlled attenuation parameter’ (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.
Collapse
|