1
|
Kouamé KJEP, Falade EO, Zhu Y, Zheng Y, Ye X. Advances in innovative extraction techniques for polysaccharides, peptides, and polyphenols from distillery by-products: Common extraction techniques, emerging technologies, and AI-driven optimization. Food Chem 2025; 476:143326. [PMID: 39986087 DOI: 10.1016/j.foodchem.2025.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Distillery by-products, such as distillers' grains, stillage, and vinasse, are rich in organic compounds and offer immense potential for the recovery of bioactive substances, including polysaccharides, peptides, and polyphenols. The effective utilization of these by-products is critical for achieving long-term sustainability in the distillery sector. This review highlights advancements in extraction techniques, focusing on enzymatic, ultrasound-assisted, and microwave-assisted methods while also exploring emerging approaches such as supercritical fluid extraction, pressurized liquid extraction, pulse electric field, and synthetic biology. These innovative techniques address the limitations of traditional methods by improving extraction yields, reducing processing times, and enhancing sustainability. Additionally, the integration of machine learning and artificial intelligence is discussed as a promising avenue for optimizing extraction parameters and scaling up processes. By evaluating recent achievements and identifying new opportunities, this study aims to promote sustainable practices in the distillery industry, emphasizing economic feasibility, environmental impacts, and resource optimization for value-added product development.
Collapse
Affiliation(s)
- Kouadio Jean Eric-Parfait Kouamé
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ebenezer Ola Falade
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yanyun Zhu
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yunyun Zheng
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xingqian Ye
- Zhejiang University-Zhongyuan Institute, Zhengzhou 450001, Henan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
2
|
Marew L, Meheret F, Asmare B. Effect of Processed Coffee Husk on Feed Intake, Nutrient Digestibility, Body Weight Changes and Economic Feasibility of Bonga Sheep Fed on Natural Pasture Hay as a Basal Diet. Vet Med Sci 2024; 10:e70118. [PMID: 39529208 PMCID: PMC11554547 DOI: 10.1002/vms3.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ethiopia is one of the world's coffee producers, generating about 192,000 metric tonnes of coffee husks annually as by-products. The material can be used for ruminant diets to improve the nutrient utilisation of animals. However, coffee husk has toxic compounds, which can be minimised through different processing methods. Though the above techniques can minimise the toxicity level of coffee husk and increase the bioavailability of nutrients, there is scanty information on the comparative efficacy of these techniques, especially in ruminant nutrition. OBJECTIVE The study was conducted to examine the effect of processed coffee husk on feed intake, nutrient digestibility, body weight changes and profitability of Bonga rams based on natural pasture hay. METHODS In the experiment, 24 rams were used, and the rams were grouped into six blocks based on initial body weight (mean BW 21.5 ± 1.01 kg). The rams were quarantined for 21 days, and each ram was randomly assigned to one of the experimental feed treatments in a randomised complete block design (RCBD). The experimental treatment feeds include 400 g conventional concentrate mix (CM) containing Noug seed cake and wheat bran (T1); 200 g boiled coffee husk + 200 g CM (T2); 200 g roasted coffee husk + 200 g CM (T3) and 200 g raw coffee husk + 200 g CM (T4). The CM was made in the ratio of 1:1. The data collected from the 90-day experimental period were: dry matter and nutrient intakes, initial body weight, final body weight and body weight changes. After the growth experiment, a 7-day digestibility trial was followed by collecting faeces using a harness bag. The data were managed using Microsoft (MS) Excel 2010 and analysed using R software (v. 4.3.2). The chemical compositions of the CM had maximum crude protein (22%), followed by boiled coffee husk (14.74%), which was higher than natural pasture hay (6.91%) and raw coffee husk (12.4%). RESULTS The total dry matter intake (p < 0.05), metabolisable energy, and total nutrient intakes of rams were significantly (p < 0.001) maximised when rams fed on boiled coffee husk (T2) than raw (T4) and roasted (T4) coffee husk, except for NDF and organic matter intakes. The apparent digestibility of nutrients and feed conversion efficiency were maximised for rams assigned to T2. There was maximum daily body weight gain (p < 0.001) when rams were supplemented with boiled coffee husk (T2). Also, body weight changes of rams were significantly (p < 0.001) higher for rams supplementation with boiled coffee husk. CONCLUSION Therefore, the boiled coffee husk as an alternative feed resource can be replaced by about half of the commercial CM without adverse effects of anti-nutritional factors and enhance the income of smallholder farmers in the coffee crop-livestock production system.
Collapse
Affiliation(s)
- Lidya Marew
- Department of Animal Sciences, College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
| | - Fentahun Meheret
- Department of Animal Sciences, College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
| | - Bimrew Asmare
- Department of Animal Sciences, College of Agriculture and Environmental SciencesBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
3
|
Reichembach LH, Kaminski GK, Maurer JBB, de Oliveira Petkowicz CL. Fractionation and characterization of cell wall polysaccharides from coffee (Coffea arabica L.) pulp. Carbohydr Polym 2024; 327:121693. [PMID: 38171698 DOI: 10.1016/j.carbpol.2023.121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Cell wall polysaccharides were isolated by sequential extractions from coffee pulp, the main solid waste from coffee processing. Extractions were conducted with distilled water at room and boiling temperatures, 0.5 % ammonium oxalate and 0.05 M Na2CO3 to obtain pectic fractions. Hemicelluloses were extracted by using 2 M and 4 M NaOH. The composition of the hemicellulose fractions suggested the presence of xyloglucans, galactomannans and arabinogalactan-proteins (AGPs). The main part of the cell wall polysaccharides recovered from coffee pulp were pectins branched with arabinogalactans. Coffee pulp pectic fractions were low-methoxylated with various amounts of protein (0.5-8.4 %) and phenolics (0.7-8.5 %). Detection at 280 nm in the HPSEC analyses and radial gel diffusion assay using Yariv reagent indicated the presence of AGPs in most of these fractions. NMR analyses of chelating agent (CSP) and dialyzed water (WSPD) extracted pectins were carried out. The results demonstrated that CSP contains only AG I. On the other hand, AG I and AG II are present in WSPD, probably covalently linked to the pectic portion. Comparison with the literature indicated similarities between the cell wall polysaccharides from coffee pulp and green coffee beans.
Collapse
Affiliation(s)
- Luis Henrique Reichembach
- Department of Biochemistry and Molecular Biology, Federal University of Parana, PO Box 19046, 81531-980 Curitiba, Parana, Brazil
| | - Giulia Karolline Kaminski
- Department of Biochemistry and Molecular Biology, Federal University of Parana, PO Box 19046, 81531-980 Curitiba, Parana, Brazil
| | - Juliana Bello Baron Maurer
- Department of Biochemistry and Molecular Biology, Federal University of Parana, PO Box 19046, 81531-980 Curitiba, Parana, Brazil
| | | |
Collapse
|
4
|
Divyashri G, Tulsi NP, Murthy TPK, Shreyas S, Kavya R, Jaishree IK. Valorization of coffee bean processing waste for bioethanol production: comparison and evaluation of mass transfer effects in fermentations using free and encapsulated cells of Saccharomyces cerevisiae. Bioprocess Biosyst Eng 2024; 47:169-179. [PMID: 38195720 DOI: 10.1007/s00449-023-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Coffee husk, an agricultural waste abundant in carbohydrates and nutrients, is typically discarded through landfills, mixed with animal fodder, or incinerated. However, in alignment with sustainable development principles, researchers worldwide are exploring innovative methods to harness the value of coffee husk, transforming it into profitable products. One such avenue is the biotechnological approach to bioethanol production from agricultural wastes, offering an eco-friendly alternative to mitigate the adverse effects of fossil fuels. This study delves into the feasibility of utilizing coffee husk as a substrate for bioethanol production, employing and comparing various hydrolysis methods. The enzymatic hydrolysis method outshone thermochemical and thermal approaches, yielding 1.84 and 3.07 times more reducing sugars in the hydrolysate, respectively. In examining bioethanol production, a comparison between free and encapsulated cells in enzyme hydrolysate revealed that free-cell fermentation faced challenges due to cell viability issues. Under specific fermentation conditions, bioethanol yield (0.59 and 0.83 g of bioethanol/g of reducing sugar) and productivity (0.1 and 0.12 g/L h) were achieved for free and encapsulated cells, respectively. However, it was noted that bioethanol production by encapsulated cells was more significantly influenced by internal mass transfer effects, as indicated by the Thiele modulus and effectiveness factor. In conclusion, our findings underscore the potential of coffee husk as a valuable substrate for bioethanol production, showcasing its viability in contributing to sustainable and eco-friendly practices.
Collapse
Affiliation(s)
- G Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India.
| | - N P Tulsi
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - S Shreyas
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - R Kavya
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| | - I K Jaishree
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, 560 054, India
| |
Collapse
|
5
|
Oliveira AD, Moreira TFM, Paes Silva B, Oliveira G, Teixeira VMC, Watanabe LS, Lucy Nixdorf S, Eloísa Leal L, Pessoa LGA, Seixas FAV, Gonçalves OH, Paula Peron A, Sá-Nakanishi AB, Leimann FV, Bracht A, Bracht L, Comar JF. Characterization and bioactivities of coffee husks extract encapsulated with polyvinylpyrrolidone. Food Res Int 2024; 178:113878. [PMID: 38309896 DOI: 10.1016/j.foodres.2023.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 02/05/2024]
Abstract
Coffee processing generates large amounts of residues of which a portion still has bioactive properties due to their richness in phenolic compounds. This study aimed to obtain a coffee husks extract (CHE) and to encapsulate it (ECHE) with polyvinylpyrrolidone using a one-step procedure of solid dispersion. The extraction and encapsulation yields were 9.1% and 92%, respectively. Thermal analyses revealed that the encapsulation increased the thermal stability of CHE and dynamic light scattering analyses showed a bimodal distribution of size with 81% of the ECHE particles measuring approximately 711 nm. Trigonelline and caffeine were the main alkaloids and quercetin the main phenolic compound in CHE, and the encapsulation tripled quercetin extraction. The total phenolics content and the antioxidant activity of ECHE, assayed with three different procedures, were higher than those of CHE. The antioxidant activity and the bioaccessibility of the phenolic compounds of ECHE were also higher than those of CHE following simulated gastrointestinal digestion (SGID). Both CHE and ECHE were not toxic against Alliumcepa cells and showed similar capacities for inhibiting the pancreatic α-amylase in vitro. After SGID, however, ECHE became a 1.9-times stronger inhibitor of the α-amylase activity in vitro (IC50 = 8.5 mg/mL) when compared to CHE. Kinetic analysis revealed a non-competitive mechanism of inhibition and in silico docking simulation suggests that quercetin could be contributing significantly to the inhibitory action of both ECHE and CHE. In addition, ECHE (400 mg/kg) was able to delay by 50% the increases of blood glucose in vivo after oral administration of starch to rats. This finding shows that ECHE may be a candidate ingredient in dietary supplements used as an adjuvant for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Thaysa F M Moreira
- Post-Graduation Program of Food Technology, Federal University of Technology (UTFPR), Campo Mourão, PR, Brazil
| | | | - Grazielle Oliveira
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Lycio S Watanabe
- Department of Chemistry, State University of Londrina, PR, Brazil
| | | | | | | | | | - Odinei H Gonçalves
- Department of Textile Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Ana Paula Peron
- Department of Biodiversity and Nature Conservation, Federal University of Technology (UTFPR), Campo Mourão, PR, Brazil
| | | | - Fernanda V Leimann
- Post-Graduation Program of Food Technology, Federal University of Technology (UTFPR), Campo Mourão, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Lívia Bracht
- Department of Biochemistry, State University of Maringá, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringá, PR, Brazil.
| |
Collapse
|
6
|
Biesek J, Wlaźlak S, Banaszak M, Grabowicz M. Evaluation of coffee husks in pellet bedding, performance characteristics, footpad dermatitis scoring, and meat quality of broiler ducks. Vet Res Commun 2024; 48:165-177. [PMID: 37603202 PMCID: PMC10811163 DOI: 10.1007/s11259-023-10196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
The study aimed to analyze the chemical composition of pellet bedding made of straw or coffee husks (10, 25, 50%) and the performance characteristics of broiler ducks and footpad dermatitis. During rearing, the properties of the bedding and utility features of ducks were analyzed, and the frequency of footpad dermatitis (FPD) in ducks was verified. There was a decrease in dry matter from the 28th day of rearing. The crude fiber, NDF, ADF, and nitrogen content decreased compared to fresh bedding, while phosphorus and potassium increased. The highest pH was found in the CH25 and CH50 groups in fresh bedding on day 42 and in CH50 on day 14. High adj. R2 was found due to rearing time and bedding material (0.817-0.985). The ducks' growth rate in the CH25 group was higher at week 6 than in the other groups. In CH10 and CH25 groups, higher carcass weight was found than in group C. In group CH10, a higher weight of pectoral muscles and lower wing proportion was found than in C. In CH25, a higher remains weight was shown than in C and CH50. In CH50, lower water-holding capacity in the pectoral muscles was found than in the other groups. Considering the bedding (the content of nitrogen, phosphorus, and potassium), carcass features, and meat quality (water-holding capacity, intramuscular fat, and water content), it is possible to use 10, 25 or 50% of coffee husks in straw pellets in the rearing of broiler ducks. Due to the FPD, the moisture should be lowered.
Collapse
Affiliation(s)
- Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mirosław Banaszak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Małgorzata Grabowicz
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
7
|
Kamiloglu S, Koc Alibasoglu E, Acoglu Celik B, Celik MA, Bekar E, Unal TT, Kertis B, Akpinar Bayizit A, Yolci Omeroglu P, Copur OU. Bioaccessibility of Carotenoids and Polyphenols in Organic Butternut Squash ( Cucurbita moschata): Impact of Industrial Freezing Process. Foods 2024; 13:239. [PMID: 38254540 PMCID: PMC10814222 DOI: 10.3390/foods13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Butternut squash (Cucurbita moschata) is recognized as a functional food due to its abundant content of health-promoting compounds, including carotenoids and polyphenols. The aim of this study was to examine the impact of industrial freezing stages on the bioaccessibility of carotenoids and polyphenols in organic Butternut squash supplied for baby food. Identification and quantification of bioactive compounds were carried out using UPLC-ESI-MS/MS and HPLC-PDA, respectively. The results revealed that industrial freezing of squash did not cause a significant change in bioaccessibility of α- and β-carotene. On the other hand, frozen squash was found to contain higher levels of bioaccessible epicatechin (main flavonoid) (117.5 mg/kg) and syringic acid (main phenolic acid) (32.0 mg/kg) compared to fresh internal fruit. Moreover, the levels of bioaccessible epicatechin and syringic acid were found to be the highest in discarded pomace and seed sample (454.0 and 132.4 mg/kg, respectively). Overall, this study emphasized that industrial freezing could be an effective strategy for preserving carotenoid bioaccessibility in organic Butternut squash, while also enhancing the levels of bioaccessible polyphenols. In addition, we also demonstrated that pomace and seed, which are discarded as waste, have significant potential to be utilized as a food source rich in bioactive compounds.
Collapse
Affiliation(s)
- Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Elif Koc Alibasoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Busra Acoglu Celik
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - M. Alpgiray Celik
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye
| | - Erturk Bekar
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Taha Turgut Unal
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Buket Kertis
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
| | - Arzu Akpinar Bayizit
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - Perihan Yolci Omeroglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| | - O. Utku Copur
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Türkiye; (E.K.A.); (B.A.C.); (E.B.); (T.T.U.); (B.K.); (A.A.B.); (P.Y.O.); (O.U.C.)
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa 16059, Türkiye;
| |
Collapse
|
8
|
Jiamjariyatam R, Phucharoenrak P, Samosorn S, Dolsophon K, Lorliam W, Krajangsang S, Tantayotai P. Influence of Different Extraction Methods on the Changes in Bioactive Compound Composition and Antioxidant Properties of Solid-State Fermented Coffee Husk Extracts. ScientificWorldJournal 2023; 2023:6698056. [PMID: 37780638 PMCID: PMC10539082 DOI: 10.1155/2023/6698056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
In brewing coffee, a huge amount of food waste is generated; that waste, coffee husks in particular, should be comprehensively exploited. They offer a rich source of bioactive compounds such as caffeine, chlorogenic acid, and trigonelline. The aim of this study was to investigate the effects of extraction methods on the bioactive compounds and antioxidant activity of such waste. Coffee husks in this study were fermented with S. cerevisiae based on a solid-state fermentation technique. The study method included ethanolic or water extraction with varied controllable factors, i.e., temperature (60, 100°C) and extraction technique. Bioactive contents were investigated with the Folin-Ciocalteu assay and 1H-NMR spectroscopy. The antioxidant activity was investigated with DPPH and FRAP assays. Results show that yields were the highest in the extract of fermented coffee husks at 100°C. The highest levels of bioactive contents (total trigonelline content at 3.59% and antioxidant activity at 23.35% (DPPH) and 25.9% (FRAP)) were found in the ethanolic extract of fermented coffee husks at 60°C. The bioactive content and bioactivity, including antioxidant activity, depended on different raw materials, preparation methods, and extraction conditions. This study illustrates the potential for using food waste such as coffee husks as a sustainable source of bioactive compounds or bioactive extracts.
Collapse
Affiliation(s)
- Rossaporn Jiamjariyatam
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | | | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand
| |
Collapse
|
9
|
Divyashri G, Krishna Murthy TP, Ragavan KV, Sumukh GM, Sudha LS, Nishka S, Himanshi G, Misriya N, Sharada B, Anjanapura Venkataramanaiah R. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 2023; 9:e20212. [PMID: 37809968 PMCID: PMC10559994 DOI: 10.1016/j.heliyon.2023.e20212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The dry method of coffee processing generates a significant amount of coffee husk, an agricultural waste for which currently there is a lack of profitable use, and their disposal constitutes a major environmental problem. Pectin was extracted from coffee husk using citric acid solution (pH 1.5) by microwave-assisted extraction method, followed by using ice-cold ethanol. The coffee husk pectin (CHP) with a yield of 40.2% was characterized using SEM, FT-IR, and XRD techniques. The CHP exhibited significant in-vitro antioxidant activity as measured by using 2,2-diphenyl-1-picrylhydrazyl; (IC50 value of 395.1 ± 0.42 μg/mL), ferrous reducing antioxidant capacity (A700 nm = 0.55 ± 0.08), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (42.02 ± 0.38%) and ascorbic acid auto-oxidation inhibition (92.01 ± 0.28%) assays. CHP demonstrated antibacterial activity against Escherichia coli and Bacillus cereus with an inhibition diameter of 20 ± 1.01 mm and 18 ± 0.84 mm, respectively. Interestingly, CHP showed a significant anti-inflammatory effect by negatively modulating the expressions of TNF-α and TGF- β in LPS-stimulated macrophage cell lines. Collectively, our findings suggest that the coffee husk is a potential source of commercial pectin, microwave-assisted extraction has a great potency on the commercial pectin extraction from the coffee husk and CHP demonstrates significant biological activity.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | | | | | | | - Lingam Sadananda Sudha
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Srikanth Nishka
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Gupta Himanshi
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Nafisa Misriya
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Bannappa Sharada
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Raghu Anjanapura Venkataramanaiah
- Faculty of Allied health Sciences, BLDE (Deemed-to-be-university), Vijaypura, 586 103, India
- Department of Food Chemistry, Faculty of Engineering and Technology, Jain Deemed-to-be University, Bengaluru, 562 112, Karnataka, India
| |
Collapse
|
10
|
Behne S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023; 28:5540. [PMID: 37513412 PMCID: PMC10385244 DOI: 10.3390/molecules28145540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.
Collapse
Affiliation(s)
- Sascha Behne
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
- Fachbereich II (Fachgruppe Chemie), Berliner Hochschule für Technik (BHT), Luxemburger Strasse 10, 13353 Berlin, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
11
|
Rennert M, Hiller BT. Influence of Coffee Variety and Processing on the Properties of Parchments as Functional Bioadditives for Biobased Poly( butylene succinate) Composites. Polymers (Basel) 2023; 15:2985. [PMID: 37514375 PMCID: PMC10386071 DOI: 10.3390/polym15142985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Fermented polymers like biobased poly(butylene succinate) (BioPBS) have become more relevant as technical substitutes for ductile petrochemical-based polymers but require biogenic functional additives to deaccelerate undesired thermo-oxidative degradation and keep a fully biobased character. In this paper, the influence of coffee parchment (PMT) from two different varieties and processings on the thermo-oxidative stabilization and mechanical properties of poly(butylene succinate) composites up to 20 wt.-% PMT were investigated. Micronized with a TurboRotor mill, both PMT powders differ in particle size and shape, moisture ab- and adsorption behavior and antioxidative properties. It could be shown that pulped-natural PMT consists partially of coffee cherry residues, which leads to a higher total polyphenol content and water activity. The homogeneous PMT from fully washed processing has a higher thermal degradation resistance but consists of fibers with larger diameters. Compounded with the BioPBS and subsequent injection molded, the fully washed PMT leads to higher stiffness and equal tensile strength but lower toughness compared to the pulped-natural PMT, especially at lower deformation speed. Surprisingly, the fully washed PMT showed a higher stability against thermo-oxidative decomposition despite the lower values in the total phenol content and antioxidative activity. The required antioxidative stabilizers might be extracted at higher temperatures from the PMT fibers, making it a suitable biogenic stabilizer for extrusion processes.
Collapse
Affiliation(s)
- Mirko Rennert
- Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany
| | - Benedikt T Hiller
- Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany
| |
Collapse
|
12
|
Machado M, Espírito Santo L, Machado S, Lobo JC, Costa ASG, Oliveira MBPP, Ferreira H, Alves RC. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023; 12:2354. [PMID: 37372564 DOI: 10.3390/foods12122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Processing the coffee cherry into roasted beans generates a large amount of by-products, which can negatively impact the environment. The aim of this study was to analyze the bioactive potential and chemical composition of different coffee by-products (pulp, husk, parchment, silverskin, defective beans, and green coffee sieving residue) having in mind their bioactive potential for health and well-being. The coffee by-products showed a distinct nutritional composition. The content of ash, protein, fat, and total dietary fiber was significantly higher (p < 0.05) in coffee pulp (10.72% dw), silverskin (16.31% dw), defective beans (8.47% dw), and parchment (94.19% dw), respectively. Defective beans and the sieve residue exhibited a higher content of total phenolics (6.54 and 5.11 g chlorogenic acid eq./100 g dw, respectively) as well as higher DPPH• scavenging activity (3.11 and 2.85 g Trolox eq./100 g, respectively) and ferric-reducing antioxidant power (17.68 and 17.56 g ferrous sulfate eq./100 g dw, respectively). All the coffee by-products considered in this study are sources of caffeine and chlorogenic acids, in particular 5-caffeoylquinic acid (5.36-3787.58 mg/100 g dw, for parchment and defective beans, respectively). Thus, they can be recycled as functional ingredients for food, cosmetic and/or pharmaceutical industries, contributing to the social, economic, and environmental sustainability of the coffee industry.
Collapse
Affiliation(s)
- Marlene Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Liliana Espírito Santo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Susana Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana C Lobo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Anabela S G Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Beatriz P P Oliveira
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Helena Ferreira
- Network of Chemistry and Technology/Unit on Applied Molecular Biosciences (REQUIMTE/UCIBIO/i4HB), Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita C Alves
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Alterary S, Amina M, El-Tohamy M. Impact of silver-doped alumina nanocomposite on water decontamination by remodeling of biogenic waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27941-y. [PMID: 37249782 DOI: 10.1007/s11356-023-27941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The main cause of various fatal diseases in humans and animals is environmental pollution. Ag-doped alumina nanocomposite was prepared using coffee husk extract with a large BET surface area of 126.58 m2 g-1 and investigated for its antibacterial potential against both bacterial strains Escherichia coli and Salmonella typhimurium, and observed as an effective sorbent for removing the water pollution dye indigo carmine (IGC). The lowest concentration of the nanocomposite and the maximum contact time required to achieve complete inhibition of bacteria present in the contaminated water, as well as the capacity of sorption of IGC, were investigated. The results showed that the minimum inhibitory concentration of the Ag-doped alumina nanocomposite was 12 µg mL-1 for both bacterial strains, with the highest inhibition occurring in E. coli. Moreover, the nanocomposite exhibited an experimental qt of 462.7 mg g-1 from 160 mg L-1 IGC solution at 50 °C and followed the Langmuir model. The thermodynamic results showed that the process was endothermic, spontaneous, and physisorptive. The nanocomposite was used to fully treat water samples contaminated with 10 mg L-1 concentrations of IGC. For six consecutive cycles, the reuse research showed an average efficiency of 95.72 ± 3.6%. Consequently, the synthesized Ag-doped alumina nanocomposite is suitable for treatments of contaminated water.
Collapse
Affiliation(s)
- Seham Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
14
|
Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules 2023; 28:molecules28083460. [PMID: 37110693 PMCID: PMC10146819 DOI: 10.3390/molecules28083460] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Trigonelline is a bioactive pyridine alkaloid that occurs naturally in high concentrations in coffee (up to 7.2 g/kg) and coffee by-products (up to 62.6 g/kg) such as coffee leaves, flowers, cherry husks or pulp, parchment, silver skin, and spent grounds. In the past, coffee by-products were mostly considered waste and discarded. In recent years, however, the use of coffee by-products as food has attracted interest because of their economic and nutritional value and the environmental benefits of sustainable resource use. Their authorization as so-called novel foods in the European Union may lead to increased oral exposure of the general population to trigonelline. Therefore, the aim of this review was to assess the risk to human health of acute and chronic exposure to trigonelline from coffee and coffee by-products. An electronic literature search was performed. Current toxicological knowledge is limited, with few human data available and a lack of epidemiological and clinical studies. There was no evidence of adverse effects after acute exposure. No conclusion can be drawn on chronic exposure to isolated trigonelline due to the lack of data. However, trigonelline ingested as a component of coffee and coffee by-products appears to be safe for human health, based on the safe traditional use of these products.
Collapse
Affiliation(s)
- Nick Konstantinidis
- Postgraduate Study Program "Toxicology and Environmental Protection", Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study Program "Toxicology and Environmental Protection", Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
15
|
Batista MJ, Torres SS, Franca AS, Oliveira LS. Effect of Zinc Chloride Solution Assisted by Ultrasound on Polysaccharides of Spent Coffee Grounds. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
16
|
Structural Characteristics, Rheological Properties, and Antioxidant and Anti-Glycosylation Activities of Pectin Polysaccharides from Arabica Coffee Husks. Foods 2023; 12:foods12020423. [PMID: 36673516 PMCID: PMC9857985 DOI: 10.3390/foods12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As primary coffee by-products, Arabica coffee husks are largely discarded during coffee-drying, posing a serious environmental threat. However, coffee husks could be used as potential material for extracting pectin polysaccharides, with high bioactivities and excellent processing properties. Thus, the present study aimed to extract the pectin polysaccharide from Arabica coffee husk(s) (CHP). The CHP yield was calculated after vacuum freeze-drying, and its average molecular weight (Mw) was detected by gel permeation chromatography (GPC). The structural characteristics of CHP were determined by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Additionally, the rheological and antioxidant properties of CHP and the inhibition capacities of advanced glycation end products (AGEs) with different concentrations were evaluated. The interaction mechanisms between galacturonic acid (GalA) and the AGE receptor were analyzed using molecular docking. The results demonstrated that the CHP yield was 19.13 ± 0.85%, and its Mw was 1.04 × 106 Da. The results of the structural characteristics results revealed that CHP was an amorphous and low-methoxyl pectic polysaccharide linked with an α-(1→6) glycosidic bond, and mainly composed of rhamnose (Rha, 2.55%), galacturonic acid (GalA, 45.01%), β-N-acetyl glucosamine (GlcNAc, 5.17%), glucose (Glc, 32.29%), galactose (Gal, 6.80%), xylose (Xyl, 0.76%), and arabinose (Ara, 7.42%). The surface microstructure of CHP was rough with cracks, and its aqueous belonged to non-Newtonian fluid with a higher elastic modulus (G'). Furthermore, the results of the antioxidant properties indicated that CHP possessed vigorous antioxidant activities in a dose manner, and the inhibition capacities of AGEs reached their highest of 66.0 ± 0.35% at 1.5 mg/mL of CHP. The molecular docking prediction demonstrated that GalA had a good affinity toward AGE receptors by -6.20 kcal/mol of binding energy. Overall, the study results provide a theoretical basis for broadening the application of CHP in the food industry.
Collapse
|
17
|
Eckhardt S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules 2022; 27:8435. [PMID: 36500526 PMCID: PMC9740254 DOI: 10.3390/molecules27238435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee bean harvesting incurs various by-products known for their long traditional use. However, they often still end up being a waste instead of being used to their full potential. On the European market, coffee cherry (cascara) products are not yet common, and a novel food approval for beverages made from coffee cherry pulp was issued only recently. In this article, exposure and risk assessment of various products such as juice, jam, jelly, puree, and flour made from coffee cherry pulp and husk are reviewed. Since caffeine in particular, as a bioactive ingredient, is considered a limiting factor, safe intake will be derived for different age groups, showing that even adolescents could consume limited quantities without adverse health effects. Moreover, the composition can be influenced by harvesting methods and processing steps. Most interestingly, dried and powdered coffee cherry can substitute the flour in bakery products by up to 15% without losing baking properties and sensory qualities. In particular, this use as a partial flour substitute is a possible approach to counteract rising grain prices, transport costs, and disrupted supply chains, which are caused by the Russia-Ukraine war and changing climatic conditions. Thus, the supply of affordable staple foods could be partially ensured for the inhabitants of countries that depend on imported wheat and cultivate coffee locally by harvesting both beans and by-products.
Collapse
Affiliation(s)
- Sara Eckhardt
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
18
|
Franca AS, Oliveira LS. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022; 11:foods11142064. [PMID: 35885305 PMCID: PMC9316316 DOI: 10.3390/foods11142064] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.
Collapse
|
19
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Effects of drying processes on the quality of coffee pulp. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rossaporn Jiamjariyatam
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| |
Collapse
|
20
|
Preliminary Characterization of Phytochemicals and Polysaccharides in Diverse Coffee Cascara Samples: Identification, Quantification and Discovery of Novel Compounds. Foods 2022; 11:foods11121710. [PMID: 35741907 PMCID: PMC9222401 DOI: 10.3390/foods11121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coffee cascara is the first and most significant by-product of the coffee processing industry, whose valorization has become an urgent priority to reduce harmful environmental impacts. This work aimed to provide an improved understanding of phytochemicals and polysaccharides in coffee cascara in order to offer information for the better evaluation of potential applications. Phytochemicals in 20 different coffee cascara samples were ultrasonically extracted and analyzed by HPLC-UV and HPLC-MS/MS. Four novel compounds were isolated for the first time from coffee cascara, including two still unknown tautomers (337 Da), and two dihydroflavonol glycosides (dihydromyricetin glycoside and dihydromyricetin rhamnosylglycoside). Their presence can contribute to the design of new value-added applications of coffee cascara. Chemical characterization of two polysaccharides from two of the coffee cascara pulp samples showed that they were mainly composed of homogalacturonan, with rhamnose and arabinose as minor neutral sugars. In addition, principal component analysis results indicated that coffee cultivar and/or country significantly impacted the phytochemical composition of coffee cascara, although differences may be reduced by the external environment and processing method. It is suggested that processing method should be carefully designed when generating coffee cascara from the same cultivar and country/farm.
Collapse
|