1
|
Liu Z, Mou S, Li L, Chen Q, Yang R, Guo S, Jin Y, Liu L, Li T, Chen H, Wang X. The Barrier Disruption and Pyroptosis of Intestinal Epithelial Cells Caused by Perfringolysin O (PFO) from Clostridium perfringens. Cells 2024; 13:1140. [PMID: 38994991 PMCID: PMC11240805 DOI: 10.3390/cells13131140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Clostridium perfringens (C. perfringens), a Gram-positive bacterium, produces a variety of toxins and extracellular enzymes that can lead to disease in both humans and animals. Common symptoms include abdominal swelling, diarrhea, and intestinal inflammation. Severe cases can result in complications like intestinal hemorrhage, edema, and even death. The primary toxins contributing to morbidity in C. perfringens-infected intestines are CPA, CPB, CPB2, CPE, and PFO. Amongst these, CPB, CPB2, and CPE are implicated in apoptosis development, while CPA is associated with cell death, increased intracellular ROS levels, and the release of the inflammatory factor IL-18. However, the exact mechanism by which PFO toxins exert their effects in the infected gut is still unidentified. This study demonstrates that a C. perfringens PFO toxin infection disrupts the intestinal epithelial barrier function through in vitro and in vivo models. This study emphasizes the notable influence of PFO toxins on intestinal barrier integrity in the context of C. perfringens infections. It reveals that PFO toxins increase ROS production by causing mitochondrial damage, triggering pyroptosis in IPEC-J2 cells, and consequently resulting in compromised intestinal barrier function. These results offer a scientific foundation for developing preventive and therapeutic approaches against C. perfringens infections.
Collapse
Affiliation(s)
- Zhankui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shuang Mou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Liang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Qichao Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shibang Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Yancheng Jin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Lixinjie Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Tianzhi Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (S.M.); (L.L.); (Q.C.); (R.Y.); (S.G.); (Y.J.); (L.L.); (T.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People’s Republic of China (MOE), Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
2
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023; 64:12242-12271. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Fu G, Zhou Y, Song Y, Liu C, Hu M, Xie Q, Wang J, Zhang Y, Shi Y, Chen S, Hu J, Sun Y. The effect of combined dietary supplementation of herbal additives on carcass traits, meat quality, immunity and cecal microbiota composition in Hungarian white geese. PeerJ 2023; 11:e15316. [PMID: 37180579 PMCID: PMC10174065 DOI: 10.7717/peerj.15316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was performed to investigate the effects of dietary supplementation with herbal additives on meat quality, slaughter performance and the cecal microbial community in Hungarian white geese. A total of 60 newborn geese were assigned equally into the control group (CON) and the herbal complex supplemented group (HS). The dietary supplementations consisted of Compound Herbal Additive A (CHAA) including Pulsatilla, Gentian and Rhizoma coptidis, and Compound Herbal Additive B (CHAB) containing Codonopsis pilosula, Atractylodes, Poria cocos and Licorice. The geese in the HS group received a basal diet supplemented with 0.2% CHAA from day 0 to day 42 at the postnatal stage. Then from day 43 to day 70, the geese in HS group were provide a basal diet with 0.15% CHAB. The geese in the CON group were only provided with the basal diet. The results showed that the slaughter rate (SR), half chamber rates (HCR), eviscerated rate (ER) and breast muscle rate (BMR) in the HS group tended to increase slightly compared with the CON group (ns). In addition, the shear force, filtration rate and pH value of breast muscle and thigh muscle in the HS group were slightly enhanced compared to the CON group (ns). Significant increased levels in carbohydrate content, fat content and energy (P < 0.01) and significant decreased levels in cholesterol content (P < 0.01) were observed in the muscle of the HS group. The total amino acid (Glu, Lys, Thr and Asp) content in the muscle increased in HS group than in the CON group (P < 0.01). Dietary herb supplementations significantly increased the levels of IgG in serum (P < 0.05) on day 43 and higher levels of IgM, IgA and IgG (P < 0.01) were also observed in the HS group on day 70. Furthermore, 16S rRNA sequencing results indicated that herbal additives increased the growth of beneficial bacteria and inhibited the proliferation of harmful bacteria in the geese caecum. Altogether, these results offer crucial insights into the potential benefits of incorporating CHAA and CHAB into the diets of Hungarian white goose. The findings indicate that such supplementations could significantly improve meat quality, regulate the immune system and shape the intestinal microbiota composition.
Collapse
Affiliation(s)
- Guilin Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chang Liu
- Changchun Animal Husbandry Service, Changchun, China
| | - Manjie Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qiuyu Xie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxin Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yumeng Shi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuhao Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Boussamet L, Rajoka MSR, Berthelot L. Microbiota, IgA and Multiple Sclerosis. Microorganisms 2022; 10:microorganisms10030617. [PMID: 35336190 PMCID: PMC8954136 DOI: 10.3390/microorganisms10030617] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by immune cell infiltration in the central nervous system and destruction of myelin sheaths. Alterations of gut bacteria abundances are present in MS patients. In mouse models of neuroinflammation, depletion of microbiota results in amelioration of symptoms, and gavage with MS patient microbiota exacerbates the disease and inflammation via Th17 cells. On the other hand, depletion of B cells using anti-CD20 is an efficient therapy in MS, and growing evidence shows an important deleterious role of B cells in MS pathology. However, the failure of TACI-Ig treatment in MS highlighted the potential regulatory role of plasma cells. The mechanism was recently demonstrated involving IgA+ plasma cells, specific for gut microbiota and producing IL-10. IgA-coated bacteria in MS patient gut exhibit also modifications. We will focus our review on IgA interactions with gut microbiota and IgA+ B cells in MS. These recent data emphasize new pathways of neuroinflammation regulation in MS.
Collapse
Affiliation(s)
- Léo Boussamet
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Laureline Berthelot
- Centre for Research in Transplantation and Translation Immunology, Nantes Université, Inserm, CR2TI UMR, 1064 Nantes, France;
- Correspondence:
| |
Collapse
|