1
|
Liu Z, Chen H, Chen J, Liu Y, Liu C, Liao J, Zong M, Qi L, Lou W. Efficient extraction of Macadamia nut oil and Palmitoleic acid enrichment with freeze-dried microencapsulation application. Food Chem 2025; 483:144257. [PMID: 40222123 DOI: 10.1016/j.foodchem.2025.144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
The extraction process of macadamia nut oil (MNO) was optimized in this study, focusing on enhancing the enrichment and encapsulation efficiency of palmitoleic acid (PA). Three different methods for extracting MNO-ultrasound-assisted hydrolase extraction, organic solvent extraction, and physical cold pressing-were compared, and the properties of MNO were analyzed. A combination of low-temperature solvent crystallization and molecular distillation was used to separate and purify PA. Sodium caseinate and d-lactose were used as wall materials to prepare PA microcapsules via freeze-drying, and the key factors influencing their performance were investigated. Under optimal conditions, the MNO extraction yield was 80.10 ± 2.45 %, with a PA content of 40.54 ± 2.55 % and a PAM encapsulation efficiency of 80.21 ± 3.22 %. This study provides novel technical approaches and theoretical foundations for the industrial extraction of MNO, enrichment of PA, and their microencapsulation, paving the way for potential large-scale production and industrial applications.
Collapse
Affiliation(s)
- Zhiqing Liu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Hansen Chen
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Juntai Chen
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Yuxing Liu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Chenyu Liu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Jiacheng Liao
- Guangdong Aosheng Agricultural Technology Development Co., LTD, 19th Team, Huangtang Overseas Chinese Office, Gangmei Tow, Yangchun 529636, Guangdong, China
| | - Minhua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Aosheng Agricultural Technology Development Co., LTD, 19th Team, Huangtang Overseas Chinese Office, Gangmei Tow, Yangchun 529636, Guangdong, China
| | - Liang Qi
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Aosheng Agricultural Technology Development Co., LTD, 19th Team, Huangtang Overseas Chinese Office, Gangmei Tow, Yangchun 529636, Guangdong, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Aosheng Agricultural Technology Development Co., LTD, 19th Team, Huangtang Overseas Chinese Office, Gangmei Tow, Yangchun 529636, Guangdong, China.
| |
Collapse
|
2
|
Dai C, Li W, Zhang C, Shen X, Wan Z, Deng X, Liu F. Microencapsule delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:199-255. [PMID: 39218503 DOI: 10.1016/bs.afnr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microencapsulation, a typical core-shell structure technology, encapsulates functional active ingredients for protection, controlled release, and targeted delivery. In precise nutrition, the focus is on utilizing microcapsule delivery systems for personalized dietary supplements and disease intervention. This chapter outlines the morphological structure of microcapsules, common wall materials, and preparation techniques. It discusses the characteristics of different hydrophilic and lipophilic functional factors and their function as dietary supplements. The role of microencapsulation on the controlled release, odor masking, and enhanced bioavailability of functional factors is explored. Additionally, the application of microcapsule delivery systems in nutritional interventions for diseases like inflammatory bowel disease, alcoholic/fatty liver disease, diabetes, and cancer is introduced in detail. Lastly, the chapter proposes the future developments of anticipation in responsive wall materials for precise nutrition interventions, including both challenges and opportunities.
Collapse
Affiliation(s)
- Chenlin Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wenhan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xuelian Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ziyan Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
3
|
Zhang H, Dong L, Guo T, Zhang G, Ye X, He X, Gao Q, Bello MG, Peng C, Wu L, Zhang J. Lutein Loaded in β-Cyclodextrin Metal-Organic Frameworks for Stability and Solubility Enhancements. AAPS PharmSciTech 2024; 25:135. [PMID: 38862657 DOI: 10.1208/s12249-024-02853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Lutein (Lut) is a recognized nutritional supplement known for its antioxidative and anti-inflammatory properties, crucial in mitigating ocular disease. However, enhancements to Lut stability and solubility remain challenges to be addressed in the healthcare industry. Herein, we fabricated and evaluated a food-grade highly porous β-cyclodextrin metal-organic framework (β-CD-MOF) for its ability to encapsulate Lut. Lut stability considerably improved when loaded into β-CD-MOF to form a Lut@β-CD-MOF complex, which exhibited better stability than Lut loaded into the γ-cyclodextrin metal-organic framework (Lut@γ-CD-MOF), Lut@β-CD, and commercial product (Blackmores™) at 40°C, 60°C, and 70°C, respectively. The solubility of Lut@β-CD-MOF in water increased by 26.8-fold compared to raw Lut at 37°C. Lut@β-CD-MOF exhibited greater hydrophilicity, as determined by measuring the water contact angle. Molecular docking and other characterizations of Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that Lut was successfully encapsulated in the chamber formed by the three cyclodextrins in β-CD-MOF. Thermogravimetric analysis and Raman spectroscopy demonstrated that Lut distributed in the β-CD-MOF cavity deeply improved Lut stability and solubility. In conclusion, our findings underscored the function of β-CD-MOF in enhancing Lut stability and solubility for formulation applications.
Collapse
Affiliation(s)
- Hui Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Liyun Dong
- Anhui University of Chinese Medicine, Hefei, 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Xinyue Ye
- Anhui University of Chinese Medicine, Hefei, 230012, China
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China
| | - Xiaojian He
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
| | - Qingfang Gao
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China
| | - Mubarak G Bello
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Can Peng
- Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Li Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China.
| | - Jiwen Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, China.
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201210, China.
- Yangtze Delta Drug Advanced Research Institute, Nantong, 226000, China.
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226000, China.
| |
Collapse
|
4
|
Liu K, Zhang X, Liu R, Su W, Song Y, Tan M. Preparation of Lutein Nanoparticles by Glycosylation of Saccharides and Casein for Protecting Retinal Pigment Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6347-6359. [PMID: 38408187 DOI: 10.1021/acs.jafc.3c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Age-related macular degeneration (AMD), a leading cause of visual impairment in the aging population, lacks effective treatment options due to a limited understanding of its pathogenesis. Lutein, with its strong antioxidant properties and ability to mitigate AMD by absorbing ultraviolet (UV) rays, faces challenges related to its stability and bioavailability in functional foods. In this study, we aimed to develop delivery systems using protein-saccharide conjugates to enhance lutein delivery and protect adult retinal pigment epithelial (ARPE-19) cells against sodium iodate (NaIO3)-induced damage. Various saccharides, including mannose, galactose, lactose, maltose, dextran, and maltodextrin, were conjugated to casein via the Maillard reaction for lutein delivery. The resulting lutein-loaded nanoparticles exhibited small size and spherical characteristics and demonstrated improved thermal stability and antioxidant capacity compared to free lutein. Notably, these nanoparticles were found to be nontoxic, as evidenced by reduced levels of cellular reactive oxygen species production (167.50 ± 3.81, 119.57 ± 3.45, 195.15 ± 1.41, 183.96 ± 3.11, 254.21 ± 3.97, 283.56 ± 7.27%) and inhibition of the mitochondrial membrane potential decrease (58.60 ± 0.29, 65.05 ± 2.91, 38.88 ± 1.81, 42.95 ± 1.39, 23.52 ± 1.04, 25.24 ± 0.08%) caused by NaIO3, providing protection against cellular damage and death. Collectively, our findings suggest that lutein-loaded nanoparticles synthesized via the Maillard reaction hold promise for enhanced solubility, oral bioavailability, and biological efficacy in the treatment of AMD.
Collapse
Affiliation(s)
- Kangjing Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiumin Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ronggang Liu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yukun Song
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Su F, Wu Y, Cao Y, Wang S. Differences in the Chromogenic Effect of Corn Starch and Potato Starch on Paprika Red Pigment and Structural Characterisation. Foods 2024; 13:191. [PMID: 38254492 PMCID: PMC10814249 DOI: 10.3390/foods13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
The present study aims to investigate the chromogenic effect and the interaction between starch-pigment complexes of corn starch (CS) and potato starch (PS) complexed with paprika red pigment. Compared to PS, CS showed 12.5 times higher adsorption capacity for paprika red pigment. Additionally, the a* value of CS-P (26.90 ± 0.23) was significantly higher than that of PS-P (22.45 ± 1.84), resulting in a corn starch-paprika red pigment complex (CS-P) with a more intense red colour. The addition of paprika red pigment significantly decreased the particle size and porosity of CS by 48.14 ± 5.29% and 17.01 ± 3.80%, respectively. Conversely, no significant impact on PS was observed. Additionally, the Fourier transform infrared (FT-IR) spectroscopy results revealed that the starch molecules and paprika red pigment were bound to each other through strong hydrogen bonds. X-diffraction (XRD) results indicated that the starch-paprika red pigment complexes have a V-shaped structure. Furthermore, the relative crystallinity of the complexes between starch and red pepper pigment showed an increasing trend, however, the relative crystallinity of CS increased significantly by 11.77 ± 0.99-49.21 ± 3.67%. Consequently, the CS-P colouring was good.
Collapse
Affiliation(s)
| | | | | | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China; (F.S.); (Y.W.); (Y.C.)
| |
Collapse
|
6
|
Zarif B, Shabbir S, Shahid R, Noor T, Imran M. Proteosomes based on milk phospholipids and proteins to enhance the stability and bioaccessibility of β-carotene. Food Chem 2023; 429:136841. [PMID: 37459709 DOI: 10.1016/j.foodchem.2023.136841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Proteosomes (P) based on milk fat globule membrane's phospholipids (MPs), whey protein isolate (WPI) and sodium caseinate (CasNa) were developed by ultrasonication to encapsulate β-carotene. Entirely milk-ingredients based proteosomes (WPI-MPs-P and CasNa-MPs-P) revealed homogenous distribution with size diameters < 250 nm. WPI-MPs-P depicted positive ζ-potential values (+15.7 ± 0.5 mV), while CasNa-MPs-P demonstrated negative (-32.5 ± 3.4 mV) values of surface charge, respectively and hydrophilic nature of proteosomes was observed by measuring contact-angle (θ). AFM and SEM exhibited spherical to oval and slightly irregular morphology of nanocarriers. For various concentrations of β-carotene, the highest encapsulation efficiency of β-carotene was 90 ± 0.2% and 92 ± 0.8% in WPI-MPs-P and CasNa-MPs-P respectively. FTIR analyses confirmed the hydrophobic and electrostatic interactions-based encapsulation of β-carotene. Beneficial antioxidant-potential of β-carotene was retained after its encapsulation in the proteosomes. Proteosomes increased the digestive-stability (>50%) and bioaccessibility (>85%) of β-carotene. Thus, milk-ingredients based proteosomes offer a novel-strategy to develop functional dairy products to overcome widespread vitamin-A-deficiency.
Collapse
Affiliation(s)
- Bina Zarif
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
7
|
Zhao W, Zhang B, Liang W, Liu X, Zheng J, Ge X, Shen H, Lu Y, Zhang X, Sun Z, Ospankulova G, Li W. Lutein encapsulated in whey protein and citric acid potato starch ester: Construction and characterization of microcapsules. Int J Biol Macromol 2022; 220:1-12. [PMID: 35970362 DOI: 10.1016/j.ijbiomac.2022.08.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
The poor water solubility and stability of lutein limit its application in industry. Microencapsulation technology is an excellent strategy to solve these problems. This study used citric acid esterified potato starch and whey protein as an emulsifier to prepare oil-in-water lutein emulsion, and microcapsules were constructed by spray drying technology. The effects of different component proportions on microcapsules' microstructure, physical and chemical properties, and storage stability were analyzed. Citrate esterified potato starch had good emulsifying properties, and when compounded with whey protein, the encapsulation efficiency (EE) of microcapsules increased, and the embedding effect of lutein improved. After microencapsulation, the solubility of lutein increased significantly, reaching over 49.71 %, and gradually raised with more whey protein content. Furthermore, the high proportion of whey protein helped improve microcapsules' EE and thermal properties, with the maximum EE reaching 89.36 %. The glass transition temperatures of microcapsules were all higher than room temperature, which indicated that they keep a stable state under general storage conditions. The experimental results of this study may provide a reference for applying lutein in food and other fields.
Collapse
Affiliation(s)
- Wenqing Zhao
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Bo Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jiayu Zheng
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yifan Lu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuyun Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Zhuangzhuang Sun
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Gulnazym Ospankulova
- Kazakh Agrotechnical University, Zhenis avenue, 62, Nur-Sultan 010011, Kazakhstan
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
8
|
Zheng C, Liu F, Xu K, Wu Y, Wang J. Preparation of ethyl cellulose–glycerol tribenzoate microcapsules in CO
2
/N
2
‐switchable hydrophilicity solvent and solvent recycling. J Appl Polym Sci 2022. [DOI: 10.1002/app.52788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cunchuan Zheng
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Fuchuan Liu
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Ke Xu
- PetroChina Research Institute of Petroleum Exploration & Development Beijing People's Republic of China
| | - Yang Wu
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| | - Jinyu Wang
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu People's Republic of China
| |
Collapse
|
9
|
Ding Z, Wang X, Wang L, Zhao Y, Liu M, Liu W, Han J, Prakash S, Wang Z. Characterisation of spray dried microencapsules with amorphous lutein nanoparticles: Enhancement of processability, dissolution rate, and storage stability. Food Chem 2022; 383:132200. [DOI: 10.1016/j.foodchem.2022.132200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
10
|
Nawaz MA, Buckow R, Jegasothy H, Stockmann R. Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|