1
|
Lu J, Wang H, Zhang Y, Wang H, Deng L, Chen L, Cao J, Wang B, Jiang W. Caffeic acid enhances the postharvest quality by maintaining the nutritional features and improving the aroma volatiles for nectarine fruit. Food Chem 2025; 464:141633. [PMID: 39454437 DOI: 10.1016/j.foodchem.2024.141633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Maintaining the quality of postharvest nectarine fruit is considerably challenging owing to their vigorous metabolism processes. This study explored the effectiveness of the natural preservative caffeic acid in extending the shelf-life and improving the flavor quality of nectarine. The decay rate of caffeic acid-treated fruit was only 40.00 % but 73.33 % in control group at the end of storage. Other results showed that caffeic acid inhibited fruit quality deterioration, reflected in weight loss, peel color, pulp softening, respiration rate, malondialdehyde accumulation and ethylene biosynthesis. Findings might be attributed to increased levels of antioxidant compounds, such as ascorbic acid, simple phenols and flavonoids, which maintained high antioxidant capacity and metal reducing power of fruit cells. Notably, the content of phenolics was maintained at 241.11 mg kg-1 in caffeic acid-treated fruit by 8 d, which was only 138.21 mg kg-1 in control. Importantly, nectarine treated with caffeic acid possessed a suitable sugar-to-acid ratio, imparting the fruit with an excellent taste. Additionally, caffeic acid facilitated the effective release of esters and lactones, especially γ- and δ-decalactone with fruity aroma, and prevented green aroma and alcoholic off-flavor. The level of lactones in caffeic acid-treated fruit reached 126.76 μg kg-1 during mid-storage, giving the fruit an attractive flavor quality, while was only 50.61 μg kg-1 in control. Overall, caffeic acid exhibited the potential to preserve the quality of nectarine, ensuring both nutritional and edible value for fruit.
Collapse
Affiliation(s)
- Jingxuan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Hongxuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Lizhi Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Luyao Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Baogang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Yang K, Han TH, Liu YJ, Zhang JN, Zhou P, Yu XP. Application progress of ultrasound in the production and processing of traditional Chinese herbal medicines. ULTRASONICS SONOCHEMISTRY 2024; 111:107158. [PMID: 39556924 PMCID: PMC11615584 DOI: 10.1016/j.ultsonch.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The quality of Chinese herbal medicines is the key to the quality of traditional Chinese medicine. The processing of Chinese herbal medicines is an important part of the production and quality formation of medicinal materials. Traditional processing methods have low productivity and cannot guarantee the quality of Chinese herbal medicines. Among various non-thermal processing methods, ultrasonic technology has been proved to be a very valuable green processing technology. This paper will discuss the application of ultrasonic technology in the production and processing of Chinese herbal medicines in recent years, including the extraction, cleaning, drying and sterilization of effective components of Chinese herbal medicines. This review summarizes its principle, characteristics and application progress in recent years, and discusses its existing problems. The effects of ultrasound on the chemical structure and biological activity of bioactive compounds extracted from Chinese herbal medicines are mainly introduced. In addition, this paper discusses the effects of different ultrasonic conditions such as frequency, power, time and temperature on the chemical properties and processing of Chinese herbal medicines. In general, the use of ultrasound in the production and processing of Chinese herbal medicines has great application potential.
Collapse
Affiliation(s)
- Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Tao-Hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-Jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-Ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China.
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Wu X, Li W, Li S, Zhu S, Pan F, Gu Q, Song D. Hypolipidemic effect of polysaccharide from Sargassum fusiforme and its ultrasonic degraded polysaccharide on zebrafish fed high-fat diet. Int J Biol Macromol 2024; 276:133771. [PMID: 38992531 DOI: 10.1016/j.ijbiomac.2024.133771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Sargassum fusiforme is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries. The polysaccharides derived from Sargassum fusiforme (SFPS) have received much interest due to their various bioactivities, such as hypolipidemic, hypoglycemic, and antioxidant activities. In this study, we extracted and purified SFPS, and obtained the ultrasonic degradation product (SFPSUD). The lipid regulatory effects of SFPS and SFPSUD were investigated in a zebrafish model fed a high-fat diet. The results showed that SFPS significantly decreased the levels of total cholesterol (TC) and triglycerides (TG), and increased the activities of lipoprotein lipase (LPL) and hepatic lipase (HL). SFPSUD was more effective than the SFPS in reducing the TC and TG levels in zebrafish, as well as increasing the LPL and HL activities. Histopathological observations of zebrafish livers showed that SFPSUD significantly improved lipid metabolism disorder in the hepatocytes. The possible lipid-lowering mechanism in zebrafish associated with SFPS and SFPSUD may involve acceleration of the lipid metabolism rate by increasing the activities of LPL and HL. Thus, SFPSUD could be tested as a highly effective hypolipidemic drug. Our results suggest that SFPS and SFPSUD have potential uses as functional foods for the prevention and treatment of hyperlipidemia. Ultrasound can be effectively applied to degrade SFPS to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Xuhan Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Wenqing Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Shengjie Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Sunting Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Feng Pan
- Wenzhou Xingbei Seaweed Food Co., Ltd., China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China
| | - Dafeng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China.
| |
Collapse
|
4
|
Wang Y, Chen G, Wang D, Zhang J, You C, Wang X, Liu H. Post-Harvest Application of Nanoparticles of Titanium Dioxide (NPs-TiO 2) and Ethylene to Improve the Coloration of Detached Apple Fruit. Foods 2023; 12:3137. [PMID: 37628136 PMCID: PMC10453011 DOI: 10.3390/foods12163137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we analyzed the effects of treatments with titanium dioxide nanoparticles (NPs-TiO2) and ethylene on anthocyanin biosynthesis and reactive oxygen species (ROS) metabolism during light exposure in ripe 'red delicious' apples. Both treatments led to improved anthocyanins biosynthesis in detached mature apples, while the NPs-TiO2 had less impact on the fruit firmness, TSS, TA, and TSS/TA ratio. Furthermore, the effects of both treatments on the expression of anthocyanin-related enzymes and transcription factors in the apple peel were evaluated at the gene level. The differentially expressed genes induced by the two treatments were highly enriched in the photosynthesis and flavonoid biosynthesis pathways. The expression of structural genes involved in anthocyanin biosynthesis and ethylene biosynthesis was more significantly upregulated in the ethylene treatment group than in the NPs-TiO2 treatment group, and the opposite pattern was observed for the expression of genes encoding transcription factors involved in plant photomorphogenesis pathways. In addition, the ROS levels and antioxidant capacity were higher and the membrane lipid peroxidation level was lower in fruit in the NPs-TiO2 treatment group than in the ethylene treatment group. The results of this study reveal differences in the coloration mechanisms induced by NPs-TiO2 and ethylene in apples, providing new insights into improving the color and quality of fruits.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China;
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Guolin Chen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Jing Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Xiaofei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China (D.W.); (J.Z.); (C.Y.); (X.W.)
| | - Huaifeng Liu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China;
| |
Collapse
|
5
|
Li B, Shen X, Shen H, Zhou Y, Yao X. Effect of optimized germination technology on polyphenol content and hypoglycemic activity of mung bean. Front Nutr 2023; 10:1138739. [PMID: 37077902 PMCID: PMC10106577 DOI: 10.3389/fnut.2023.1138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
The study aimed to investigate the effect of germination conditions on the content of polyphenol extract in mung bean and to further investigate the effect of polyphenol extract in germinated mung bean on diabetic mice. Through single factor experiment and response surface experiment, the effects of soaking temperature, soaking time, germination temperature, germination time and soaking liquid CaCl2 concentration on the polyphenol content of mung bean were analyzed. The optimal germination conditions of mung bean were determined as soaking temperature 25°C, soaking time 11 h, germination temperature 28°C, germination time 3 days and CaCl2 concentration 2 mM. Under these conditions, the content of polyphenol extract in germinated mung bean was 4.878 ± 0.30 mg/g, which was 3.07 times higher than that in ungerminated mung bean. The structure and content of purified polyphenols in germinated mung bean were determined by HPLC-MS/MS. Quinic acid, Quercetin, Rutin, Vitexin, Isovitexin and other substances were identified, and the content of polyphenols was 65.19%. In addition, through the in vivo and in vitro hypoglycemic activity experimental study of germinated mung bean polyphenols extract, the results showed that germinated mung bean polyphenols had an in vitro inhibitory effect on α-glucosidase, IC50 was 44.45 mg/ml. In vitro inhibitory activity was stronger after digestion. Polyphenol extract can significantly reduce blood sugar and improve insulin resistance in Type 2 diabetic mice (T2DM). According to the results, germination treatment is an effective way to increase the content of polyphenols in mung bean, and the polyphenols extract has hypoglycemic activity.
Collapse
Affiliation(s)
- Bo Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Ye Zhou
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
- *Correspondence: Xinmiao Yao,
| |
Collapse
|
6
|
Sukhikh S, Babich O, Prosekov A, Kalashnikova O, Noskova S, Bakhtiyarova A, Krol O, Tsvetkova E, Ivanova S. Antidiabetic Properties of Plant Secondary Metabolites. Metabolites 2023; 13:metabo13040513. [PMID: 37110171 PMCID: PMC10144365 DOI: 10.3390/metabo13040513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The prevalence of diabetes mellitus is one of the major medical problems that the modern world is currently facing. Type 1 and Type 2 diabetes mellitus both result in early disability and death, as well as serious social and financial problems. In some cases, synthetic drugs can be quite effective in the treatment of diabetes, though they have side effects. Plant-derived pharmacological substances are of particular interest. This review aims to study the antidiabetic properties of secondary plant metabolites. Existing review and research articles on the investigation of the antidiabetic properties of secondary plant metabolites, the methods of their isolation, and their use in diabetes mellitus, as well as separate articles that confirm the relevance of the topic and expand the understanding of the properties and mechanisms of action of plant metabolites, were analyzed for this review. The structure and properties of plants used for the treatment of diabetes mellitus, including plant antioxidants, polysaccharides, alkaloids, and insulin-like plant substances, as well as their antidiabetic properties and mechanisms for lowering blood sugar, are presented. The main advantages and disadvantages of using phytocomponents to treat diabetes are outlined. The types of complications of diabetes mellitus and the effects of medicinal plants and their phytocomponents on them are described. The effects of phytopreparations used to treat diabetes mellitus on the human gut microbiota are discussed. Plants with a general tonic effect, plants containing insulin-like substances, plants-purifiers, and plants rich in vitamins, organic acids, etc. have been shown to play an important role in the treatment of type 2 diabetes mellitus and the prevention of its complications.
Collapse
Affiliation(s)
- Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Olga Kalashnikova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Alina Bakhtiyarova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Olesia Krol
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia
| | - Elena Tsvetkova
- Department of Biochemistry, St. Petersburg State University, 199034 Saint-Petersburg, Russia
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint-Petersburg, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| |
Collapse
|
7
|
Hu DB, Xue R, Zhuang XC, Zhang XS, Shi SL. Ultrasound-assisted extraction optimization of polyphenols from Boletus bicolor and evaluation of its antioxidant activity. Front Nutr 2023; 10:1135712. [PMID: 37063317 PMCID: PMC10090463 DOI: 10.3389/fnut.2023.1135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionBoletus bicolor (B. bicolor) mushrooms are widely consumed as a valuable medicinal and dietary ingredient in China, but the active ingredients of this mushroom and their extraction methods were not extensively studied.MethodsIn this paper, we propose an optimized ultrasound-assisted extraction (UAE) method to detect natural antioxidant substances in B. bicolor. The antioxidants were quantitatively and quantitatively determined using UPLC-MS, the polyphenols were evaluated based on response surface methodology (RSM), and density functional theory (DFT) calculations were performed.ResultsThe results showed that the optimal extraction was obtained under the following conditions: ethanol concentration 42%; solvent to solid ratio 34:1 mL/g; ultrasonic time 41 min; and temperature 40°C. The optimized experimental polyphenol value obtained under these conditions was (13.69 ± 0.13) mg/g, consistent with the predicted value of 13.72 mg/g. Eight phenolic compounds in the extract were identiffed by UPLC-MS: syringic acid, chlorogenic acid, gallic acid, rosmarinic acid, protocatechuic acid, catechin, caffeic acid, and quercetin. Chlorogenic acid exhibits the highest HOMO energy (−0.02744 eV) and the lowest energy difference (−0.23450 eV) among the studied compounds, suggesting that the compound might be the strongest antioxidant molecule. Eight phenolic compounds from the B. bicolor signiffcantly inhibited intracellular reactive oxygen species (ROS) generation, reduced oxidative stress damage in H2O2-induced HepG-2 cells.DiscussionTherefore, it was confirmed that the UAE technique is an efficient, rapid, and simple approach for extracting polyphenols with antioxidant activity from B. bicolor.
Collapse
|
8
|
Song Y, Zhou L, Zhang D, Wei Y, Jiang S, Chen Y, Ye J, Shao X. Stability and release of peach polyphenols encapsulated by Pickering high internal phase emulsions in vitro and in vivo. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Thinned peach polyphenols alleviate obesity in high fat mice by affecting gut microbiota. Food Res Int 2022; 157:111255. [DOI: 10.1016/j.foodres.2022.111255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023]
|
10
|
Green Extraction Technology of Polyphenols from Food By-Products. Foods 2022; 11:foods11081109. [PMID: 35454696 PMCID: PMC9026858 DOI: 10.3390/foods11081109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development of environmentally friendly approaches to produce high-added value compounds is a field of research that has attracted the interest of the scientific community and several industries such as the food and cosmetic industry [...]
Collapse
|
11
|
Polyphenol from Rosaroxburghii Tratt Fruit Ameliorates the Symptoms of Diabetes by Activating the P13K/AKT Insulin Pathway in db/db Mice. Foods 2022; 11:foods11050636. [PMID: 35267269 PMCID: PMC8909201 DOI: 10.3390/foods11050636] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023] Open
Abstract
About 4% of the world’s population has type 2 diabetes mellitus (T2DM), and the available hypoglycemic drugs for treating diabetes have some side effects. Therefore, research on the extraction of hypoglycemic components from plants has gradually become popular. This study aimed to investigate the hypoglycemic effects of polyphenol-rich Rosa roxburghii Tratt extract (RP) isolated from Rosa roxburghii Tratt fruit and of four constituents (IRP 1–4 ) isolated from RP on db/db mice. The results indicated that the oral administration of RP and IRP 1–4 could markedly decrease the food intake, water intake, fasting blood glucose (FBG), and serum insulin levels in the db/db mice. Glucose intolerance, insulin resistance, and oxidative stress were ameliorated in the RP and IRP 1–4 groups. Histopathological observation revealed that RP and IRP 1–4 could effectively protect the liver fat against damage and dysfunction. RP and IRP 1–4 also increased the hepatic and muscle glycogen contents by increasing the phosphorylation and reducing the expression of glycogen synthase kinase 3β (GSK3β). The activities of glucokinase (GCK), phosphoenolpyruvate carboxylase (PEPCK), and glucose-6-phosphatase (G6PC) and their respective mRNA expression levels in the liver of db/db mice were simultaneously increased and decreased in the intervention groups. RP and IRP 1–4 significantly increased the expression of phosphatidylinositol 3-kinase (P13K) and the phosphorylation of protein kinase B (AKT). These results indicate that RP and IRP 1–4 exhibit good hypoglycemic effects by activating the P13K/AKT signaling pathway and regulating the expression of FOXO1 and p-GSK3β proteins, controlling hepatic gluconeogenesis and improving hepatic glycogen storage insulin resistance. Therefore, RP and IRP 1–4 could be utilized as the hypoglycemic functional component to alleviate the symptoms of T2DM.
Collapse
|