1
|
Ilgaz C, Casula L, Sarais G, Schlich M, Dessì D, Cardia MC, Sinico C, Kadiroglu P, Lai F. Proniosomal encapsulation of olive leaf extract for improved delivery of oleuropein: Towards the valorization of an agro-industrial byproduct. Food Chem 2025; 479:143877. [PMID: 40106918 DOI: 10.1016/j.foodchem.2025.143877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Olive leaf, a by-product of the olive oil industry, is rich in bioactive compounds, including the antioxidant and anti-inflammatory oleuropein. Olive leaf extracts have been explored for nutraceutical applications, but oleuropein's low bioavailability and stability limit its use in food and supplements. This work aimed to mitigate these issues by nano-encapsulating the olive leaf extract in proniosomes-free-flowing powders that form niosomes upon hydration. These niosomes can then be further processed into dosage forms or incorporated into functional foods. Proniosomes based on lactose or mannitol were developed and characterized. Hydration of the proniosomes yielded niosomes with high oleuropein loading and antioxidant activity. These niosomes controlled oleuropein release in simulated gastric and intestinal fluids, protecting it from degradation. Furthermore, niosomal encapsulation enhanced protection against oxidative stress in intestinal cells compared to the unformulated extract, suggesting improved intracellular delivery and making this formulation a suitable candidate as a functional food ingredient.
Collapse
Affiliation(s)
- Ceren Ilgaz
- Food Engineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Pınar Kadiroglu
- Food Engineering Department, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Deng Y, Zhou J, Qu J, Wang B, Xu X, Zhao C. Deep Eutectic Solvents and Wall-Breaking Technique: A New Frontier in the Extraction of Oleuropein and Flavonoids from Olive Leaves with Superior Antioxidant and Antitumor Potential. Molecules 2025; 30:1150. [PMID: 40076373 PMCID: PMC11902047 DOI: 10.3390/molecules30051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The main objectives of this study were to develop an optimized green extraction process to obtain high contents of oleuropein and flavonoids from olive leaves. A deep eutectic solvent (DES) combined with wall-breaking extraction (WBE) was employed. A DES composed of choline chloride and ethylene glycol in a 1:2 molar ratio with 30% moisture content outperformed lactic acid and methanol as extraction solvents. The optimal conditions, determined by response surface methodology, were 30% moisture content, 140 s of wall-breaking time, and a 230 mL/g liquid-solid ratio. Under these conditions, 88.87 mg/g DM oleuropein, 4.57 mg/g DM luteolin-7-O-glucoside, and 114.31 mg RE/g total flavonoids were obtained. Among three olive varieties (Arbosana, Arbequina, and Picholine) cultivated in China, young Picholine leaves exhibited the highest contents. The Picholine-enriched extract demonstrated higher antioxidant activity (ABTS•+ 155.10 mg/mL, DPPH• 44.58 mg/mL) compared to other DES-based extracts, although it was lower than that of purified compounds. Furthermore, the CCK-8 assay revealed significant inhibition of Eca-109 human esophageal cells by the Picholine-enriched extract at 25 µg/mL for 24 h, compared to Het-1A cells. This process effectively recovers bioactive compounds from olive by-product, and shows potential for applications in nutritional supplements, cosmetics, and the food industry.
Collapse
Affiliation(s)
- Yan Deng
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Junlin Zhou
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Jipen Qu
- College of Agricultural Science, Xichang University, Xichang 615000, China;
| | - Bixia Wang
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Xiao Xu
- College of Life Science, Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (Y.D.); (J.Z.)
| | - Chunyan Zhao
- Sichuan Yizhang Agricultural Development Co., Ltd., Nanchong 637009, China;
| |
Collapse
|
3
|
Tarchi I, Olewnik-Kruszkowska E, Aït-Kaddour A, Bouaziz M. Innovative Process for the Recovery of Oleuropein-Rich Extract from Olive Leaves and Its Biological Activities: Encapsulation for Activity Preservation with Concentration Assessment Pre and Post Encapsulation. ACS OMEGA 2025; 10:6135-6146. [PMID: 39989800 PMCID: PMC11840617 DOI: 10.1021/acsomega.4c10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
Olive leaves, often regarded as agricultural and industrial waste, hold significant potential for economic and medicinal applications. This study examines the valorization of olive leaves through the extraction of phenolic compounds, notably oleuropein and hydroxytyrosol, using autoclave extraction techniques. It also investigates encapsulation techniques employing maltodextrin and sodium caseinate as wall materials to preserve the stability and bioavailability of these compounds. The results indicate a rich phenolic profile in the nonencapsulated olive leaf extract (OLE), demonstrating high antioxidant and antibacterial activities against various pathogens. The encapsulation process achieved high efficiency with a mixture of maltodextrin and sodium caseinate. Furthermore, FTIR spectroscopy and NMR analyses confirmed the presence of functional groups in the encapsulated extract, providing insight into its molecular structure. Overall, this study underscores the potential of olive leaves as a valuable source of bioactive compounds and highlights the importance of innovative extraction and encapsulation techniques to optimize their use across different applications.
Collapse
Affiliation(s)
- Ines Tarchi
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax (ENIS), University of Sfax, BP 1175, 3038 Sfax, Tunisia
- Université
Clermont-Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche
sur le Fromage UMRF, 89 Avenue de l’Europe, Marcy-l’Etoile 69280, France
| | - Ewa Olewnik-Kruszkowska
- Department
of Physical Chemistry and Physicochemistry of Polymers Faculty of
Chemistry, Nicolaus Copernicus University
in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland
| | - Abderrahmane Aït-Kaddour
- Université
Clermont-Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche
sur le Fromage UMRF, 89 Avenue de l’Europe, Marcy-l’Etoile 69280, France
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax (ENIS), University of Sfax, BP 1175, 3038 Sfax, Tunisia
- Institut
supérieur de Biotechnologie de Sfax, Université de Sfax, BP1175, 3038 Sfax, Tunisia
| |
Collapse
|
4
|
Papadopoulou P, Polissidis A, Kythreoti G, Sagnou M, Stefanatou A, Theoharides TC. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int J Mol Sci 2024; 25:11040. [PMID: 39456822 PMCID: PMC11507169 DOI: 10.3390/ijms252011040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic potential to treat neuroinflammation and cognitive impairment. This review examines the evidence for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the treatment of long COVID and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promising candidates for therapeutic intervention, especially when formulated in unique combinations. Recommendations for future research directions include elucidating molecular pathways through mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation, and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects with other agents addressing different targets is suggested for further exploration. The evidence reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive dysfunction and emphasizes the novelty of new formulations.
Collapse
Affiliation(s)
- Paraskevi Papadopoulou
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Alexia Polissidis
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Georgia Kythreoti
- Department of Science and Mathematics, Deree-The American College of Greece, 15342 Athens, Greece; (P.P.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, 15310 Athens, Greece;
| | - Athena Stefanatou
- School of Graduate & Professional Education, Deree–The American College of Greece, 15342 Athens, Greece
| | - Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine-Clearwater, Clearwater, FL 33759, USA
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
5
|
Brenes-Álvarez M, García-García P, Ramírez EM, Medina E, Brenes M, Romero C. Potassium Hydroxide Extraction of Polyphenols from Olive Leaves: Effect on Color and Acrylamide Formation in Black Ripe Olives. Foods 2024; 13:3180. [PMID: 39410215 PMCID: PMC11475044 DOI: 10.3390/foods13193180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Olive leaves are generated in large quantities in olive oil and table olive factories. This waste is currently used for multiple purposes, one of them being the extraction of bioactive substances, in particular phenolic compounds. The aims of this study were (i) to obtain a new polyphenolic extract from potassium hydroxide (KOH) -treated olive leaves; and (ii) to reduce acrylamide formation in black olives by using this extract. The results showed that olive leaves and leafless branches of the Manzanilla cultivar treated with 10 g/L KOH provide a solution that, concentrated under vacuum, had >6000 mg/L hydroxytyrosol and >2000 mg/L of hydroxytyrosol 4-glucoside. Moreover, the residual material generated after the treatment with KOH could be used for agronomic purposes, due to its high potassium content. The employment of this non-bitter extract during the darkening step of black ripe olive processing then resulted in darker fruits with higher potassium content. Likewise, the addition of the extract into the packing brine reduced the acrylamide formation by up to 32%, although this effect was batch-dependent. KOH olive extract could be useful for the reduction in acrylamide in black ripe olives along with the enrichment of this product in phenolic compounds and potassium.
Collapse
Affiliation(s)
| | | | | | | | | | - Concepción Romero
- Food Biotechnology Department, Instituto de la Grasa (IG), CSIC, Ctra. Utrera km 1, Building 46, 41013 Seville, Spain; (M.B.-Á.); (P.G.-G.); (E.M.R.); (E.M.); (M.B.)
| |
Collapse
|
6
|
Mattioli LB, Corazza I, Budriesi R, Hrelia S, Malaguti M, Caliceti C, Amoroso R, Maccallini C, Crupi P, Clodoveo ML, Muraglia M, Carocci A, Tardugno R, Barbarossa A, Corbo F. From Waste to Health: Olive Mill Wastewater for Cardiovascular Disease Prevention. Nutrients 2024; 16:2986. [PMID: 39275301 PMCID: PMC11397552 DOI: 10.3390/nu16172986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Waste from the agri-food chain represents a valuable reservoir of organic compounds with health-promoting properties. Momast Plus 30 Bio (MP30B) is a derivative obtained from olive-oil wastewater. Its enrichment in hydroxytyrosol (HT) via a patented technique has paved the way for its potential application as a dietary supplement in preventing cardiovascular diseases. MP30B demonstrates no significant alteration in cardiac and vascular parameters in "ex vivo" studies. However, it exhibits a strong ability to remove reactive oxygen species and exerts anti-inflammatory effects, notably reducing the concentration of iNOS and mitigating heart infections in "in vitro" experiments. Furthermore, MP30B slightly decreases the stiffness of the "ex vivo" thoracic aorta, potentially resulting in lowered arterial pressure and enhanced energy transfer to a normal ventricle. Based on these findings, we posit MP30B as a promising extract for cardiovascular disease prevention, and its specific antibacterial properties suggest its utility in preventing cardiac infections.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Food Chemistry and Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Science (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Roberta Budriesi
- Food Chemistry and Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University 'G. d'Annunzio' of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, University 'G. d'Annunzio' of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Crupi
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, V. Le Delle Scienze 13, 90128 Palermo, Italy
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari 'Aldo Moro, 70124 Bari, Italy
| | - Marilena Muraglia
- Department of Pharmacy-Drug Science, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug Science, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Science, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Science, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari 'Aldo Moro', 70125 Bari, Italy
| |
Collapse
|
7
|
Wirwis A, Sadowski Z. Guide for Optimization of Olive Leaf Extraction and Silver Nanoparticles Biosynthesis as an Initial Step for Pilot Plant Design. ACS OMEGA 2024; 9:29053-29068. [PMID: 38973861 PMCID: PMC11223521 DOI: 10.1021/acsomega.4c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
This account presents the results of two successful optimization processes. First, a polyphenol-rich aqueous olive extract was obtained and then silver nanoparticles (AgNPs) synthesized with high efficiency. Selected parameters for both processes were optimized based on the procedure of the Box-Behnken multifactorial design. The independent variables in the extraction process were the biomass/water ratio, temperature, and time. For AgNPs synthesis, the independent variables were the volume of olive extract, temperature, and process duration. The relationship between the process parameters was visualized graphically by using the response surface methodology. A high fit of the experimental data with the predicted models was shown. The regression coefficients were high, 0.9936 for extraction and 0.9757 for AgNPs biosynthesis. The extraction efficiency under its optimal conditions was as follows: biomass/solvent ratio 0.016, temperature 80 °C for 80 min, and yield 160.67 [μg GAE (gallic acid equivalent)/mL]. The highest yield of AgNPs synthesis, equal to 1.955, was obtained when it was carried out for 50 min at 75 °C with the application of 11 mL of extract. Studies on the AgNPs suspension's stability depending on the extract amount were demonstrated. A physicochemical analysis using dynamic light scattering, transmission electron microscopy images, and Fourier transform infrared spectroscopy for AgNPs obtained under optimal conditions was shown. Finally, a pilot-scale biosynthesis of AgNPs was designed.
Collapse
Affiliation(s)
- Anna Wirwis
- Department of Process Engineering
and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Zygmunt Sadowski
- Department of Process Engineering
and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
8
|
Ronca CL, Marques SS, Ritieni A, Giménez-Martínez R, Barreiros L, Segundo MA. Olive Oil Waste as a Source of Functional Food Ingredients: Assessing Polyphenolic Content and Antioxidant Activity in Olive Leaves. Foods 2024; 13:189. [PMID: 38254490 PMCID: PMC10814828 DOI: 10.3390/foods13020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Around two million tons of olive oil are produced in Europe annually, with Portugal being among the top five European olive oil-producing countries. Olive oil production results in a substantial amount of waste in the form of olive leaves. These discarded olive leaves contain valuable phenolic compounds with antioxidant, anti-inflammatory, hypoglycaemic, neuroprotective, and antiproliferative properties. Due to their richness in polyphenols with health-promoting properties, olive leaves can be considered a potential functional food ingredient. Thus, sustainable practices for reusing olive leaf waste are in demand. In this study, the polyphenolic content in olive leaves from different Portuguese locations was determined using HPLC-UV-Vis after defining the best fit-for-purpose liquid extraction strategy. The differences in the in vitro antioxidant activity in these samples were determined by several methodologies based on radical scavenging (against 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-2-picrylhydrazyl (DPPH), and peroxyl radical (ORAC)) and on reducing properties (cupric-reducing antioxidant capacity (CUPRAC), and Folin-Ciocalteu assay (FC)), to unveil the relationship between the profile and quantity of polyphenols with antioxidant mechanisms and their capacity. At last, the stability of extracted compounds upon lyophilization and exposition to surrogate biological fluids was assessed, envisioning the future incorporation of olive leaves extracted compounds in food products.
Collapse
Affiliation(s)
- Carolina L. Ronca
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18012 Granada, Spain;
| | - Sara S. Marques
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy
| | - Rafael Giménez-Martínez
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18012 Granada, Spain;
| | - Luisa Barreiros
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
- School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal; (C.L.R.); (S.S.M.); (L.B.)
| |
Collapse
|
9
|
Marrone G, Urciuoli S, Candi E, Bernini R, Vanni G, Masci C, Guerriero C, Mancini M, De Lorenzo A, Vignolini P, Noce A. Biological Activities of Molecules Derived from Olea europaea L. Tested In Vitro. Life (Basel) 2023; 14:49. [PMID: 38255664 PMCID: PMC10820526 DOI: 10.3390/life14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Extra virgin olive oil is a typical food of the Mediterranean area, obtained by pressing Olea europaea L. fruits. Its polyphenols have been studied for their antioxidant function and protective action against cancer and chronic kidney disease. In this in vitro study, we tested titrated extracts from Olea europaea L. on a human embryonic kidney 293 (HEK-293E) cell line, regarding their pro-apoptotic and antiproliferative capacities, using " IncuCyte® S3 Live-Cell Analysis System". MATERIALS AND METHODS We selected Olea europaea L. active compounds like hydroxytyrosol (HT) and oleuropein (OLE). These extracts were tested at different concentrations and characterized by HPLC-DAD-MS for the content in secondary active metabolites. The real-time observation of cell behavior was performed by IncuCyte, which can quantitatively analyze the cell proliferation and death. RESULTS This study showed that all the tested extracts can significantly inhibit cellular growth at 50 µM but the reduced proliferation is not related to an increase in cellular apoptosis. Instead, the same analysis performed by using extracts at 100 µM reveals that they can inhibit cellular growth, further inducing cellular apoptosis. CONCLUSIONS The results on the HEK-293E cells confirmed the antiproliferative and proapoptotic actions of active compounds from an Olea europaea L. matrix in this cell line.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)—DiSIA, University of Florence, 50019 Florence, Italy; (S.U.)
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Istituto Dermatopatico Dell’Immacolata—IDI, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS, Via Monti di Creta 104, 00166 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Gianluca Vanni
- Breast Unit, Department of Surgical Science, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Cristina Guerriero
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mara Mancini
- Istituto Dermatopatico Dell’Immacolata—IDI, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS, Via Monti di Creta 104, 00166 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pamela Vignolini
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)—DiSIA, University of Florence, 50019 Florence, Italy; (S.U.)
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
10
|
Prelac M, Major N, Cvitan D, Anđelini D, Repajić M, Ćurko J, Kovačević TK, Goreta Ban S, Užila Z, Ban D, Palčić I. Valorization of Olive Leaf Polyphenols by Green Extraction and Selective Adsorption on Biochar Derived from Grapevine Pruning Residues. Antioxidants (Basel) 2023; 13:1. [PMID: 38275621 PMCID: PMC10812658 DOI: 10.3390/antiox13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Given today's increasingly intensive agriculture, one key problem area considers the valorization and reuse of wastes from food and agricultural production with minimal impact on the environment. Due to its physicochemical characteristics, biochar (BC) derived from grapevine pruning residue has shown considerable potential for use as an adsorbent. High-value phytochemicals found in abundance in the olive leaf (OL) can be employed in many different industrial sectors. The potential application of BC in the removal of specific polyphenolic components from OL extracts has been investigated in the present study. Water, as the most available and greenest of solvents, was investigated as to its use in the extraction of polyphenols, which was carried out by comparing maceration, ultrasound-assisted extraction, and microwave-assisted extraction, considering different temperatures and solid-to-liquid (s/l) ratios. The BC adsorption capacity of selected polyphenols was fitted with both the Langmuir and Freundlich isotherm models. The Freundlich model fitted better relative to OL polyphenols adsorption. Oleuropein was the most abundant compound identified in the extracts, obtaining the highest Kf value (20.4 (mg/g) × (L/g)n) and R2 coefficient (0.9715) in the adsorption on the biochar's surface. The optimum conditions in the dosage experiment suggest the use of 0.5 g of BC using 3 g/L extracts, with an exception for oleuropein and hydroxytyrosol, for which the highest biochar dose (2.5 g) performed better. Considering the compounds' concentrations and the BC dose, BC from grapevine pruning residues demonstrated a potential use in the uptake of specific polyphenols from olive leaves, making it a promising adsorbent for such applications.
Collapse
Affiliation(s)
- Melissa Prelac
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Danko Cvitan
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Dominik Anđelini
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Maja Repajić
- Department of Food Engineering, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Josip Ćurko
- Department of Food Engineering, University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (J.Ć.)
| | - Tvrtko Karlo Kovačević
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Smiljana Goreta Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Zoran Užila
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| | - Igor Palčić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.P.); (D.C.); (D.A.); (T.K.K.); (S.G.B.); (Z.U.); (D.B.); (I.P.)
| |
Collapse
|
11
|
Benčić Đ, Barbarić M, Mornar A, Klarić DA, Brozovic A, Dabelić S, Fadljević M, Marković AK. Oleuropein in olive leaf, branch, and stem extracts: stability and biological activity in human cervical carcinoma and melanoma cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:601-616. [PMID: 38147483 DOI: 10.2478/acph-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Olive leaves as a main byproduct of olive oil and fruit industry are a valuable source of phytochemicals such as polyphenols, with multiple biomedical effects. Apart from leaves, olive branches and stems make up a significant amount of olive waste. It is well known that the drying process and long-term storage affect the stability and concentration of polyphenols present in raw materials. For that matter, two different means of storing olive waste, at room temperature and +4 °C, were compared by determining the content of the polyphenol oleuropein (OLE) in olive leaf, branch, and stem extracts (LE, BE, and SE) by HPLC-DAD method. Total phenols (TPC), o-diphenols (o-DPC), and total flavonoids (TFC) content in extracts were assessed by UV-Vis measurements. LE prepared from leaves stored at +4 °C had the highest OLE content, 30.7 mg g-1 of dry extract (DE). SE from stems stored at +4 °C was the richest in TPC and TFC (193 mg GAE/g DE and 82.9 mg CE/g DE, respectively), due to the higher purity of the extract. The biological activity of extracts was determined on cervical cancer (HeLa), melanoma (A375), metastatic melanoma (A375M) tumor cell lines, and on spontaneously immortalized cell line of keratinocytes (HaCaT), using the MTT assay. The data show that all extracts had a similar dose-dependent effect on cell viability in HeLa cells, while the effect of LE on melanoma A375 and A375M, and HaCaT cells was cell-line dependent.
Collapse
Affiliation(s)
- Đani Benčić
- 1University of Zagreb Faculty of Agriculture, 10000 Zagreb, Croatia
| | - Monika Barbarić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ana Mornar
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | | | - Sanja Dabelić
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Mihaela Fadljević
- 2University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | |
Collapse
|
12
|
Elhady S, Inan H, Shaaban M, Fahim IS. Investigation of olive leaf extract as a potential environmentally-friendly corrosion inhibitor for carbon steel. Sci Rep 2023; 13:17151. [PMID: 37816748 PMCID: PMC10564776 DOI: 10.1038/s41598-023-43701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Corrosion constitutes a significant issue in industries that handle metals. Corrosion inhibitors with a low impact on the environment provide a significant economic benefit in various engineering applications. In this work, the effectiveness of olive leaves extract is evaluated as a cost-effective and environmentally-friendly corrosion inhibitor. The corrosion of carbon steel in different concentrations of hydrochloric acid (0.1, 1.0, and 2.0 M) when protected by an aqueous solution of olive leaf extract of concentrations ranging from 10 to 60 ppm is investigated. A green extraction process based upon water extraction is used to ensure minimum impact on the environment. Results show that the corrosion inhibition efficiency increased as the concentration of the olive leaf extract increased. An analysis of variance showed a significant effect of acidic molarity, temperature, and inhibitor concentration on the corrosion rate. A significant statistical model indicates that the inhibitor exhibits higher efficiencies at higher acidic molarity. Results of SEM and EDX also demonstrated that a protective film of the inhibitor on the specimen surface plays a role in corrosion inhibition, suggesting that the inhibitor molecules are adsorbed at the interface between the carbon steel and the acid solution. The study provides an insight on the corrosion mechanism and highlights the potential of olive oil extract as an eco-friendly alternative to traditional corrosion inhibitors.
Collapse
Affiliation(s)
- Sherifa Elhady
- Smart Engineering Systems Centre, Nile University, Cairo, Egypt
| | - Hatice Inan
- Smart Engineering Systems Centre, Nile University, Cairo, Egypt
| | - Mahmoud Shaaban
- Smart Engineering Systems Centre, Nile University, Cairo, Egypt
- Mechanical Engineering Program, School of Engineering and Applied Sciences, Nile University, Cairo, Egypt
| | - Irene S Fahim
- Smart Engineering Systems Centre, Nile University, Cairo, Egypt.
| |
Collapse
|
13
|
Hu DB, Xue R, Zhuang XC, Zhang XS, Shi SL. Ultrasound-assisted extraction optimization of polyphenols from Boletus bicolor and evaluation of its antioxidant activity. Front Nutr 2023; 10:1135712. [PMID: 37063317 PMCID: PMC10090463 DOI: 10.3389/fnut.2023.1135712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionBoletus bicolor (B. bicolor) mushrooms are widely consumed as a valuable medicinal and dietary ingredient in China, but the active ingredients of this mushroom and their extraction methods were not extensively studied.MethodsIn this paper, we propose an optimized ultrasound-assisted extraction (UAE) method to detect natural antioxidant substances in B. bicolor. The antioxidants were quantitatively and quantitatively determined using UPLC-MS, the polyphenols were evaluated based on response surface methodology (RSM), and density functional theory (DFT) calculations were performed.ResultsThe results showed that the optimal extraction was obtained under the following conditions: ethanol concentration 42%; solvent to solid ratio 34:1 mL/g; ultrasonic time 41 min; and temperature 40°C. The optimized experimental polyphenol value obtained under these conditions was (13.69 ± 0.13) mg/g, consistent with the predicted value of 13.72 mg/g. Eight phenolic compounds in the extract were identiffed by UPLC-MS: syringic acid, chlorogenic acid, gallic acid, rosmarinic acid, protocatechuic acid, catechin, caffeic acid, and quercetin. Chlorogenic acid exhibits the highest HOMO energy (−0.02744 eV) and the lowest energy difference (−0.23450 eV) among the studied compounds, suggesting that the compound might be the strongest antioxidant molecule. Eight phenolic compounds from the B. bicolor signiffcantly inhibited intracellular reactive oxygen species (ROS) generation, reduced oxidative stress damage in H2O2-induced HepG-2 cells.DiscussionTherefore, it was confirmed that the UAE technique is an efficient, rapid, and simple approach for extracting polyphenols with antioxidant activity from B. bicolor.
Collapse
|
14
|
Rosiak N, Cielecka-Piontek J, Skibiński R, Lewandowska K, Bednarski W, Zalewski P. Do Rutin and Quercetin Retain Their Structure and Radical Scavenging Activity after Exposure to Radiation? Molecules 2023; 28:molecules28062713. [PMID: 36985686 PMCID: PMC10053567 DOI: 10.3390/molecules28062713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The influence of ionizing radiation on the physicochemical properties of quercetin and rutin in the solid state was studied. Quercetin and rutin were irradiated with the standard recommended radiation dose (25 kGy) according to EN 522 standard. The samples were irradiated by electron beam radiation. EPR studies indicate the formation of a small number of free radicals due to irradiation. Moreover, some radicals recombined with the mean lifetime of 1200 and 93 h, and a stable radical concentration reached only 0.29 and 0.90 ppm for quercetin and rutin, respectively. The performed spectroscopic study (FT-IR) confirmed the radiostability of the flavonoids tested. Chromatographic tests (HPLC, HPLC-MS) showed that irradiation of quercetin and rutin with a 25 kGy dose did not change the physicochemical properties of the tested compounds. Degradation products were not observed. The antioxidant activities were determined by the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) free radical scavenging activity assay, ABTS Radical Scavenging Assay (ABTS), Ferric Reducing Antioxidant Power Assay (FRAP), Cupric Ion Reducing Antioxidant Capacity Assay (CUPRAC). The conducted research confirmed that exposure to ionizing radiation does not change the chemical structure of tested flavonoids and their antioxidant properties.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Kornelia Lewandowska
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Correspondence: ; Tel.: +48-(61)-854-67-10
| |
Collapse
|
15
|
Ercelik M, Tekin C, Tezcan G, Ak Aksoy S, Bekar A, Kocaeli H, Taskapilioglu MO, Eser P, Tunca B. Olea europaea Leaf Phenolics Oleuropein, Hydroxytyrosol, Tyrosol, and Rutin Induce Apoptosis and Additionally Affect Temozolomide against Glioblastoma: In Particular, Oleuropein Inhibits Spheroid Growth by Attenuating Stem-like Cell Phenotype. Life (Basel) 2023; 13:470. [PMID: 36836827 PMCID: PMC9964321 DOI: 10.3390/life13020470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The effects of Olea europaea leaf extract (OLE) phenolics, including oleuropein (OL), hydroxytyrosol (HT), tyrosol (TYR), and rutin against glioblastoma (GB), independently and in combination with temozolomide (TMZ), were investigated in T98G and A172 cells. Cell growth was assessed by WST-1, real-time cell analysis, colony formation, and cell cycle distribution assays. A dual acridine orange propidium iodide (AO/PI) staining and annexin V assay determined cell viability. A sphere-forming assay, an intracellular oxidative stress assay, and the RNA expression of CD133 and OCT4 investigated the GB stem-like cell (GSC) phenotype. A scratch wound-healing assay evaluated migration capacity. OL was as effective as OLE in terms of apoptosis promotion (p < 0.001) and GSC inhibition (p < 0.001). HT inhibited cell viability, GSC phenotype, and migration rate (p < 0.001), but its anti-GB effect was less than the total effect of OLE alone. Rutin decreased reactive oxygen species production and inhibited colony formation and cell migration (p < 0.001). TYR demonstrated the least effect. The additive effects of OL, HT, TYR and rutin with TMZ were significant (p < 0.001). Our data suggest that OL may represent a novel therapeutic approach against GB cells, while HT and rutin show promise in increasing the efficacy of TMZ therapy.
Collapse
Affiliation(s)
- Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, 16059 Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, 16059 Bursa, Turkey
- Experimental Animal Breeding and Research Unit, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | | | - Pınar Eser
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
16
|
Characterization, Sensory and Oxidative Stability Analysis of Vegetable Mayonnaise Formulated with Olive Leaf Vinegar as an Active Ingredient. Foods 2022; 11:foods11244006. [PMID: 36553748 PMCID: PMC9777809 DOI: 10.3390/foods11244006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Development of novel food products represents a basic meeting point for health and business requirements. Mayonnaise sauce is well-suited to be a healthy and tasty dressing. In this study, mayonnaise was formulated by using unconventional ingredients, such as olive leaf vinegar (OLV), soybean/high oleic sunflower oil blend, and soymilk (as an egg substitute). An 18% alcoholic vinegar was used as the control sample. OLV is a rich source of bioactive substances, especially polyphenols and represents a possible way to enhance the olive oil by-product valorisation. For this new typology of vinegar an high level of phenolic compounds (7.2 mg/mL GAE), especially oleuropein (6.0 mg/mL oleuropein equivalent) was found. OLV mayonnaise had 57% fat, composed of 11%, 64%, and 23% saturated, monounsaturated, and polyunsaturated fatty acids, while linolenic acid was up to 1.7%. The phenol and oleuropein contents were 68 and 52 mg/100 g, respectively. Sensory panellists expressed a moderate overall acceptability for both samples but attested more distinctive and positive sensations for the colour, odour, and taste attributes of OLV mayonnaise. Finally, oxidative stability and shelf life were better in OLV mayonnaise than in the control. Specifically, the peroxide value remained low (around 4.5 meqO2/kg) after 12 months of storage at room and low (4 °C) temperatures.
Collapse
|
17
|
Paciulli M, Grimaldi M, Rinaldi M, Cavazza A, Flamminii F, Mattia CD, Gennari M, Chiavaro E. Microencapsulated olive leaf extract enhances physicochemical stability of biscuits. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Limongelli F, Crupi P, Clodoveo ML, Corbo F, Muraglia M. Overview of the Polyphenols in Salicornia: From Recovery to Health-Promoting Effect. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227954. [PMID: 36432054 PMCID: PMC9696959 DOI: 10.3390/molecules27227954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Nowadays, there has been considerable attention paid toward the recovery of waste plant matrices as possible sources of functional compounds with healthy properties. In this regard, we focus our attention on Salicornia, a halophyte plant that grows abundantly on the coasts of the Mediterranean area. Salicornia is used not only as a seasoned vegetable but also in traditional medicine for its beneficial effects in protecting against diseases such as obesity, diabetes, and cancer. In numerous research studies, Salicornia consumption has been highly suggested due to its high level of bioactive molecules, among which, polyphenols are prevalent. The antioxidant and antiradical activity of polyphenols makes Salicornia a functional food candidate with potential beneficial activities for human health. Therefore, this review provides specific and compiled information for optimizing and developing new extraction processes for the recovery of bioactive compounds from Salicornia; focusing particular attention on polyphenols and their health benefits.
Collapse
Affiliation(s)
- Francesco Limongelli
- Dipartimento di Scienze del Suolo e Degli Alimenti, Università degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy
| | - Pasquale Crupi
- Dipartimento Interdisciplinare di Medicina, Università degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Correspondence: or
| | - Maria Lisa Clodoveo
- Dipartimento Interdisciplinare di Medicina, Università degli Studi Aldo Moro Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Filomena Corbo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy
| | - Marilena Muraglia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
19
|
Hladnik M, Unković N, Janakiev T, Grbić ML, Arbeiter AB, Stanković S, Janaćković P, Gavrilović M, Rančić D, Bandelj D, Dimkić I. An Insight into an Olive Scab on the "Istrska Belica" Variety: Host-Pathogen Interactions and Phyllosphere Mycobiome. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02131-4. [PMID: 36307735 DOI: 10.1007/s00248-022-02131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The olive tree is one of the most important agricultural plants, affected by several pests and diseases that cause a severe decline in health status leading to crop losses. Olive leaf spot disease caused by the fungus Venturia oleaginea can result in complete tree defoliation and consequently lower yield. The aim of the study was to obtain new knowledge related to plant-pathogen interaction, reveal mechanisms of plant defense against the pathogen, and characterize fungal phyllosphere communities on infected and symptomless leaves that could contribute to the development of new plant breeding strategies and identification of novel biocontrol agents. The highly susceptible olive variety "Istrska Belica"' was selected for a detailed evaluation. Microscopy analyses led to the observation of raphides in the mesophyll and parenchyma cells of infected leaves and gave new insight into the complex V. oleaginea pathogenesis. Culturable and total phyllosphere mycobiota, obtained via metabarcoding approach, highlighted Didymella, Aureobasidium, Cladosporium, and Alternaria species as overlapping between infected and symptomless leaves. Only Venturia and Erythrobasidium in infected and Cladosporium in symptomless samples with higher abundance showed statistically significant differences. Based on the ecological role of identified taxa, it can be suggested that Cladosporium species might have potential antagonistic effects on V. oleaginea.
Collapse
Affiliation(s)
- Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Nikola Unković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Tamara Janakiev
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | | | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Peđa Janaćković
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Milan Gavrilović
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia
| | - Dragana Rančić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Zemun, Serbia
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, Sl-6000, Koper, Slovenia
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski Trg 16, 11158, Belgrade, Serbia.
| |
Collapse
|
20
|
Šimat V, Skroza D, Tabanelli G, Čagalj M, Pasini F, Gómez-Caravaca AM, Fernández-Fernández C, Sterniša M, Smole Možina S, Ozogul Y, Generalić Mekinić I. Antioxidant and Antimicrobial Activity of Hydroethanolic Leaf Extracts from Six Mediterranean Olive Cultivars. Antioxidants (Basel) 2022; 11:antiox11091656. [PMID: 36139730 PMCID: PMC9495989 DOI: 10.3390/antiox11091656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic profiles, antioxidant, and antimicrobial activities of hydroethanolic olive leaf extracts from six Mediterranean olive cultivars (Croatian: Lastovka, Levantinka, Oblica; Italian: Moraiolo, Frantoio, Nostrana di Brisighella) were investigated. As expected, various distributions of phenolic levels were observed for each cultivar and the total phenolic content showed high variability (ranging from 4 to 22 mg GAE/g of dry extract), with the highest amount of phenolics found in the Oblica sample, which also provided the highest antiradical (ORAC) and reducing activity (FRAP). The screening of individual compounds was performed by HPLC-PDA-ESI-QTOF-MS and the main detected compounds were oleuropein, hydroxytyrosol, oleoside/secologanoside, verbascoside, rutin, luteolin glucoside, hydroxyoleuropein, and ligstroside. While the antioxidant activity of the samples was relatively high, they showed no bactericidal and bacteriostatic activity against E. coli and S. Typhimurium; weak activity against Staphylococcus aureus, Bacillus cereus, and Listeria innocua; and inhibitory effects against Campylobacter jejuni at 0.5 mg dry extract/mL. The obtained results support the fact that olive leaf extracts, and especially those from the Oblica cultivar, could potentially be applied in various industries as natural preservatives and effective and inexpensive sources of valuable antioxidants.
Collapse
Affiliation(s)
- Vida Šimat
- Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
- Correspondence: ; Tel.: +385-21510192
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Martina Čagalj
- Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Federica Pasini
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Carmen Fernández-Fernández
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Meta Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Yesim Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
21
|
Syed RU, Moni SS, Alfaisal RH, Alrashidi RH, Alrashidi NF, Wadeed KM, Alshammary FN, Habib AM, Alharbi FM, ur Rehman Z, Shamsher Alam M, Basode VK, Abdulhaq AA. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Biochemical Characterization of Six Traditional Olive Cultivars: A Comparative Study. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Olives are an essential ingredient in Turkish food culture. Turkey has grown to become one of the top five producers of olives and olive oils in the world. Olive trees in general are found in the coastal parts of the country. The fruits of six traditional cultivars of olive (Gemlik, Domat, Memecik, Ayvalik, Cilli, and Adana Topagi), grown in Adana, were characterized based on their fruit skin color, the amount of chlorophylls, fatty acids, antioxidant activity, and total phenolic compounds, as well as volatile compounds. The international cultivar Manzanilla, grown in the same orchards as the traditional cultivars, was also included in the study to make a comparison. Compared to the Manzanilla cultivar, Memecik showed the highest amount of total phenolic content and antioxidant activity with the highest level of lightness, blueness/yellowness, and color intensity. Ayvalik presented the highest level of greenness/redness. Although the highest fruit lightness and darkness were found in the Cilli cultivar, with the highest amount of chlorophyll a (2.63 mgL−1), there was more chlorophyll b in Adana Topagi fruits (3.34 mgL−1). The highest percentage of fatty acids was found in the Gemlik cultivar of 66.81%, among which oleic acid was the major component. The total aldehydes ranged between 33.43% and 50.60%. Compared to Manzanilla and the traditional cultivars, the Domat cultivar had the highest amount of hexanal of 44.42%. Adana Topagi had the highest amount of alcohols (61.34%) and acids (1.31%). Memecik registered the highest amount of ketones (17.86%) and terpenes (20.34%). Among all cultivars, Manzanilla displayed the highest amount of esters (2.30%). In this study, traditional cultivars were found to be the richest in health-promoting chemicals. Furthermore, a significant variability among the cultivars was revealed, implying that metabolic fingerprinting approaches could be used to differentiate cultivars once more research into the effects of the growing conditions and environmental factors on the chemical profiles of each cultivar is carried out.
Collapse
|
23
|
Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers (Basel) 2022; 14:polym14091726. [PMID: 35566894 PMCID: PMC9103748 DOI: 10.3390/polym14091726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.
Collapse
|
24
|
Green Extraction Technology of Polyphenols from Food By-Products. Foods 2022; 11:foods11081109. [PMID: 35454696 PMCID: PMC9026858 DOI: 10.3390/foods11081109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development of environmentally friendly approaches to produce high-added value compounds is a field of research that has attracted the interest of the scientific community and several industries such as the food and cosmetic industry [...]
Collapse
|