1
|
van Wissen G, Marroquin-Garcia R, Frigoli M, Lowdon JW, Cleij TJ, Eersels K, van Grinsven B. Thermal sensing of syringic acid in food samples via molecularly imprinted polymers synthesized from bio-based deep eutectic solvents as monomers. Food Chem 2025; 480:143947. [PMID: 40138837 DOI: 10.1016/j.foodchem.2025.143947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Sensing syringic acid in food samples is highly valuable in food quality control due to its health promoting effects. To this purpose, syringic acid MIPs aligning with green chemistry have been developed by employing a bio-based functional monomer as DES and ethanol-water as porogen. MIP was implemented into a low-cost thermal readout platform as functional layer utilizing carbon tape for deposition. The sensor was characterized using SEM, IR, TGA and laser diffraction and its performance was evaluated through loading assays with syringic acid solutions, selectivity studies using structural analogues and food components, and quantification of syringic acid in thyme and walnut benchmarked by LC-MS. This work is the first to accurately quantify a molecular target using thermal readout with resulting LOD and LOQ of 0.28 ± 0.06 and 0.84 ± 0.18 μM respectively, linear ranges between 0.5 - 2.5 μM and 2.5 - 17.5 μM and recoveries ranging between 96.0 - 111 %.
Collapse
Affiliation(s)
- Gil van Wissen
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| | - Ramiro Marroquin-Garcia
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| |
Collapse
|
2
|
Frolova N, Gorbach D, Ihling C, Bilova T, Orlova A, Lukasheva E, Fedoseeva K, Dodueva I, Lutova LA, Frolov A. Proteome and Metabolome Alterations in Radish ( Raphanus sativus L.) Seedlings Induced by Inoculation with Agrobacterium tumefaciens. Biomolecules 2025; 15:290. [PMID: 40001593 PMCID: PMC11852571 DOI: 10.3390/biom15020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Infection of higher plants with agrobacteria (Agrobacterium tumefaciens) represents one of the most comprehensively characterized examples of plant-microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and opine biosynthesis genes, as well as the host genes of hormone-mediated signaling. These transcriptional events trigger enhanced proliferation of plant cells and formation of crown gall tumors. Because of this, infection of plant tissues with A. tumefaciens provides a convenient model to address the dynamics of cell metabolism accompanying plant development. To date, both early and late plant responses to agrobacterial infection are well-characterized at the level of the transcriptome, whereas only little information on the accompanying changes in plant metabolism is available. Therefore, here we employ an integrated proteomics and metabolomics approach to address the metabolic shifts and molecular events accompanying plant responses to inoculation with the A. tumefaciens culture. Based on the acquired proteomics dataset complemented with the results of the metabolite profiling experiment, we succeeded in characterizing the metabolic shifts associated with agrobacterial infection. The observed dynamics of the seedling proteome and metabolome clearly indicated rearrangement of the energy metabolism on the 10th day after inoculation (d.a.i.). Specifically, redirection of the energy metabolism from the oxidative to the anaerobic pathway was observed. This might be a part of the plant's adaptation response to tumor-induced hypoxic stress, which most likely involved activation of sugar signaling.
Collapse
Affiliation(s)
- Nadezhda Frolova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Daria Gorbach
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Christian Ihling
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany;
| | - Tatiana Bilova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Fedoseeva
- Resource Center “Molecular and Cell Technologies”, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Irina Dodueva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.D.); (L.A.L.)
| | - Lyudmila A. Lutova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.D.); (L.A.L.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| |
Collapse
|
3
|
Xu Y, Feng J, Hu Y, Chen L, Qin W, Chen C, Yan M, Guo H. Hub Metabolites Promote the Bioflocculant Production in a Biomass-Degrading Bacterium Pseudomonas boreopolis GO2. Microb Physiol 2024; 35:1-12. [PMID: 39616990 DOI: 10.1159/000542892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The low yield of bioflocculants has been a bottleneck problem that limits their industrial applications. Understanding the metabolic mechanism of bacteria that produce bioflocculants could provide valuable insights and strategies to directly regulate their yield in future. METHODS To investigate the change of metabolites in the process of bioflocculant production by a biomass-degrading bacterium, Pseudomonas boreopolis GO2, an untargeted metabolome analysis was performed. RESULTS The results showed that metabolites significantly differed during the fermentation process when corn stover was used as the sole carbon source. The differential metabolites were divided into four co-expression modules based on the weighted gene co-expression network analysis. Among them, a module (yellow module) was closely related to the flocculating efficiency, and the metabolites in this module were mainly involved in carbohydrate, lipid, and amino acid metabolism. The top 30 metabolites with the highest degree in the yellow module were identified as hub metabolites for bioflocculant production. Finally, 10 hub metabolites were selected to perform the additional experiments, and the addition of L-rhamnose, tyramine, tryptophan, and glutaric acid alone all could significantly improve the flocculating efficiency of GO2 strain. CONCLUSION These results indicated that the hub metabolites were key for bioflocculant production in GO2 strain, and could help guide the improvement of high-efficiency and low-cost bioflocculant production.
Collapse
Affiliation(s)
- Yijie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiayin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - YuXuan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chen Chen
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
- Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, China
- Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Nyanasaigran L, Ramasamy S, Gautam A, Guleria P, Kumar V, Yaacob JS. Methyl jasmonate elicitation improves the growth performance and biosynthesis of antioxidant metabolites in Portulaca oleracea through ROS modulation. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118709. [DOI: 10.1016/j.indcrop.2024.118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Zhang R, Fan Z, Zhu C, Huang Y, Wu P, Zeng J. Antibacterial Activity of Ethanol Extract from Australian Finger Lime. Foods 2024; 13:2465. [PMID: 39123658 PMCID: PMC11311350 DOI: 10.3390/foods13152465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Australian finger lime (Citrus australasica L.) has become increasingly popular due to its potent antioxidant capacity and health-promoting benefits. This study aimed to determine the chemical composition, antibacterial characteristics, and mechanism of finger lime extract. The finger lime extracts were obtained from the fruit of the Australian finger lime by the ethanol extraction method. The antibacterial activity of the extract was examined by detecting the minimum inhibitory concentration (MIC) for two Gram-positive and four Gram-negative bacterial strains in vitro, as well as by assessing variations in the number of bacteria for Candidatus Liberibacter asiaticus (CLas) in vivo. GC-MS analysis was used to identify the antibacterial compounds of the extract. The antibacterial mechanisms were investigated by assessing cell permeability and membrane integrity, and the bacterial morphology was examined using scanning electron microscopy. The extract demonstrated significant antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and Gram-negative bacterial species, such as Escherichia coli, Agrobacterium tumefaciens, Xanthomonas campestris, Xanthomonas citri, and CLas. Among the six strains evaluated in vitro, B. subtilis showed the highest susceptibility to the antimicrobial effects of finger lime extract. The minimum inhibitory concentration (MIC) of the extract against the tested microorganisms varied between 500 and 1000 μg/mL. In addition, the extract was proven effective in suppressing CLas in vivo, as indicated by the lower CLas titers in the treated leaves compared to the control. A total of 360 compounds, including carbohydrates (31.159%), organic acid (30.909%), alcohols (13.380%), polyphenols (5.660%), esters (3.796%), and alkaloids (0.612%), were identified in the extract. We predicted that the primary bioactive compounds responsible for the antibacterial effects of the extract were quinic acid and other polyphenols, as well as alkaloids. The morphology of the tested microbes was altered and damaged, leading to lysis of the cell wall, cell content leakage, and cell death. Based on the results, ethanol extracts from finger lime may be a fitting substitute for synthetic bactericides in food and plant protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.Z.); (Z.F.); (C.Z.); (Y.H.); (P.W.)
| |
Collapse
|
6
|
Baugh AC, Defalco JB, Duscent-Maitland CV, Tumen-Velasquez MP, Laniohan NS, Figatner K, Hoover TR, Karls AC, Elliott KT, Neidle EL. Regulation of tricarboxylate transport and metabolism in Acinetobacter baylyi ADP1. Appl Environ Microbiol 2024; 90:e0211123. [PMID: 38289138 PMCID: PMC10880598 DOI: 10.1128/aem.02111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 02/22/2024] Open
Abstract
Despite the significant presence of plant-derived tricarboxylic acids in some environments, few studies detail the bacterial metabolism of trans-aconitic acid (Taa) and tricarballylic acid (Tcb). In a soil bacterium, Acinetobacter baylyi ADP1, we discovered interrelated pathways for the consumption of Taa and Tcb. An intricate regulatory scheme tightly controls the transport and catabolism of both compounds and may reflect that they can be toxic inhibitors of the tricarboxylic acid cycle. The genes encoding two similar LysR-type transcriptional regulators, TcuR and TclR, were clustered on the chromosome with tcuA and tcuB, genes required for Tcb consumption. The genetic organization differed from that in Salmonella enterica serovar Typhimurium, in which tcuA and tcuB form an operon with a transporter gene, tcuC. In A. baylyi, tcuC was not cotranscribed with tcuAB. Rather, tcuC was cotranscribed with a gene, designated pacI, encoding an isomerase needed for Taa consumption. TcuC appears to transport Tcb and cis-aconitic acid (Caa), the presumed product of PacI-mediated periplasmic isomerization of Taa. Two operons, tcuC-pacI and tcuAB, were transcriptionally controlled by both TcuR and TclR, which have overlapping functions. We investigated the roles of the two regulators in activating transcription of both operons in response to multiple effector compounds, including Taa, Tcb, and Caa.IMPORTANCEIngestion of Taa and Tcb by grazing livestock can cause a serious metabolic disorder called grass tetany. The disorder, which results from Tcb absorption by ruminants, focuses attention on the metabolism of tricarboxylic acids. Additional interest stems from efforts to produce tricarboxylic acids as commodity chemicals. Improved understanding of bacterial enzymes and pathways for tricarboxylic acid metabolism may contribute to new biomanufacturing strategies.
Collapse
Affiliation(s)
- Alyssa C. Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Justin B. Defalco
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | | | | | - Kayla Figatner
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Ellen L. Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Li J, Zhang Z, Liu H, Qu X, Yin X, Chen L, Guo N, Wang C, Zhang Z. Effects of continuous intravenous infusion with propofol on intestinal metabolites in rats. Biomed Rep 2024; 20:25. [PMID: 38169795 PMCID: PMC10758916 DOI: 10.3892/br.2023.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 01/05/2024] Open
Abstract
Microbial metabolites play an important role in regulating intestinal homeostasis and immune responses. Propofol is a common anesthetic in clinic, but it is not clear whether it affects intestinal metabolites in rats. Tail vein puncture was performed after adaptive feeding for 1 month in eight 2-month-old rats and they were given continuous intravenous infusion of propofol for 3 h. The feces of rats were divided into different groups based on time periods, with before and after anesthesia with propofol on days 1, 3 and 7 labeled as groups P, A1, A3 and A7, respectively. The effect of continuous intravenous infusion with propofol on rat fecal metabolites was determined using the non-targeted metabolomics technique gas chromatography coupled with a time-of-flight mass spectrometer analysis. The types and contents of metabolites in rat feces were changed after continuous intravenous infusion with propofol, but the changes were not statistically significant. The contents of the metabolites 3-hydroxyphenylacetic acid and palmitic acid increased from day 3 to 7, and it was shown that the two metabolites were positively correlated at a statistically significant level. Linoleic acid decreased to its lowest level on day 3, and it returned to pre-anesthesia level on day 7. At the same time, linoleic acid metabolism was a metabolic pathway that was co-enriched 7 days after infusion with propofol. Spearman correlation analysis showed that there was significant correlation between some differential metabolites and differential microorganisms. It was observed that zymosterol 1, cytosin and elaidic acid were negatively correlated with Alloprevotella in the A3 vs. P group. In the A7 vs. P group, cortexolone 3 and coprostan-3-one were positively correlated with Faecalibacterium, whilst aconitic acid was negatively correlated with it. In conclusion, the present study revealed statistically insignificant effects of continuous intravenous propofol on the intestinal metabolites in rats.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Zhongjie Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyu Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xutong Qu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xueqing Yin
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Lu Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Nana Guo
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaodi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
8
|
Deng S, Kim J, Pomraning KR, Gao Y, Evans JE, Hofstad BA, Dai Z, Webb-Robertson BJ, Powell SM, Novikova IV, Munoz N, Kim YM, Swita M, Robles AL, Lemmon T, Duong RD, Nicora C, Burnum-Johnson KE, Magnuson J. Identification of a specific exporter that enables high production of aconitic acid in Aspergillus pseudoterreus. Metab Eng 2023; 80:163-172. [PMID: 37778408 DOI: 10.1016/j.ymben.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.
Collapse
Affiliation(s)
- Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - James E Evans
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Bobbie-Jo Webb-Robertson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Samantha M Powell
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Irina V Novikova
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Rylan D Duong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Jon Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
9
|
Yang X, Chen C, Wang K, Chen M, Wang Y, Chen Z, Zhao W, Ou S. Elucidating the molecular mechanisms of ozone therapy for neuropathic pain management by integrated transcriptomic and metabolomic approach. Front Genet 2023; 14:1231682. [PMID: 37779912 PMCID: PMC10536237 DOI: 10.3389/fgene.2023.1231682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Neuropathic pain remains a prevalent and challenging condition to treat, with current therapies often providing inadequate relief. Ozone therapy has emerged as a promising treatment option; however, its mechanisms of action in neuropathic pain remain poorly understood. Methods: In this study, we investigated the effects of ozone treatment on gene expression and metabolite levels in the brainstem and hypothalamus of a rat model, using a combined transcriptomic and metabolomic approach. Results: Our findings revealed significant alterations in key genes, including DCST1 and AIF1L, and metabolites such as Aconitic acid, L-Glutamic acid, UDP-glucose, and Tyrosine. These changes suggest a complex interplay of molecular pathways and region-specific mechanisms underlying the analgesic effects of ozone therapy. Discussion: Our study provides insights into the molecular targets of ozone treatment for neuropathic pain, laying the groundwork for future research on validating these targets and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolan Yang
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaoming Chen
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Keyang Wang
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Wang
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengping Chen
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Zhao
- Department of Neurology, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | - Shu Ou
- Department of Neurology, The Fengjie People’s Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Sharova E, Bilova T, Tsvetkova E, Smolikova G, Frolov A, Medvedev S. Red light-induced inhibition of maize ( Zea mays) mesocotyl elongation: evaluation of apoplastic metabolites. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:532-539. [PMID: 37258494 DOI: 10.1071/fp22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/09/2022] [Indexed: 06/02/2023]
Abstract
Light is a crucial factor affecting plant growth and development. Besides providing the energy for photosynthesis, light serves as a sensory cue to control the adaptation of plants to environmental changes. We used the etiolated maize (Zea mays ) seedlings as a model system to study the red light-regulated growth. Exposure of the maize seedlings to red light resulted in growth inhibition of mesocotyls. We demonstrate for the first time (to the best our knowledge) that red light affected the patterns of apoplastic fluid (AF) metabolites extracted from the mesocotyl segments. By means of the untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach, we identified 44 metabolites in the AF of maize mesocotyls and characterised the dynamics of their relative tissue abundances. The characteristic metabolite patterns of mesocotyls dominated with mono- and disaccharides, organic acids, amino acids, and other nitrogen-containing compounds. Upon red light irradiation, the contents of β -alanine, putrescine and trans -aconitate significantly increased (P -value<0.05). In contrast, there was a significant decrease in the total ascorbate content in the AF of maize mesocotyls. The regulatory role of apoplastic metabolites in the red light-induced inhibition of maize mesocotyl elongation is discussed.
Collapse
Affiliation(s)
- Elena Sharova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation; and K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russian Federation
| | - Elena Tsvetkova
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russian Federation
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
11
|
Ren H, Guo H, Shafiqul Islam M, Zaki HEM, Wang Z, Wang H, Qi X, Guo J, Sun L, Wang Q, Li B, Li G, Radwan KSA. Improvement effect of biochar on soil microbial community structure and metabolites of decline disease bayberry. Front Microbiol 2023; 14:1154886. [PMID: 37333636 PMCID: PMC10275294 DOI: 10.3389/fmicb.2023.1154886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Decline disease is a new disease that has recently caused severe damage in bayberry industry. The effect of biochar on decline disease was determined by investigating the changes in the vegetative growth and fruit quality of bayberry trees as well as soil physical and chemical properties, microbial community structure, and metabolites. Results indicated that the application of biochar could improve the vigor and fruit quality of diseased trees, and rhizosphere soil microbial diversity at the levels of phyla, orders, and genera. The relative abundance of Mycobacterium, Crossiella, Geminibasidium, and Fusarium were significantly increased, while Acidothermus, Bryobacter, Acidibacter, Cladophialophora, Mycena, and Rickenella were significantly decreased by biochar in rhizosphere soil of decline diseased bayberry. Analysis of redundancies (RDA) of microbial communities and soil characteristics revealed that the composition of bacterial and fungal communities was significantly affected by the pH, organic matter, alkali hydrolyzable nitrogen, available phosphorus, available potassium, exchangeable calcium and exchangeable magnesium in bayberry rhizosphere soil, and the contribution rates to fungi were larger than those to bacteria at the genus level. Biochar greatly influenced the metabolomics distribution of rhizosphere soils of decline disease bayberry. One hundred and nine different metabolites from both the presence and absence of biochar, mainly include acid, alcohol, ester, amine, amino acid, sterol, sugar, and other secondary metabolites, of which the contents of 52 metabolites were increased significantly such as aconitic acid, threonic acid, pimelic acid, epicatechin, and lyxose. The contents of 57 metabolites decreased significantly, such as conduritol β-expoxide, zymosterol, palatinitol, quinic acid, and isohexoic acid. There was a great difference between the absence and presence of biochar in 10 metabolic pathways, including thiamine metabolism, arginine and proline metabolism, glutathione metabolism, ATP-binding cassette (ABC) transporters, butanoate metabolism, cyanoamino acid metabolism, tyrosine metabolism, phenylalanine metabolism, phosphotransferase system (pts), and lysine degradation. There was a significant correlation between the relative content of microbial species and the content of secondary metabolites in rhizosphere soil at the levels of bacterial and fungal phyla, order, and genus. Overall, this study highlighted the significant influence of biochar in decline disease by regulating soil microbial community, physical and chemical properties, and secondary metabolites in rhizosphere soil, which provided a novel strategy for managing bayberry decline disease.
Collapse
Affiliation(s)
- Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Hao Guo
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
| | - Zhenshuo Wang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongyan Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Junning Guo
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qi Wang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
| |
Collapse
|
12
|
Chaowongdee S, Malichan S, Pongpamorn P, Paemanee A, Siriwan W. Metabolic profiles of Sri Lankan cassava mosaic virus-infected and healthy cassava (Manihot esculenta Crantz) cultivars with tolerance and susceptibility phenotypes. BMC PLANT BIOLOGY 2023; 23:178. [PMID: 37020181 PMCID: PMC10074701 DOI: 10.1186/s12870-023-04181-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Cassava mosaic disease (CMD) of cassava (Manihot esculenta Crantz) has expanded across many continents. Sri Lankan cassava mosaic virus (SLCMV; family Geminiviridae), which is the predominant cause of CMD in Thailand, has caused agricultural and economic damage in many Southeast Asia countries such as Vietnam, Loas, and Cambodia. The recent SLCMV epidemic in Thailand was commonly found in cassava plantations. Current understanding of plant-virus interactions for SLCMV and cassava is limited. Accordingly, this study explored the metabolic profiles of SLCMV-infected and healthy groups of tolerant (TME3 and KU50) and susceptible (R11) cultivars of cassava. Findings from the study may help to improve cassava breeding, particularly when combined with future transcriptomic and proteomic research. RESULTS SLCMV-infected and healthy leaves were subjected to metabolite extraction followed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS/MS). The resulting data were analyzed using Compound Discoverer software, the mzCloud, mzVault, and ChemSpider databases, and published literature. Of the 85 differential compounds (SLCMV-infected vs healthy groups), 54 were differential compounds in all three cultivars. These compounds were analyzed using principal component analysis (PCA), hierarchical clustering dendrogram analysis, heatmap analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. Chlorogenic acid, DL-carnitine, neochlorogenic acid, (E)-aconitic acid, and ascorbyl glucoside were differentially expressed only in TME3 and KU50, with chlorogenic acid, (E)-aconitic acid, and neochlorogenic acid being downregulated in both SLCMV-infected TME3 and KU50, DL-carnitine being upregulated in both SLCMV-infected TME3 and KU50, and ascorbyl glucoside being downregulated in SLCMV-infected TME3 but upregulated in SLCMV-infected KU50. Furthermore, 7-hydroxycoumarine was differentially expressed only in TME3 and R11, while quercitrin, guanine, N-acetylornithine, uridine, vorinostat, sucrose, and lotaustralin were differentially expressed only in KU50 and R11. CONCLUSIONS Metabolic profiling of three cassava landrace cultivars (TME3, KU50, and R11) was performed after SLCMV infection and the profiles were compared with those of healthy samples. Certain differential compounds (SLCMV-infected vs healthy groups) in different cultivars of cassava may be involved in plant-virus interactions and could underlie the tolerance and susceptible responses in this important crop.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Pornkanok Pongpamorn
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
13
|
Klasson KT, Qi Y, Bruni GO, Watson TT, Pancio BT, Terrell E. Recovery of Aconitic Acid from Sweet Sorghum Plant Extract Using a Solvent Mixture, and Its Potential Use as a Nematicide. Life (Basel) 2023; 13:life13030724. [PMID: 36983879 PMCID: PMC10054008 DOI: 10.3390/life13030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Trans-aconitic acid (TAA) is naturally present in sweet sorghum juice and syrup, and it has been promoted as a potential biocontrol agent for nematodes. Therefore, we developed a process for the extraction of aconitic acid from sweet sorghum syrup. The process economics were evaluated, and the extract was tested for its capability to suppress the motility of the nematodes Caenorhabditis elegans and Meloidogyne incognita. Aconitic acid could be efficiently extracted from sweet sorghum syrup using acetone:butanol:ethanol mixtures, and it could be recovered from this solvent with a sodium carbonate solution, with an overall extraction and recovery efficiency of 86%. The estimated production cost was USD 16.64/kg of extract and this was highly dependent on the solvent cost, as the solvent was not recycled but was resold for recovery at a fraction of the cost. The extract was effective in reducing the motility of the parasitic M. incognita and causing over 78% mortality of the nematode when 2 mg/mL of TAA extract was added. However, this positive result could not conclusively be linked solely to TAA. An unidentified component (or components) in the acetone:butanol:ethanol sweet sorghum extract appears to be an effective nematode inhibitor, and it may merit further investigation. The impact of aconitic acid on C. elegans appeared to be entirely controlled by pH.
Collapse
Affiliation(s)
- K Thomas Klasson
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA
| | - Yunci Qi
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA
| | - Gillian O Bruni
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA
| | - Tristan T Watson
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Bretlyn T Pancio
- Oak Ridge Institute for Science and Education Research Program at USDA, Oak Ridge, TN 37831, USA
| | - Evan Terrell
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, New Orleans, LA 70124, USA
| |
Collapse
|
14
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Terefe T, Mhlongo MI. Metabolomic evaluation of PGPR defence priming in wheat ( Triticum aestivum L.) cultivars infected with Puccinia striiformis f. sp. tritici (stripe rust). FRONTIERS IN PLANT SCIENCE 2023; 14:1103413. [PMID: 37123830 PMCID: PMC10132142 DOI: 10.3389/fpls.2023.1103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Plant-microbe interactions are a phenomenal display of symbiotic/parasitic relationships between living organisms. Plant growth-promoting rhizobacteria (PGPR) are some of the most widely investigated plant-beneficial microbes due to their capabilities in stimulating plant growth and development and conferring protection to plants against biotic and abiotic stresses. As such, PGPR-mediated plant priming/induced systemic resistance (ISR) has become a hot topic among researchers, particularly with prospects of applications in sustainable agriculture. The current study applies untargeted ultra-high performance liquid chromatography-high-definition mass spectrometry (UHPLC-HDMS) to investigate PGPR-based metabolic reconfigurations in the metabolome of primed wheat plants against Puccinia striiformis f. sp. tricti (Pst). A seed bio-priming approach was adopted, where seeds were coated with two PGPR strains namely Bacillus subtilis and Paenibacillus alvei (T22) and grown under controlled conditions in a glasshouse. The plants were infected with Pst one-week post-germination, followed by weekly harvesting of leaf material. Subsequent metabolite extraction was carried out for analysis on a UHPLC-HDMS system for data acquisition. The data was chemometrically processed to reveal the underlying trends and data structures as well as potential signatory biomarkers for priming against Pst. Results showed notable metabolic reprogramming in primary and secondary metabolism, where the amino acid and organic acid content of primed-control, primed-challenged and non-primed-challenged plants were differentially reprogrammed. Similar trends were observed from the secondary metabolism, in which primed plants (particularly primed-challenged) showed an up-regulation of phenolic compounds (flavonoids, hydroxycinnamic acids-HCAs- and HCA amides) compared to the non-primed plants. The metabolomics-based semi-quantitative and qualitative assessment of the plant metabolomes revealed a time-dependent metabolic reprogramming in primed-challenged and primed-unchallenged plants, indicating the metabolic adaptations of the plants to stripe rust infection over time.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Tarekegn Terefe
- Division of Small Grain Diseases and Crop Protection, Agricultural Research Council-Small Grains Institute (ARC-SGI), Private Bag X29 Bethlehem, Free State, Bethlehem, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- *Correspondence: Msizi I. Mhlongo,
| |
Collapse
|
15
|
Effect of Humic Acid on Soil Physical and Chemical Properties, Microbial Community Structure, and Metabolites of Decline Diseased Bayberry. Int J Mol Sci 2022; 23:ijms232314707. [PMID: 36499039 PMCID: PMC9738081 DOI: 10.3390/ijms232314707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, bayberry decline disease has caused significant damage to the bayberry industry. In order to evaluate whether humic acid can be used to effectively control the disease, this research examined the nutritional growth and fruit quality of bayberry, soil physical and chemical properties, soil microbial community structure, and metabolites. Results indicated that the application of humic acid not only improved the vigor and fruit quality of diseased trees, but also increased the diversity of microbial communities in the rhizosphere soil. A great increase was observed in the relative abundance of bacterial genus Mycobacterium and Crossiella; fungal genus Fusarium and Coniosporium. In contrast, a significant decrease was observed in the relative abundance of bacterial genus Acidothermus, Bryobacter, Acidibacter, fungal genus of Geminibasidium and Mycena. Analysis of redundancies (RDA) for microbial communities and soil characteristics showed that the main four variables, including available nitrogen, phosphorus, potassium, and calcium, had a great effect on the composition of bacterial and fungal communities in bayberry rhizosphere soil at the genus level. The main four variables had a greater effect on bacterial communities than on fungal communities. In addition, ABC transporter, arginine and proline metabolism, galactose metabolism, and glutathione metabolism were significantly affected by humic acid, which changed the content of 81 metabolites including 58 significantly down-regulated metabolites such as isohexonic acid and carinitine, and 23 significantly up-regulated metabolites such as acidic acid, guaninosuccinate, lyxose, 2-monoolein, epicatechin, and pentonolactone. These metabolites also significantly correlated with rhizosphere soil microbiota at the phylum, order, and genus levels. In conclusion, the results demonstrated the role of humic acid on plant growth and fruit quality, as well as rhizosphere soil characteristics, microbiota, and secondary metabolites, which provides novel insights into the control of bayberry decline disease.
Collapse
|
16
|
Comprehensive Analysis of Transcriptome and Metabolome Elucidates the Molecular Regulatory Mechanism of Salt Resistance in Roots of Achnatherum inebrians Mediated by Epichloë gansuensis. J Fungi (Basel) 2022; 8:jof8101092. [PMID: 36294657 PMCID: PMC9605608 DOI: 10.3390/jof8101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Salinization of soil is a major environmental risk factor to plant functions, leading to a reduction of productivity of crops and forage. Epichloë gansuensis, seed-borne endophytic fungi, establishes a mutualistic symbiotic relationship with Achnatherum inebrians and confers salt tolerance in the host plants. In this study, analysis of transcriptome and metabolome was used to explore the potential molecular mechanism underlying the salt-adaptation of A. inebrians roots mediated by E. gansuensis. We found that E. gansuensis played an important role in the gene expression of the host’s roots and regulated multiple pathways involved in amino acid metabolism, carbohydrate metabolism, TCA cycle, secondary metabolism, and lipid metabolism in the roots of A. inebrians. Importantly, E. gansuensis significantly induced the biological processes, including exocytosis, glycolytic process, fructose metabolic process, and potassium ion transport in roots of host plants at transcriptional levels, and altered the pathways, including inositol phosphate metabolism, galactose metabolism, starch, and sucrose metabolism at metabolite levels under NaCl stress. These findings provided insight into the molecular mechanism of salt resistance in roots of A. inebrians mediated by E. gansuensis and could drive progress in the cultivation of new salt-resistance breeds with endophytes.
Collapse
|