1
|
Xu M, Zhang L, Liu X, Tian Y, Wang B, Guan T, Ma W, Qu H, Chen D, Xiao L. Fig Meal Replacement Powder Ameliorates Obesity, Oxidative Stress and Intestinal Microbiota in Mice Fed With High-Fat Diet. Food Sci Nutr 2025; 13:e70104. [PMID: 40260060 PMCID: PMC12009752 DOI: 10.1002/fsn3.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Figs, known for their high-antioxidant capacity, have shown potential in regulating obesity. However, research on fig-based products and the mechanisms behind their effects remains limited. This study aims to systematically evaluate the potential of fig meal replacement powder (FMRP) in regulating obesity and mitigating obesity-induced oxidative stress through both in vitro and in vivo experiments, while also elucidating its underlying mechanisms. The results demonstrated that FMRP exhibited superior nutritional value and antioxidant activity compared to commercially available alternatives. Furthermore, FMRP significantly reduced weight gain, improved lipid metabolism, alleviated liver damage and oxidative stress, and positively modulated the gut microbiota in high-fat diet (HFD)-fed mice. Gut microbiota analysis showed that FMRP could restore the gut microbiota of hfd mice. For instance, it reduced the Firmicutes/Bacteroidetes (F/B) ratio. The correlation analysis has revealed the key bacterial genera related to obesity and oxidative stress. The key bacterial genera related to obesity include Desulfovibrio, Lachnoclostridium, etc., while the key bacterial genera related to oxidative stress include Bifidobacterium, Lactobacillus, and Turicibacter, etc. In conclusion, FMRP effectively alleviates oxidative stress, improves lipid metabolism, and modulates the gut microbiota, highlighting its potential as a functional food for obesity management.
Collapse
Affiliation(s)
- Mingze Xu
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Longfei Zhang
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Xiaoxiao Liu
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Yigu Tian
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Bingkui Wang
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Tianzhu Guan
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
| | - Wenliong Ma
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Hengxian Qu
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Dawei Chen
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
| | - Lixia Xiao
- School of Food Science and EngineeringYangzhou UniversityYangzhouChina
| |
Collapse
|
2
|
Karwowska M, Skwarek P, Solska E, Nowaczyk A, Goławski A, Wojtaś P, Stasiak DM. Safety, Sensory Quality and Nutritional Value of Hybrid Meat Products Made from Turkey Meat and Red Beans Preserved with a Bioprotective Culture. Molecules 2025; 30:691. [PMID: 39942794 PMCID: PMC11820611 DOI: 10.3390/molecules30030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
The current study assessed the quality and safety of hybrid meat products made from turkey meat and red beans with the addition of SAFEPRO® B-LC-20 protective cultures. The tested materials were hybrid products produced with turkey thigh muscles and red beans in 100:0, 60:40, 50:50 and 40:60 ratios. During a 15-day storage period, research was carried out on the physicochemical and microbiological properties, antioxidant capacity, fatty acid profile and sensory characteristics. The results showed that the count of Enterobacteriaceae in hybrid meat products did not differ significantly depending on the formulation. The addition of red beans in a hybrid meat product formulation significantly increased the antioxidant activity of the products compared to a sample made of 100% meat. The samples with red beans were characterized by significantly lower values of n-6/n-3, UFA/SFA and PUFA/SFA compared to samples produced with turkey thigh muscles and red beans in a ratio of 100:0. In summary, the formulation combining turkey meat and beans in a ratio of 60:40 is recommended as optimal, enabling the creation of a safe hybrid meat product with properties similar to those of a full-meat product.
Collapse
Affiliation(s)
- Małgorzata Karwowska
- Sub-Department of Meat Technology and Food Quality, Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (P.S.); (E.S.); (A.N.); (D.M.S.)
| | - Patrycja Skwarek
- Sub-Department of Meat Technology and Food Quality, Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (P.S.); (E.S.); (A.N.); (D.M.S.)
| | - Elżbieta Solska
- Sub-Department of Meat Technology and Food Quality, Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (P.S.); (E.S.); (A.N.); (D.M.S.)
| | - Agata Nowaczyk
- Sub-Department of Meat Technology and Food Quality, Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (P.S.); (E.S.); (A.N.); (D.M.S.)
| | - Andrzej Goławski
- Meat Plant Mościbrody sp. z o.o., Mościbrody 53, 08-112 Wiśniew, Poland; (A.G.); (P.W.)
| | - Przemysław Wojtaś
- Meat Plant Mościbrody sp. z o.o., Mościbrody 53, 08-112 Wiśniew, Poland; (A.G.); (P.W.)
| | - Dariusz M. Stasiak
- Sub-Department of Meat Technology and Food Quality, Department of Animal Food Technology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (P.S.); (E.S.); (A.N.); (D.M.S.)
| |
Collapse
|
3
|
Xue P, You X, Ren L, Yue W, Ma Z. PPARγ-mediated amelioration of lipid metabolism abnormality by kaempferol. Arch Biochem Biophys 2024; 761:110154. [PMID: 39278305 DOI: 10.1016/j.abb.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Kaempferol can exert biological functions by regulating various signaling pathways. This study evaluated the ameliorative effect of kaempferol on lipid accumulation using oleic acid and palmitic acid-treated HepG2 cells and high-fat diet mice. In vitro oil red O staining showed that kaempferol treatment improved lipid accumulation (p < 0.001 for TG content and p < 0.05 for TC content). Immunofluorescence, Western blot analysis and RT-qPCR showed that kaempferol could promote nuclear translocation of PPARγ and reduce the expression of PPARγ, C/EBPβ, and SREBP-1c. Dietary intervention with kaempferol could reduce the lipid accumulation in hepatocytes and inflammatory cell infiltration, as well as attenuated serum levels of IL-6 and TNF-α in HFD-fed mice (p < 0.001 for IL-6 and p < 0.01 for TNF-α at kaempferol 60 mg/kg/d). Meanwhile, histopathological examination revealed that there was no substantial damage or distinct inflammation lesions in organs at the experimental dose, including the heart, lung, kidney, and spleen. The aforementioned research findings can serve as references for further preclinical investigations on the potential of kaempferol to mitigate lipid accumulation.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Xinyong You
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Samukha V, Fantasma F, D’Urso G, Colarusso E, Schettino A, Marigliano N, Chini MG, Saviano G, De Felice V, Lauro G, Maione F, Bifulco G, Casapullo A, Iorizzi M. Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation. Biomolecules 2024; 14:1336. [PMID: 39456269 PMCID: PMC11505683 DOI: 10.3390/biom14101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean varieties commonly consumed in Italy: Cannellino (PVCA), Controne (PVCO), Borlotti (PVBO), Stregoni (PVST), and Vellutina (PVVE). Lipid content represents a minor fraction of the whole metabolome in dry beans, and little is known about their polar lipids, which could be potentially bioactive components. Thirty-three compounds were detected through UHPLC-MS/MS, including oxylipins, phospholipids, N-acyl glycerolipids, and several fatty acids. The dichloromethane extracts were subjected to principal component analysis (PCA), with the results showing greater differentiation for the Borlotti variety. Moreover, 27 components belonging to different polyphenol classes, such as phenolic acids, flavonoids, catechins, anthocyanins and their glycosides, and some saponins, were identified in the hydroalcoholic seed extracts. In addition, the mineral content of the beans was determined. Considering the high number of compounds in the five apolar seed extracts, all samples were examined to determine their in vitro inhibitory activity against the enzyme cyclooxygenase-2 (COX-2), which is inducible in inflammatory cells and mediates inflammatory responses. Only PVCO showed the best inhibition of the COX-2 enzyme with an IC50 = 31.15 ± 2.16 µg/mL. In light of these results, the potential anti-inflammatory properties of PVCO were evaluated in the LPS-stimulated murine macrophage cell line J774A.1. Herein, we demonstrate, for the first time, that PVCO at 30 µg/mL can significantly reduce the release of TNF-α, with a less significant anti-inflammatory effect being observed in terms of IL-6 release.
Collapse
Affiliation(s)
- Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.S.); (N.M.); (F.M.)
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.S.); (N.M.); (F.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.S.); (N.M.); (F.M.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.D.); (E.C.); (G.L.); (G.B.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (G.S.); (V.D.F.); (M.I.)
| |
Collapse
|
5
|
Taroncher M, Gonzalez-Suarez AM, Gwon K, Romero S, Reyes-Figueroa AD, Rodríguez-Carrasco Y, Ruiz MJ, Stybayeva G, Revzin A, de Hoyos-Vega JM. Using Microfluidic Hepatic Spheroid Cultures to Assess Liver Toxicity of T-2 Mycotoxin. Cells 2024; 13:900. [PMID: 38891032 PMCID: PMC11172061 DOI: 10.3390/cells13110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The Fusarium fungi is found in cereals and feedstuffs and may produce mycotoxins, which are secondary metabolites, such as the T-2 toxin (T-2). In this work, we explored the hepatotoxicity of T-2 using microfluidic 3D hepatic cultures. The objectives were: (i) exploring the benefits of microfluidic 3D cultures compared to conventional 3D cultures available commercially (Aggrewell plates), (ii) establishing 3D co-cultures of hepatic cells (HepG2) and stellate cells (LX2) and assessing T-2 exposure in this model, (iii) characterizing the induction of metabolizing enzymes, and (iv) evaluating inflammatory markers upon T-2 exposure in microfluidic hepatic cultures. Our results demonstrated that, in comparison to commercial (large-volume) 3D cultures, spheroids formed faster and were more functional in microfluidic devices. The viability and hepatic function decreased with increasing T-2 concentrations in both monoculture and co-cultures. The RT-PCR analysis revealed that exposure to T-2 upregulates the expression of multiple Phase I and Phase II hepatic enzymes. In addition, several pro- and anti-inflammatory proteins were increased in co-cultures after exposure to T-2.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain; (Y.R.-C.); (M.-J.R.)
| | - Alan M. Gonzalez-Suarez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Samuel Romero
- Centro de Investigación en Matemáticas Unidad Monterrey, Apodaca 66628, NL, Mexico (A.D.R.-F.)
| | - Angel D. Reyes-Figueroa
- Centro de Investigación en Matemáticas Unidad Monterrey, Apodaca 66628, NL, Mexico (A.D.R.-F.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de Mexico 03940, Mexico
| | - Yelko Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain; (Y.R.-C.); (M.-J.R.)
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain; (Y.R.-C.); (M.-J.R.)
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| | - Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA; (M.T.); (A.M.G.-S.); (G.S.)
| |
Collapse
|
6
|
Samukha V, Fantasma F, D’Urso G, Caprari C, De Felice V, Saviano G, Lauro G, Casapullo A, Chini MG, Bifulco G, Iorizzi M. NMR Metabolomics and Chemometrics of Commercial Varieties of Phaseolus vulgaris L. Seeds from Italy and In Vitro Antioxidant and Antifungal Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:227. [PMID: 38256780 PMCID: PMC10820859 DOI: 10.3390/plants13020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than 32 metabolites from various classes, i.e., carbohydrates, amino acids, organic acids, nucleosides, alkaloids, and fatty acids. PVEL, PCON, and PCANN varieties displayed similar chemical profiles, albeit with somewhat different quantitative results. The PON metabolite composition was slightly different from the others; it lacked GABA and pipecolic acid, featured a higher percentage of malic acid than the other samples, and showed quantitative variations of several metabolites. The lipophilic extracts from all four cultivars demonstrated the presence of omega-3 and omega-6 unsaturated fatty acids. After the determination of the total phenolic, flavonoids, and condensed tannins content, in vitro antioxidant activity was then assessed using the DPPH scavenging activity, the ABTS scavenging assay, and ferric-reducing antioxidant power (FRAP). Compared to non-dark seeds (PCON, PCANN), brown seeds (PVEL, PON) featured a higher antioxidant capacity. Lastly, only PON extract showed in vitro antifungal activity against the sclerotia growth of S. rolfsii, by inhibiting halo growth by 75%.
Collapse
Affiliation(s)
- Vadym Samukha
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Claudio Caprari
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (G.D.); (G.L.); (A.C.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (V.S.); (F.F.); (C.C.); (V.D.F.); (G.S.); (M.I.)
| |
Collapse
|
7
|
Martínez-Alonso C, Taroncher M, Rodríguez-Carrasco Y, Ruiz MJ. Evaluation of the Bioaccessible Fraction of T-2 Toxin from Cereals and Its Effect on the Viability of Caco-2 Cells Exposed to Tyrosol. Toxins (Basel) 2023; 15:493. [PMID: 37624250 PMCID: PMC10467075 DOI: 10.3390/toxins15080493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
The bioaccessibility of mycotoxins is an important factor that has to be considered when assessing the risk they pose to human health. Bioactive compounds like phenolics could play a protective role against the toxic effects of contaminants. In this work, the bioaccessible fraction of the T-2 toxin (T-2) contained in breakfast cereals and its effect on the viability of Caco-2 cells were investigated. Furthermore, the effect of tyrosol (a polyphenol abundant in EVOO) on T-2-induced cytotoxicity was evaluated in the same cell line. After standardized in vitro gastrointestinal digestion, the T-2 toxin was released from T-2-spiked breakfast cereals and further quantified by UHPLC-MS/MS. The bioaccessible fraction of T-2 was 51 ± 4%. The cell viability study was performed by pre-treating the cells for 24 h with tyrosol (25, 50 and 100 µM) and subsequently adding T-2 at 15 nM or by treating the cells with a combination of tyrosol and T-2. In the simultaneous treatment, 25 µM tyrosol prevented the toxic effects produced by the exposure to T-2 at 15 nM; however, cytotoxic effects were observed for the other combinations tested. The pre-treatment of Caco-2 cells with tyrosol did not attenuate the cytotoxic effects caused by exposure to T-2. These results suggest that tyrosol at low concentrations (25 µM) could exert a cytoprotective effect on Caco-2 cells against 15 nM T-2 when administered simultaneously with T-2. However, more studies are required to corroborate this hypothesis.
Collapse
Affiliation(s)
| | | | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.T.); (M.-J.R.)
| | | |
Collapse
|
8
|
Giorni P, Bulla G, Leni G, Soldano M, Tacchini M, Guerrini A, Sacchetti G, Bertuzzi T. Enhancement of agri-food by-products: green extractions of bioactive molecules with fungicidal action against mycotoxigenic fungi and their mycotoxins. Front Nutr 2023; 10:1196812. [PMID: 37305090 PMCID: PMC10248026 DOI: 10.3389/fnut.2023.1196812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Today, alternative strategies based on the use of bioactive compounds have been proposed to reduce mycotoxin contamination and limit the use of chemical fungicides. Methods In the present work, several by-products collected from the agri-food chain (i.e., red and white grape marc, red grapevine leaves, grape seeds and stalks, pear, apple, green beans, tomato, and spent hops) were subjected to green extraction protocols (i.e., steam distillation, Ultrasound-Assisted, and Naviglio® extraction) to obtain extracts rich in polyphenols and terpenes. Each extract was assessed in vitro for its ability to inhibit the development of the main mycotoxigenic species and related mycotoxins. Results and Discussion Aspergillus flavus and A. carbonarius were significantly reduced by pear (from -45 to -47%) and grape marc (from -21 to -51%) extracts, while F. graminearum was shown to be highly influenced by grape stalk, pear, and grape marc extracts (-24% on average). On the contrary, F. verticillioides was inhibited only by pear (-18%) and to a very low and negligible extent by apple (-1%) and green beans (-3%). Regarding the reduction of mycotoxins, the extracts were able to inhibit OTA from 2 to 57%, AFB1 from 5 to 75%, and DON from 14 to 72%. The highest percentages of reduction were obtained against FBs (from 11 to 94%), ZEN (from 17 to 100%), and Alternaria toxins (from 7 to 96%). In conclusion, this work provided promising results for the production of bioactive extracts obtained from agri-food by-products, which could be exploited as potential biofungicides against the development of mycotoxigenic fungi and related mycotoxins.
Collapse
Affiliation(s)
- Paola Giorni
- Dipartimento delle Produzioni Vegetali Sostenibili (DIPROVES), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Bulla
- Dipartimento delle Produzioni Vegetali Sostenibili (DIPROVES), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Leni
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Massimo Tacchini
- Dipartimento di Scienze della Vita e Biotecnologie, Università Degli Studi Di Ferrara, Ferrara, Italy
| | - Alessandra Guerrini
- Dipartimento di Scienze della Vita e Biotecnologie, Università Degli Studi Di Ferrara, Ferrara, Italy
| | - Gianni Sacchetti
- Dipartimento di Scienze della Vita e Biotecnologie, Università Degli Studi Di Ferrara, Ferrara, Italy
| | - Terenzio Bertuzzi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
9
|
Abruscato G, Chiarelli R, Lazzara V, Punginelli D, Sugár S, Mauro M, Librizzi M, Di Stefano V, Arizza V, Vizzini A, Vazzana M, Luparello C. In Vitro Cytotoxic Effect of Aqueous Extracts from Leaves and Rhizomes of the Seagrass Posidonia oceanica (L.) Delile on HepG2 Liver Cancer Cells: Focus on Autophagy and Apoptosis. BIOLOGY 2023; 12:biology12040616. [PMID: 37106816 PMCID: PMC10135731 DOI: 10.3390/biology12040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Aqueous extracts from Posidonia oceanica's green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose-response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 μg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties.
Collapse
Affiliation(s)
- Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Diletta Punginelli
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Aiti Vizzini
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy
| |
Collapse
|
10
|
Taroncher M, Rodríguez-Carrasco Y, Barba FJ, Ruiz MJ. Evaluation of cytotoxicity, analysis of metals and cumulative risk assessment in microalgae. Toxicol Mech Methods 2022:1-13. [DOI: 10.1080/15376516.2022.2152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mercedes Taroncher
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - María José Ruiz
- Department of Preventive Medicine and Public Health, Food science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Foodomics: Current and Future Perspectives in Food Analysis. Foods 2022; 11:foods11091238. [PMID: 35563961 PMCID: PMC9105153 DOI: 10.3390/foods11091238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Climate change, an increase in population, and the recent pandemic crisis triggered by SARS-CoV-2 have all contributed to a period of global problems [...].
Collapse
|