1
|
Kamińska W, Rzyska-Szczupak K, Przybylska-Balcerek A, Stuper-Szablewska K, Dembska A, Neunert G. Behavior at Air/Water Interface and Oxidative Stability of Vegetable Oils Analyzed Through Langmuir Monolayer Technique. Molecules 2025; 30:170. [PMID: 39795226 PMCID: PMC11721862 DOI: 10.3390/molecules30010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
This study aimed to evaluate the oxidative stability and surface properties of cold-pressed vegetable oils using the Langmuir monolayer technique. Six oils-milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, and pumpkin seed-were analyzed to investigate their molecular organization and behavior at the air/water interface, particularly after undergoing oxidation. The results showed that oils rich in polyunsaturated fatty acids (PUFAs), such as flaxseed and evening primrose oils, formed monolayers with larger molecular areas and lower stability, which led to faster oxidative degradation, especially under thermal conditions. In contrast, pumpkin seed oil, with a higher content of saturated fatty acids (SFAs), formed more condensed and stable monolayers, enhancing its resistance to oxidation. Black cumin oil, with a balanced profile of SFAs and monounsaturated fatty acids (MUFAs), demonstrated similar stability. The Langmuir technique facilitated a detailed analysis of monolayer phase transitions: PUFA-rich oils transitioned more readily to less stable phases, while SFA-rich oils maintained durable, condensed structures. These findings underscore the utility of this method for assessing the oxidative stability of vegetable oils and highlight key parameters-such as surface pressure, molecular area, and elasticity modulus-that can support the optimization of oil storage and quality in the food industry and related sectors.
Collapse
Affiliation(s)
- Wiktoria Kamińska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
| | - Katarzyna Rzyska-Szczupak
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-628 Poznan, Poland; (K.R.-S.); (A.P.-B.); (K.S.-S.)
| | - Anna Przybylska-Balcerek
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-628 Poznan, Poland; (K.R.-S.); (A.P.-B.); (K.S.-S.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-628 Poznan, Poland; (K.R.-S.); (A.P.-B.); (K.S.-S.)
| | - Anna Dembska
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland
| |
Collapse
|
2
|
Athanasiadis V, Kalompatsios D, Mantiniotou M, Lalas SI. Investigation into the Reduction of Palm Oil in Foods by Blended Vegetable Oils through Response Surface Methodology and Oxidative Stability Tests. Antioxidants (Basel) 2024; 13:929. [PMID: 39199174 PMCID: PMC11352106 DOI: 10.3390/antiox13080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Recently, there has been a significant transition in the dietary preferences of consumers toward foods containing health-promoting compounds. In addition, as people's environmental awareness increases, they are increasingly looking for sustainable solutions. Palm oil, an oil used extensively by the food industry, does not fit these criteria. This study investigated the development of a complex oil blend consisting of commonly used vegetable oils such as corn, rapeseed, sunflower, and palm oil. The aim was to find the optimal blended oil and compare this combination with palm oil in terms of its oxidative stability, antioxidant capacity, and the composition of bioactive compounds (i.e., fatty acids, tocopherols, and carotenoids). Palm oil was found to have greater oxidative stability as a result of its increased concentration of saturated fatty acids. The optimal blended oil, which consisted of corn and rapeseed oil at a ratio of 4:3 w/w, inhibited the superior antioxidant activity, showing a ~33% increase in DPPH• inhibition activity. ATR-FTIR spectra further verified the existence of a significant quantity of saturated fatty acids in palm oil and unsaturated fatty acids in the blended oil. Finally, several correlation analyses revealed interesting connections between oil samples and investigated parameters. This work has the potential to establish a basis for the mass production of oil blends that possess high concentrations of antioxidant compounds and reduce the use of palm oil.
Collapse
Affiliation(s)
- Vassilis Athanasiadis
- Department of Food Science and Nutrition, University of Thessaly, Terma N. Temponera Street, 43100 Karditsa, Greece; (D.K.); (M.M.); (S.I.L.)
| | | | | | | |
Collapse
|
3
|
Fedko M, Siger A, Szydłowska-Czerniak A, Rabiej-Kozioł D, Tymczewska A, Włodarczyk K, Kmiecik D. The Effect of High-Temperature Heating on Amounts of Bioactive Compounds and Antiradical Properties of Refined Rapeseed Oil Blended with Rapeseed, Coriander and Apricot Cold-Pressed Oils. Foods 2024; 13:2336. [PMID: 39123528 PMCID: PMC11311388 DOI: 10.3390/foods13152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cold-pressed oils are rich sources of bioactive substances, which may protect triacylglycerols from degradation during frying. Nevertheless, these substances may decompose under high temperature. This work considers the content of bioactive substances in blends and their changes during high-temperature heating. Blends of refined rapeseed oil with 5% or 25% in one of three cold-pressed oils (rapeseed, coriander and apricot) were heated at 170 or 200 °C in a thin layer on a pan. All non-heated blends and cold-pressed oils were tested for fatty acid profile, content and composition of phytosterols, tocochromanols, chlorophyll and radical scavenging activity (RSA) analyzed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the stability of phytosterols, tocochromanols, DPPH and ABTS values was determined in heated blends. All tocochromanols were lost during the heating process, in particular, at 200 °C. However, there were some differences between homologues. α-Tocopherol and δ-tocopherol were the most thermolabile and the most stable, respectively. Phytosterols were characterized by very high stability at both temperatures. We observed relationships between ABTS and DPPH values and contents of total tocochromanols and α-tocopherol. The obtained results may be useful in designing a new type of fried food with improved health properties and it may be the basis for further research on this topic.
Collapse
Affiliation(s)
- Monika Fedko
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-787 Warsaw, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| | - Aleksandra Szydłowska-Czerniak
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dobrochna Rabiej-Kozioł
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Alicja Tymczewska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Katarzyna Włodarczyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (A.S.-C.); (D.R.-K.); (A.T.); (K.W.)
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-634 Poznań, Poland;
| |
Collapse
|
4
|
Tavakoli J, Ghorbani A, Hematian Sourki A, Ghani A, Zarei Jelyani A, Kowalczewski PŁ, Aliyeva A, Mousavi Khaneghah A. Thermal processing of pomegranate seed oils underscores their antioxidant stability and nutritional value: Comparison of pomegranate seed oil with sesame seed oil. Food Sci Nutr 2024; 12:2166-2181. [PMID: 38455193 PMCID: PMC10916621 DOI: 10.1002/fsn3.3918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 03/09/2024] Open
Abstract
In the present study, the oxidative stability and antioxidant activity of seed oils were investigated in three Iranian pomegranate cultivars, Shirin Khafr, Torsh Sabz, and Rabab, along with the sesame (Sesamum indicume L. cv Dezful) seed oil. Punicic acid was the primary fatty acid in the pomegranate seed oils, with contents ranging from 75.5 to 80.9% (w/w). The tocopherol levels in pomegranate seed oils ranged from 1439 to 2053 mg/kg, whereas the phenolics ranged from 130 to 199.3 mg/kg, respectively. Comparatively, in the seed oil of sesame "Dezful," these substances' contents were 1053 and 79 mg/kg, respectively. Contrary to common perception, the seed oil of the three pomegranate cultivars cultivated in Iran had high oxidative stability and antioxidative activity during the 32 h of thermal processing at 170°C. The oxidation stability assayed by peroxide value, p-anisidine value, and TOTOX index revealed that the pomegranate seed oils had a much higher resistance to the oxidation process than the sesame oil. The content of tocopherols increased during thermal processing due to the regeneration phenomenon. Tocopherols are not always free and may form a matrix with themselves or other compounds. Changes in the antioxidant activity during the thermal processing assessed by DPPH free radical scavenging power and by the FRAP test were consistent with those for the antioxidants. Therefore, these oils can be added to other edible oils as a natural antioxidant to improve their oxidative stability.
Collapse
Affiliation(s)
- Javad Tavakoli
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | - Afsaneh Ghorbani
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | - Abdollah Hematian Sourki
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | - Askar Ghani
- Department of Horticultural Science, Faculty of AgricultureJahrom UniversityJahromFarsIran
| | | | | | - Aynura Aliyeva
- Department of Technology of ChemistryAzerbaijan State Oil and Industry UniversityBakuAzerbaijan
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research InstituteWarsawPoland
| |
Collapse
|
5
|
Sinha SS, Upadhyay A, Singh A. Development and optimization of oleogel made with soy protein isolate and xanthan gum using emulsion template approach and its comparison with solid fats. Heliyon 2024; 10:e25224. [PMID: 38327469 PMCID: PMC10847603 DOI: 10.1016/j.heliyon.2024.e25224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
This study aims to develop oleogel as a potential substitute for solid fats in the diet. A novel combination of unmodified Soy Protein Isolate (SPI) and Xanthan Gum (XG) have been utilized to gelate sunflower oil, using an emulsion template approach. The experimental trials employing Response Surface Methodology are conducted to optimize various parameters that affect the oil binding capacity, textural and rheological properties of the oleogel. The concentration of soy protein varies in the range of 5-15 %, the ratio of soy protein to xanthan gum ranges from 1:2 to 1:4, and the ionic strength varies from 0.2 to 1 M. The goal is to formulate oleogel that closely resembles solid fats. Responses namely the oil binding capacity and gel strength value of oleogel were observed best fitted to a linear model whereas, the hardness of oleogel found following a quadratic model. The SPI-XG combination was found effective in entraping more than 95 % of the oil. The best formulation of SPI: XG, 1:4; SPI concentration, 15 % and ionic strength of 1.0 M with 95.5 % of oil retention and hardness and gel strength value comparable to commercial solid fats.
Collapse
Affiliation(s)
- Saumya Sonam Sinha
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat (Haryana), India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat (Haryana), India
| | - Anurag Singh
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur (Uttar Pradesh), India
| |
Collapse
|
6
|
Ratusz K, Wroniak M, Ścibisz I. Special Issue: Bioactive Compounds, Nutritional Quality, and Oxidative Stability of Edible Oils and By-Products of Their Extraction. Foods 2023; 12:3133. [PMID: 37628132 PMCID: PMC10453837 DOI: 10.3390/foods12163133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Edible oils (refined, virgin, and cold-pressed oils) are one of the most important components of the daily human diet and have a considerable influence on the proper functioning of our body [...].
Collapse
Affiliation(s)
- Katarzyna Ratusz
- Division of Fats and Oils Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Małgorzata Wroniak
- Division of Fats and Oils Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Iwona Ścibisz
- Division of Fruit, Vegetable and Cereal Technology, Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
7
|
Cichocki W, Kmiecik D, Baranowska HM, Staroszczyk H, Sommer A, Kowalczewski PŁ. Chemical Characteristics and Thermal Oxidative Stability of Novel Cold-Pressed Oil Blends: GC, LF NMR, and DSC Studies. Foods 2023; 12:2660. [PMID: 37509752 PMCID: PMC10378366 DOI: 10.3390/foods12142660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Plant oils contain a high content of unsaturated fatty acids. Studies of food products have revealed a considerable disproportion in the ratio of ω6 to ω3. This article presents information on the healthful qualities of eight new oil blends that contain a beneficial proportion of ω6 to ω3 fatty acids (5:1), as well as their degradation during heating at 170 and 200 °C. The fatty acid profile was analyzed by gas chromatography (GC), content of polar compounds and polymers of triacylglycerols by liquid chromatography (LC), water content was measured by the Karl Fischer method, and oxidative stability was measured by differential scanning calorimetry (DSC) and low-field nuclear magnetic resonance (LF NMR) methods. The results showed that during heating, the polar fraction content increased in samples heated at both analyzed temperatures compared to unheated oils. This was mainly due to the polymerization of triacylglycerols forming dimers. In some samples that were heated, particularly those heated to 200 °C, trimers were detected, however, even with the changes that were observed, the polar fraction content of the blends did not go beyond the limit. Despite the high content of unsaturated fatty acids, the analyzed blends of oils are characterized by high oxidative stability, confirmed by thermoanalytical and nuclear magnetic resonance methods. The high nutritional value as well as the oxidative stability of the developed oil blends allow them to be used in the production of food, in particular products that ensure an adequate supply of ω3 fatty acids.
Collapse
Affiliation(s)
- Wojciech Cichocki
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Hanna Staroszczyk
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Agata Sommer
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| |
Collapse
|
8
|
Kmiecik D, Fedko M, Małecka J, Siger A, Kowalczewski PŁ. Effect of Heating Temperature of High-Quality Arbequina, Picual, Manzanilla and Cornicabra Olive Oils on Changes in Nutritional Indices of Lipid, Tocopherol Content and Triacylglycerol Polymerization Process. Molecules 2023; 28:molecules28104247. [PMID: 37241988 DOI: 10.3390/molecules28104247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of the study was to determine the stability and heat resistance of extra premium olive oil. The study material consisted of six extra virgin olive oils (EVOO) obtained from Spain. Four samples were single-strain olive oils: Arbequina, Picual, Manzanilla, and Cornicabra. Two samples were a coupage of Arbequina and Picual varieties: Armonia (70% Arbequina and 30% Picual) and Sensation (70% Picual and 30% Arbequina). Olive oil samples were heated at 170 °C and 200 °C in a pan (thin layer model). In all samples, changes in indexes of lipid nutritional quality (PUFA/SFA, index of atherogenicity, index of thrombogenicity, and hypocholesterolemic/hypercholesterolemic ratio), changes in tocopherol, total polar compounds content, and triacylglycerol polymers were determined. Heating olive oil in a thin layer led to its degradation and depended on the temperature and the type of olive oil. Increasing the temperature from 170 to 200 °C resulted in significantly higher degradation of olive oil. At 200 °C, deterioration of lipid nutritional indices, total tocopherol degradation, and formation of triacylglycerol polymers were observed. A twofold increase in the polar fraction was also observed compared to samples heated at 170 °C. The most stable olive oils were Cornicabra and Picual.
Collapse
Affiliation(s)
- Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Monika Fedko
- Division of Fat and Oils and Food Concentrates Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-787 Warsaw, Poland
| | - Justyna Małecka
- Liberado Justyna Małecka Oliwny Raj, 233 Dąbrowskiego St., 60-406 Poznań, Poland
| | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-634 Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| |
Collapse
|
9
|
Golimowski W, Teleszko M, Zając A, Kmiecik D, Grygier A. Effect of the Bleaching Process on Changes in the Fatty Acid Profile of Raw Hemp Seed Oil ( Cannabis sativa). Molecules 2023; 28:769. [PMID: 36677827 PMCID: PMC9863655 DOI: 10.3390/molecules28020769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Many refined oils from soybean, rapeseed, and sunflower, among others, are available on the food market, except olive oil. Refining, on the small production scale of niche oils, is not used due to the high cost of the refining process. Unrefined oils are characterized by intense taste, odor, color, and undesirable nutrients. The problem to be solved is determining the effects of incomplete refining of niche oils on their composition. One process, which does not require the use of complex apparatus, is the bleaching process. The results presented in this article relate to the research stage, in which the aim is to evaluate the changes occurring in the oil due to the low-temperature bleaching process with different process parameters. The presented research results provide evidence of the absence of adverse changes in the fatty acid profile of hemp oil of the varieties 'Finola', 'Earlina 8FC', and 'Secuieni Jubileu'. Seven different types of bleaching earth were used to bleach the oil in amounts of 2.5 and 5 g/100 g of vegetable oil. The fatty acid profile was obtained by gas chromatography (GC-FID). The obtained chromatograms were subjected to statistical analysis and principal component analysis (PCA). The results show that there was no effect of the type of bleaching earth and its amount on the change in the fatty acid profile of bleached oils. Only real differences between the types of hemp oils were observed. However, an overall positive effect of the bleaching process on hemp oil was found. The amount of saturated fatty acid (SFA) was reduced by 17.1% compared with the initial value, resulting in an increase in the proportion of polyunsaturated fatty acids (PUFA) by 4.4%, resulting in an unsaturated fatty acid (UFA) proportion of 90%. There was a significant improvement in the SFA/PUFA ratio by 26% over the baseline, and the omega-6/omega-3 ratio by 8.9% to a value of 3.1:1. The new knowledge from this study is evidence of the positive effect of the low-temperature bleaching process on the fatty acid profile. In contrast, the parameters of the bleaching process itself are not significant.
Collapse
Affiliation(s)
- Wojciech Golimowski
- Department of Agroengineering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Mirosława Teleszko
- Department of Food Technology and Nutrition, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Adam Zając
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120 Street, 53–345 Wroclaw, Poland
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Anna Grygier
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| |
Collapse
|
10
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
11
|
Physicochemical and Morphological Study of the Saccharomyces cerevisiae Cell-Based Microcapsules with Novel Cold-Pressed Oil Blends. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vegetable oils rich in polyunsaturated fatty acids are a valuable component of the human diet. Properly composed oil blends are characterized by a 5:1 ratio of ω6/ω3 fatty acids, which is favorable from a nutritional point of view. Unfortunately, their composition makes them difficult to use in food production, as they are susceptible to oxidation and are often characterized by a strong smell. Encapsulation in yeast cells is a possible solution to these problems. This paper is a report on the use of native and autolyzed yeast in the encapsulation of oils. The fatty acid profile, encapsulation efficiency, morphology of the capsules obtained, and thermal behavior were assessed. Fourier transform infrared analysis and low-field nuclear magnetic resonance relaxation time measurements were also performed. The process of yeast autolysis changed the structure of the yeast cell membranes and improved the loading capacity. Lower encapsulation yield was recorded for capsules made from native yeast; the autolysis process significantly increased the value of this parameter. It was observed that NY-based YBMCs are characterized by a high degree of aggregation, which may adversely affect their stability. The average size of the AY capsules for each of the three oil blends was two times smaller than the NY-based capsules. The encapsulation of oils in yeast cells, especially those subjected to the autolysis process, ensured better oxidative stability, as determined by DSC, compared to fresh blends of vegetable oils. From LF NMR analysis of the relaxation times, it was shown that the encapsulation process affects both spin-lattice T1 and spin-spin T2* relaxation times. The T1 time values of the YBMCs decreased relative to the yeast empty cells, and the T2* time was significantly extended. On the basis of the obtained results, it has been proven that highly unsaturated oils can be used as an ingredient in the preparation of functional food via protection through yeast cell encapsulation.
Collapse
|