1
|
Wang W, Liu K, Liu C, Yang B, Dong H, Liao W, Yang X, He Q. A modern scientific perspective on the flavor and functional properties of diverse teas in traditional cuisine "tea-flavored fish": From macroscopic quality to microscopic variations. Food Chem X 2025; 25:102122. [PMID: 39830003 PMCID: PMC11741052 DOI: 10.1016/j.fochx.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The historical appreciation of tea dates back to ancient times, while technological limitations have long hindered in-depth exploration of its flavor complexity and functional attributes. This study investigated the effects of various teas on a traditional delicacy, "tea-flavored fish", using teas processed via traditional methods. Analysis of functional components revealed that processing and fermentation reduced catechin levels (186.3 mg/g to 58.8 mg/g) while increasing theaflavins (16.6 mg/g to 39.6 mg/g), leading to decreased antioxidant and antimicrobial activities. Tea flavored fish was prepared following traditional techniques. The results indicated that the teas preserved their sensory qualities such as texture and color, inhibited metabolic activity and microbial growth, delayed lipid oxidation and protein degradation, and inhibited biogenic amine accumulation. Furthermore, minor compositional variations were observed in the final product. These findings offer novel insights into the application of modern scientific concepts to elucidate the principles underlying traditional craftsmanship.
Collapse
Affiliation(s)
- Wenxia Wang
- School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong Province 510006, China
| | - Kun Liu
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Chunlong Liu
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Bei Yang
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, China
| | - Wenzhen Liao
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xingfen Yang
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qi He
- School of Public Health/ School of Basic Medical Sciences / Food Safety and Health Research Center/ Guangdong Provincial Key Laboratory of Tropical Disease Research/ BSL-3 Laboratory (Guangdong), Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
2
|
Pires AF, Díaz O, Cobos A, Pereira CD. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-Based Materials. Foods 2024; 13:2638. [PMID: 39200565 PMCID: PMC11353588 DOI: 10.3390/foods13162638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Packaging for food products is particularly important to preserve product quality and shelf life. The most used materials for food packaging are plastic, glass, metal, and paper. Plastic films produced based on petroleum are widely used for packaging because they have good mechanical properties and help preserve the characteristics of food. However, environmental concerns are leading the trend towards biopolymers. Films and coatings based on biopolymers have been extensively studied in recent years, as they cause less impact on the environment, can be obtained from renewable sources or by-products, are relatively abundant, have a good coating and film-forming capacity, are biodegradable and have nutritional properties that can be beneficial to human health. Whey protein-based films have demonstrated good mechanical resistance and a good barrier to gases when at low relative humidity levels, in addition to demonstrating an excellent barrier to aromatic compounds and especially oils. The use of whey proteins for films or coatings has been extensively studied, as these proteins are edible, have high nutritional value, and are biodegradable. Thus, the main objective of this document was to review new methodologies to improve the physicochemical properties of whey protein films and coatings. Importance will also be given to the combinations of whey proteins with other polymers and the development of new techniques that allow the manipulation of structures at a molecular level. The controlled release and mass transfer of new biomaterials and the improvement of the design of films and packaging materials with the desired functional properties can increase the quality of the films and, consequently, broaden their applications.
Collapse
Affiliation(s)
- Arona Figueroa Pires
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Angel Cobos
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Carlos Dias Pereira
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
3
|
Zhang R, Wang B, Zhang F, Zheng K, Liu Y. Milk-derived antimicrobial peptides incorporated whey protein film as active coating to improve microbial stability of refrigerated soft cheese. Int J Food Microbiol 2024; 419:110751. [PMID: 38781648 DOI: 10.1016/j.ijfoodmicro.2024.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Nisin is the first FDA-approved antimicrobial peptide and shows significant antimicrobial activity against Gram-positive bacteria, but only a weakly inhibitory effect on Gram-negative bacteria. The aim of this study was to prepare whey protein-based edible films with the incorporation of milk-derived antimicrobial peptides (αs2-casein151-181 and αs2-casein182-207) and compare their mechanical properties and potential application in cheese packaging with films containing nisin. These two antimicrobial peptides showed similar activity against B. subtilis and much higher activity against E. coli than bacteriocin nisin, representing that these milk-derived peptides had great potential to be applied as food preservatives. Antimicrobial peptides in whey protein films caused an increase in film opaqueness and water vapor barrier properties but decreased the tensile strength and elongation at break. Compared to other films, the whey protein film containing αs2-casein151-181 had good stability in salt or acidic solution, as evidenced by the results from scanning electron microscope and Fourier transform infrared spectroscopy. Whey protein film incorporated with αs2-casein151-181 could inhibit the growth of yeasts and molds, and control the growth of psychrotrophic bacteria present originally in the soft cheese at refrigerated temperature. It also exhibited significant inhibitory activity against the development of mixed culture (E. coli and B. subtilis) in the cheese due to superficial contamination during storage. Antimicrobial peptides immobilized in whey protein films showed a higher effectiveness than their direct application in solution. In addition, films containing αs2-casein151-181 could act as a hurdle inhibiting the development of postprocessing contamination on the cheese surface during the 28 days of storage. The films in this study exhibited the characteristics desired for active packaging materials.
Collapse
Affiliation(s)
- Ruyue Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Bhat ZF, Bhat HF, Manzoor M, Abdi G, Aadil RM, Hassoun A, Aït-Kaddour A. Enhancing the lipid stability of foods of animal origin using edible packaging systems. Food Chem X 2024; 21:101185. [PMID: 38384687 PMCID: PMC10879673 DOI: 10.1016/j.fochx.2024.101185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Foods of animal origin are prone to oxidation due to their high lipid content and fatty acid profile. Edible packaging systems have evolved as a new way of preserving animal-derived foods and have been reported to retard lipid oxidation using antioxidant molecules from side-streams, waste, and agricultural by-products. Studies have evaluated previously undocumented film materials and novel bioactive molecules as additives for edible packaging for animal-derived foods. However, none of the studies is specifically focused on evaluating the packaging systems available for enhancing lipid stability. This paper thoroughly examines and discusses the application of edible packaging containing novel antioxidant molecules for controlling the lipid oxidation of animal-derived foods. The paper analyses and interprets the main findings of the recently published research papers. The materials and active principles used for enhancing lipid stability have been summarised and the underlying mechanisms discussed in detail. Studies should aim at using cheaper and readily available natural ingredients in future for the production of affordable packaging systems.
Collapse
Affiliation(s)
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-IIIM, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | | |
Collapse
|
6
|
Pires A, Pietruszka H, Bożek A, Szkolnicka K, Gomes D, Díaz O, Cobos A, Pereira C. Sheep's Second Cheese Whey Edible Coatings with Oregano and Clary Sage Essential Oils Used as Sustainable Packaging Material in Cheese. Foods 2024; 13:674. [PMID: 38472787 DOI: 10.3390/foods13050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Sheep's second cheese whey (SCW), the by-product resulting from whey cheese production, was used as a component of cheese coatings containing oregano (Origanum compactum) and clary sage (Salvia sclarea) essential oils (EOs). SCW powder was obtained by the ultrafiltration/diafiltration of SCW followed by reverse osmosis and freeze drying. The coatings were produced with a mixture of SCW and whey protein isolate (WPI) using glycerol as plasticizer. Model cheeses were produced with cow´s milk and those containing SCW:WPI coatings; those with and without EOs were compared to controls without coating and with a commercial coating containing natamycin. At the end of ripening (28 days), the cheeses containing EOs presented higher water activity (ca. 0.930) and moisture content, as well as lower titratable acidity. Concerning color parameters, significant differences were also observed between products and as a result of ripening time. However, the use of SCW:WPI coatings did not significantly influence the color parameters at the end of ripening. Regarding texture parameters, the cheeses containing SCW:WPI coatings presented significantly lower values for hardness, chewiness, and gumminess. Significant differences were also observed for all microbial groups evaluated either between products and as a result of ripening time. In all cases, lactobacilli and lactococci counts surpassed log 7-8 CFU/g, while the counts of yeasts and molds increased steadily from ca. log 3 to log 6 CFU/g. The lowest counts of yeasts and molds were observed in the samples containing natamycin, but nonsignificant differences between products were observed. In conclusion, SCW:WPI cheese coatings can successfully substitute commercial coatings with the advantage of being edible packaging materials manufactured with by-products.
Collapse
Affiliation(s)
- Arona Pires
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hubert Pietruszka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - Agata Bożek
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - David Gomes
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Angel Cobos
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Pereira
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Centro de Estudos dos Recursos Naturais, Ambiente e Sociedade-CERNAS, 3045-601 Coimbra, Portugal
| |
Collapse
|
7
|
Antonino C, Difonzo G, Faccia M, Caponio F. Effect of edible coatings and films enriched with plant extracts and essential oils on the preservation of animal-derived foods. J Food Sci 2024; 89:748-772. [PMID: 38161278 DOI: 10.1111/1750-3841.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Edible coatings and films for food preservation are becoming more popular thanks to their environmentally friendly properties and active ingredient-carrying ability. Their application can be effective in contrasting quality decay by limiting oxidation and deterioration of foods. Many reviews analyze the different compounds with which films and coatings can be created, their characteristics, and the effect when applied to food. However, the possibility of adding plant extracts and essential oils in edible coatings and films to preserve processed animal-derived products has been not exhaustively explored. The aim of this review is to summarize how edible coatings and films enriched with plant extracts (EXs) and essential oils (EOs) influence the physico-chemical and sensory features as well as the shelf-life of cheese, and processed meat and fish. Different studies showed that various EXs and EOs limited both oxidation and microbial growth after processing and during food preservation. Moreover, encapsulation has been found to be a valid technology to improve the solubility and stability of EOs and EXs, limiting strong flavor, controlling the release of bioactive compounds, and maintaining their stability during storage. Overall, the incorporation of EXs and EOs in edible coating and film to preserve processed foods can offer benefits for improving the shelf-life, limiting food losses, and creating a food sustainable chain.
Collapse
Affiliation(s)
- Claudia Antonino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
8
|
Bhat ZF, Bhat HF, Mohan MS, Aadil RM, Hassoun A, Aït-Kaddour A. Edible packaging systems for improved microbial quality of animal-derived foods and the role of emerging technologies. Crit Rev Food Sci Nutr 2023; 64:12137-12165. [PMID: 37594230 DOI: 10.1080/10408398.2023.2248494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Boulogne-sur-Mer, France
| | | |
Collapse
|
9
|
Carloni P, Albacete A, Martínez-Melgarejo PA, Girolametti F, Truzzi C, Damiani E. Comparative Analysis of Hot and Cold Brews from Single-Estate Teas ( Camellia sinensis) Grown across Europe: An Emerging Specialty Product. Antioxidants (Basel) 2023; 12:1306. [PMID: 37372036 DOI: 10.3390/antiox12061306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Tea is grown around the world under extremely diverse geographic and climatic conditions, namely, in China, India, the Far East and Africa. However, recently, growing tea also appears to be feasible in many regions of Europe, from where high-quality, chemical-free, organic, single-estate teas have been obtained. Hence, the aim of this study was to characterize the health-promoting properties in terms of the antioxidant capacity of traditional hot brews as well as cold brews of black, green and white teas produced across the European territory using a panel of antioxidant assays. Total polyphenol/flavonoid contents and metal chelating activity were also determined. For differentiating the characteristics of the different tea brews, ultraviolet-visible (UV-Vis) spectroscopy and ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry were employed. Overall, our findings demonstrate for the first time that teas grown in Europe are good quality teas that are endowed with levels of health-promoting polyphenols and flavonoids and that have an antioxidant capacity similar to those grown in other parts of the world. This research is a vital contribution to the characterization of European teas, providing essential and important information for both European tea growers and consumers, and could be of guidance and support for the selection of teas grown in the old continent, along with having the best brewing conditions for maximizing the health benefits of tea.
Collapse
Affiliation(s)
- Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences-D3A, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Alfonso Albacete
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Purificación A Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura, Agencia Estatal Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| |
Collapse
|
10
|
Andrade MA, Barbosa CH, Cerqueira MA, Azevedo AG, Barros C, Machado AV, Coelho A, Furtado R, Correia CB, Saraiva M, Vilarinho F, Silva AS, Ramos F. PLA films loaded with green tea and rosemary polyphenolic extracts as an active packaging for almond and beef. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Mateus ARS, Crisafulli C, Vilhena M, Barros SC, Pena A, Sanches Silva A. The Bright and Dark Sides of Herbal Infusions: Assessment of Antioxidant Capacity and Determination of Tropane Alkaloids. Toxins (Basel) 2023; 15:toxins15040245. [PMID: 37104183 PMCID: PMC10144634 DOI: 10.3390/toxins15040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Herbal infusions are highly popular beverages consumed daily due to their health benefits and antioxidant properties. However, the presence of plant toxins, such as tropane alkaloids, constitutes a recent health concern for herbal infusions. This work presents an optimized and validated methodology based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction procedure followed by Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC-ToF-MS) for the determination of tropane alkaloids (atropine, scopolamine, anisodamine, and homatropine) in herbal infusions, in accordance with criteria established by Commission Recommendation EU No. 2015/976. One of the seventeen samples was contaminated with atropine, exceeding the current European regulation regarding tropane alkaloids. In addition, this study evaluated the antioxidant capacity of common herbal infusions available on Portuguese markets, indicating the high antioxidant capacity of yerba mate (Ilex paraguariensis), lemon balm (Melissa officinalis), and peppermint (Mentha x piperita).
Collapse
|
12
|
Lopes M, Silva AS, Séndon R, Barbosa-Pereira L, Cavaleiro C, Ramos F. Towards the Sustainable Exploitation of Salt-Tolerant Plants: Nutritional Characterisation, Phenolics Composition, and Potential Contaminants Analysis of Salicornia ramosissima and Sarcocornia perennis alpini. Molecules 2023; 28:molecules28062726. [PMID: 36985696 PMCID: PMC10059647 DOI: 10.3390/molecules28062726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Increasing soil salinisation represents a serious threat to food security, and therefore the exploitation of high-yielding halophytes, such as Salicornia and Sarcocornia, needs to be considered not merely in arid regions but worldwide. In this study, Salicornia ramosissima and Sarcocornia perennis alpini were evaluated for nutrients, bioactive compounds, antioxidant capacity, and contaminants. Both were shown to be nutritionally relevant, exhibiting notable levels of crude fibre and ash, i.e., 11.26-15.34 and 39.46-40.41% dry weight (dw), respectively, and the major minerals were Na, K, and Mg. Total phenolics thereof were 67.05 and 38.20 mg of gallic acid equivalents/g extract dw, respectively, mainly p-coumaric acid and quercetin. Both species displayed antioxidant capacity, but S. ramossima was prominent in both the DPPH and ß-carotene bleaching assays. Aflatoxin B1 was detected in S. ramosissima, at 5.21 µg/Kg dw, which may pose a health threat. The Cd and Pb levels in both were low, but the 0.01 mg/Kg Hg in S. perennis alpini met the maximum legal limit established for marine species including algae. Both species exhibit high potential for use in the agro-food, cosmetics, and pharmaceutical sectors, but specific regulations and careful cultivation strategies need to be implemented, in order to minimise contamination risks by mycotoxins and heavy metals.
Collapse
Affiliation(s)
- Maria Lopes
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Centre for Study in Animal Science (CECA), ICETA, University of Porto, 4051-501 Porto, Portugal
| | - Raquel Séndon
- Analytical Chemistry, Nutrition and Food Science Department, Pharmacy Faculty, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Letricia Barbosa-Pereira
- Analytical Chemistry, Nutrition and Food Science Department, Pharmacy Faculty, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Cavaleiro
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Fernando Ramos
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|